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Abstract
Zeolitic imidazolate frameworks (ZIFs) consist of transition metal ions (Zinc or Cobalt) and imidazolate (Im) linkers in 
tetrahedral coordination surrounded by nitrogen atoms from the five-membered imidazole ring serving as a bridging linker, 
i.e. a link connecting the metal centres in the three-dimensional framework. The crystal structures of ZIFs share the same 
topologies as those that can be found in aluminosilicate zeolites. ZIFs have advantages over zeolites such that the hybrid 
framework structures are expected to have more flexibility in surface modification. Due to their interesting properties such as 
high porosity, high surface area, exceptional thermal and chemical stability, ZIFs are very attractive materials with potential 
applications including gas sorption, gas separation, and catalysis. Over a decade tremendous work has been carried out to 
develop ZIFs in synthesis and its various applications. In this review, we have briefly composed the different methods for 
the synthesis of ZIFs such as solvent-based and solvent-free methods. In addition, its thermal and chemical properties and 
potential applications in the field of adsorption, separation, catalysis, sensing, and drug delivery have been summarized.
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1 Introduction

Due to the vital properties such as high surface areas, large 
pore volumes, and tunable pore sizes, ZIF has become an 
area of interest for researchers. ZIFs are a sub-family of 
Metal–organic framework (MOF) compound that incorpo-
rates M-Im-M (where M stands for Zinc and Cobalt and Im 
stands for imidazolate linker) fashioned by a self-assembly 
approach [1]. The crystal structure of ZIF has an identi-
cal topological structure as those found in aluminosilicate 
zeolites. The framework of zeolite is composed of tetrahe-
dral silicon or aluminium connected by oxygen atoms. In 
ZIFs, the tetrahedral silicon or aluminium atoms bridged 
by oxygen are replaced by transition metals such as (Zn or 
Co) and Im as linkers [2]. They have advantages over zeo-
lites because the mixed framework structure is expected to 
have greater flexibility in surface modification. Zeolites are 

aluminosilicates based three-dimensional framework com-
pounds; it is commonly used as water softeners and as a 
catalyst in petroleum refining. Framework adaptable struc-
tures are such that the metal atoms and the organic moie-
ties can be varied to enhance the structural properties and 
applications [3, 4].

ZIFs are porous co-ordination polymers with uniform 
micropores and large void associated by small windows 
made up of tetrahedral building blocks in which each biva-
lent metal cation  M2+ (M = Co and Zn) combines four Im-
derived ligands to generate neutral open framework struc-
tures  [M2+(Im)2] with zeolitic topologies [5]. As shown in 
Fig. 1, ZIF-8 has a sodalite structure, with four and six-
member ring Zn-N4 clusters with internal cavities measur-
ing 1.16 nm in diameter and 0.34 nm windows connecting 
them as confirmed by thermogravimetric analysis (TGA) 
or by examining the X-ray diffraction (XRD) pattern of the 
material [6]. The five-member Im ring serves as the bridging 
unit between the Zn(II), Co(II), or In(III) centres and imparts 
an angle of 145° throughout the frameworks via coordinat-
ing nitrogen atoms in the 1,3-positions of the ring [7–9].

During the intensive study and the development period 
of MOFs, successfully synthesized MOF-5 and its analogs 
were found to be chemically reactive with water and thus 
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undergo decomposition easily. This was primarily attribut-
able to their Zn–O bonds, which support the framework to 
be broken under humid conditions [10, 11]. Researchers, 
by focusing more on hydrolytic stability, new MOFs were 
developed. In 2012, by protecting the Zn–O bond with func-
tional groups of the ligand, the water stability of the MOF-n 
series was improved [12]. In addition, ZIFs were found to 
be highly stable at hydrothermal conditions, withdrawing 
the hydrolysis remark on MOFs. MOFs need to exhibit 
good stiffness, rigidity, and robustness to retain their struc-
tural integrity under high-pressure environments. ZIFs are 
promising materials for many industrial utilities such as gas 
adsorption and gas storage [13, 14], solvent separation [15], 
chemical sensing [16], catalysis [17], biomedical imaging 
[18], and drug delivery [19].

The primary building unit of ZIFs is made of T-Im-T 
(T = tetrahedrally coordinated metal ion, Im = imidazolate, 
and its derivative) with a bond angle of  1450, which is analo-
gous to the Si–O–Si angle in zeolites. ZIF materials can 
have structures analogous to standard zeolite with a topol-
ogy, such as sod, rho, gme, lta, and ana, employing a dif-
ferent Im ligand as shown in Fig. 2. The structure adopted 
by a given ZIF depends primarily on the type of Im and 
solvent used [20, 21] and greater structural diversity in ZIFs 
is possible using functionalized Im ligands in their synthe-
sis. MOFs with zeolitic structures have been synthesized 
in a large number. Among them, ZIFs have recently gained 
curiosity among researchers. Some of the examples of ZIFs 
are mentioned below in Fig. 3.

Several review articles have recently been published, cov-
ering framework design and functionalities, synthesis, and 
applications of ZIFs and their composites and ZIF-based 
separation membranes and functional films [22, 23]. They 
are proven to be potential candidates for carbon dioxide 
adsorption due to their large surface area with porous struc-
tures [24]. ZIFs have exceptional chemical and thermal sta-
bility [25] that makes ZIFs capable of numerous applications 
like gas storage, heterogeneous separation, catalysis, and 
chemical sensing. The combination of high porosity with 

tunable pore chemistry from metal ions and ligand func-
tional groups leads to potential applications in gas sorption, 
gas separation, and catalysis. Indeed, these applications are 
cost-sensitive; greatly promote the large-scale production of 
ZIFs for industrial applications.

2  Novelty and justification

In this review, we focus on the various synthesis methods, 
the chemical and thermal properties, and the applications of 
ZIF compounds that have been uniquely discussed, some of 
the chemical and thermal properties of ZIF compounds are 
summarized. We discussed some of the major applications 
in detail such as drug delivery, sensing, separation, catalysis 
and adsorption. Further, we offer some remarks at the end 
of the review for further development in the research of ZIF 
compounds. Hopefully, this review will help the researchers 
with the basic ideas in the area of ZIFs in the future.

To further develop new synthesis strategies and explore 
the potential applications of ZIFs, it is vital to take advan-
tage of the knowledge and experience gained from other 
research fields such as those in zeolites. Undoubtedly, 
much research is needed to explore those fast developing 
and emerging fields. With the effort from scientists in rel-
evant fields, novel synthesis approaches for ZIF materials 
that are low-cost, scalable and reproducible will emerge in 
the near future. Even though vast advancement have made 
in the synthesis and applications of ZIF-based materials, 
certainly more innovative synthesis strategies of ZIFs and 
implementation in various fields will emerge in the future.

3  Different methods for the synthesis of ZIFs

3.1  Solvent‑based Synthesis

As shown in the above classification Fig. 4 there are vari-
ous methods for the synthesis of ZIFs. In Solvent-based 

Fig. 1  a. Crystal structures 
of ZIF-8: Zn (polyhedra), N 
(sphere), and C (line). The mas-
sive sphere represents the larg-
est Van der Waals spheres that 
would fit in the cavities without 
touching the framework. All 
hydrogen atoms were omitted 
to clear the crystal structure of 
ZIF-8 and  reproduced from 
reference number 6. b). Struc-
ture of framework ZIF-8. They 
are reproduced from reference 
number 7
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synthesis, methanol, ethanol, water, dimethylformamide, 
diethyl formamide, etc., are used as a solvent. Further, 
based on the solvent used they were many strategies like 
solvothermal, hydrothermal, microwave, ionothermal, and 
sonochemical methods.

3.1.1  Solvothermal method

During the early stage of ZIF synthesis, the solvothermal 
method was widely used. Later, Chen's group for the first 
time developed polyhedral crystals of zeolites framework in 
methanol and ammonia using zinc and Im as precursors in 
a 1:2 ratio [26]. In this synthesis method, metal and excess 
ligands are placed in Teflon-lined autoclaves at 120 °C for 
24 h. A sequence of framework compounds was synthesized 
by Yaghi et al. in 2006 from ZIF-1 to ZIF-12, through solvo-
thermal synthesis using organic solvents such as methanol, 
ethanol, isopropyl alcohol, dimethylformamide, and diethyl 
formamide [7]. Particles up to 40 nm were found and had 
better stability with solvothermal synthesis. Other ZIF com-
pounds were also synthesized using the same solvents such 
as ZIF-60 to ZIF-71, ZIF-78, ZIF-82, ZIF-90, ZIF-95, and 
ZIF-100. However, synthesis methods were later modified 

using some bases such as triethylamine, pyridine, sodium 
hydroxide, sodium formate, and n-butylamine [3, 27, 28] to 
deprotonate the Im linker which increases the rate of reac-
tion and gives high yield product. Janosch Cravillon et al., 
experimented with the synthesis of ZIF-8, using methanol 
as a solvent along with the addition of sodium formate as 
the competitive ligand in the presence of Im linker [29]. 
The experimental analysis reveals that sodium formate acts 
as a more deprotonating agent than a competitive ligand. 
His experiment also reveals that large and scattered parti-
cles have appeared with the increase in the concentration 
of ammonium hydroxide. Thereby, the morphology and the 
structural properties can be varied by controlling the con-
centration of ammonia.

3.1.2  Hydrothermal synthesis

Hydrothermal synthesis refers to any homogeneous or het-
erogeneous chemical reaction in the presence of an aque-
ous or non-aqueous solvent higher than the room tempera-
ture and at pressure more than 1 atmospheric in a closed 
system [30]. In this one-step process, the precursors are 
heated in an aqueous mixture in a sealed stainless steel 

Fig. 2  Some of the examples of 
Im linker
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autoclave beyond the boiling point of water, which results 
in a drastic increase in the pressure above atmospheric 
pressure; consequently, highly crystalline materials are 
produced without the need of post-annealing treatments.

Undoubtedly, the use of organic solvents is economi-
cally costly, toxic to human health, and not environmen-
tally friendly. Hence, substantial research is done to 
develop a productive, green method for syntheses of ZIF 
materials. The reactants often play a major role in the for-
mation of ZIF compounds with different morphologies. 
In 2010, Pan et al. synthesized nanocrystals of ZIF-8 in 
a pure aqueous medium with a higher yield than organic 
solvents in a short duration of 5 min but required a more 
amount of linker [31]. Then, many researchers put efforts 
to propose the green method for the synthesis of ZIFs. For 
example, Junfeng Qian et al. successfully synthesized the 
nanocrystals of ZIF-67 in an aqueous medium. Upon dilu-
tion, the mean particle size of ZIF-67 can be varied from 
689 nm to 5 µm [32].

Some modifications were initiated in hydrothermal syn-
thesis to decrease the reaction rate for example, by add-
ing some deprotonating agents such as triethylamine [33], 
ammonium hydroxide [34] etc. These deprotonating agents 
not only reduce the use of ligands but also enhance the rate 
of reaction. Also, by the inclusion of surfactants in the ZIF 
synthesis solutions reduce the usage of solvent and organic 
ligand significantly.

Several surfactants have also acted as structure-directing 
agents in the ZIF synthesis processes, which have proved 
effective in tuning the ZIF crystal size and shapes. For exam-
ple, Pan and his research team controlled the morphology 
and size of ZIF-8 crystals in an aqueous solution using 
cetyltrimethylammonium bromide (CTAB) and precisely 
adjusted the particle size 100 nm to 4 mm. However, CTAB 
is not effective as a capping agent in organic solvents [35] 
and the SEM images in Fig. 5 clearly show the uniform dis-
persion of ZIF-8 nanoparticles. Various other parameters 
can high impact the emergence of these crystalline zeolites, 

Fig. 3  Some of the examples of ZIF compounds. a) ZIF-3. b) ZIF-8. c) ZIF-11. d) ZIF-12. e) ZIF-14. f) ZIF-60. g) ZIF-67 h) ZIF-70 i) ZIF-90. 
Reproduced from reference number 3
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such as the surfactant alkyl chain's length, the surfactant's 
concentration, the precursor ratio, and the temperature at 
which reaction is maintained produces hierarchically porous 
ZIF crystals for improved adsorption properties [36].

Moreover, a polymer such as polyvinylpyrrolidone (PVP) 
is used as a surfactant promoting porous ZIF compounds' 
formation due to electro statistical attraction to the metal 
ions [37]. Polymers play a crucial role in controlling mor-
phology by adding PVP;for example; Nune et  al. show 
that 1% high molecular weight poly (diallyldimethylam-
monium) chloride plays a key role in controlling the mor-
phology of nanoparticles [38]. Ironically, ZIF compounds 
could be prepared using the stoichiometric ratio of metal 
ions and MIm in the presence of other additives such as 
triblock copolymers poly (ethylene oxide)–poly (propylene 
oxide)–poly (ethylene oxide) (PEO-PPO-PEO) and PVP in 
an aqueous system. For instance, both ZIF-8 and ZIF-67 

were synthesized from the stoichiometric metal ions and 
2-methylimidazolate linker in a diluted ammonia system 
containing triblock copolymer surfactant in the presence of 
PEO groups [39], where it was assumed that surfactant could 
assist the formation of porous ZIF-8 and ZIF-67 because of 
electrostatic attraction to the metal ions [40]. For example, 
Shieh et al. also found that ZIF-90 microcrystals could be 
synthesized using a hydrothermal technique in the presence 
of PVP. Besides, PVP was believed to rule the morphology 
of crystals and suppress the accumulation of crystals [37].

3.1.3  Microwave synthesis

Microwave synthesis is a new type of heating technology, 
which is widely used in many chemical syntheses. It has 
been acknowledged that Microwave synthesis is an easy, 
swift, and economically feasible route for the synthesis 

Fig. 4  Different methods for the 
synthesis of ZIFs

Fig. 5  SEM images of ZIF-8 
nanoparticles. Reproduced from 
reference number 43
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of MOF compounds as shown in Fig. 6. Compared to the 
conventional heating method, the microwave irradiation 
method is a green and more promising method, which can 
remarkably quicken the reaction rate [41]. The microwave 
method notably shortens the synthesis time, produces a 
higher yield, considerably reduces the number of ligands, 
and extinguishes the use of deprotonating agents. The 
researcher proposed many synthetic techniques to pro-
duce ZIF-8, despite not all of them leading to the mate-
rial possessing a high specific surface. Fast synthesis often 
results in Brunauer–Emmett–Teller Nitrogen adsorption 
specific surface areas not higher than 1000  m2  g–1 and the 
molar ratio between zinc salt and linker is optimized. In 
2013, Bux and his coworkers for the first time reported the 
synthesized ZIF-8 using microwave irradiation [42]. Vera 
V. Butova, et al. in 2016 successfully reported a new fast 
(15 min) microwave-assisted hydrothermal method for the 
synthesis of ZIF-8 with a high specific surface area of 1419 
 m2  g–1. The starting materials were zinc nitrate hexahydrate, 
2-methyl imidazole, dimethylformamide, and triethylamine 
[43].

3.1.4  Ionothermal synthesis

Ionothermal synthesis is a new method for synthesising 
porous materials such as ZIF which includes green, recy-
clable ionic liquids and eutectic mixtures as solvents. The 
synthesis can be carried in an open system due to the non-
flammability and negligible vapor pressure of ionic liquids. 
They also act as templates to avoid competitive interaction 
between the solvent and template framework as in hydro-
thermal synthesis. Morrison and co-workers for the first 
time synthesized ZIF using an ionic liquid such as 1-ethyl-
3-methylimidazolium bis(trifluoromethyl)sulfanilamide 
[44]. Yang and his team synthesized stable ZIF-8 with 
regular morphology using 1-butyl-3-methyl-imidazolium 

tetrafluoroborate as an ionic liquid; this acts as a structure-
directing agent under microwave irradiation in a short time 
of 60 min [45].

3.1.5  Sonochemical synthesis

Compare to standard conventional synthesis methods; the 
sonochemical method promotes the formation of nuclea-
tion due to the disintegration of acoustic cavitations gener-
ated by ultrasonic waves. Consequently, crystallization time 
decreases accompanied by significant crystal size reduction. 
Sonocrystallization products also result in smaller crystals 
with a narrower size distribution than conventional crystal-
lization due to the advancement of the nucleation process 
in solution [46, 47]. Different SEM images using the sono-
chemical method are shown in Fig. 7.

3.2  Solvent‑free synthesis

In this group of methods, a new strategy of solventless 
synthesis methods was put forth. Since the solvents are 
not environmentally friendly and economically costly, thus 
these methods are green methods for synthesizing ZIFs com-
pounds. Some examples of such methods are steam assisted 
conversion method (dry gel conversion method) [48], accel-
erated aging method [49], and mechano-chemical synthesis 
method (Ball milling method) [50].

The dry gel conversion method involves a reaction 
between amorphous gel powder with water vapors or vapors 
of amines resulting in the formation of zeolite crystals. 
Using the dry gel conversion method Ningyue Lu, et al. 
successfully synthesized ZIF-8 [51], MIL-100(Fe) [52], 
and MIL-101(Cr) UIO-66 [48] without using acid or salt. 
Shi et al. successfully synthesized highly porous ZIF-8 and 
ZIF-67 using the steam-assisted conversion method (dry-gel 
conversion method) [53]. This method is environmentally 
friendly and avoids the use of harmful solvents and is cost-
efficient for the preparation of porous compounds. Concur-
rently, the synthesized compounds show excellent catalytic 
activity, high stability, and reusability in the esterification 
reaction.

Also, mechanochemical is an efficient and easy method 
for the synthesis of porous materials [54]. Patrick J. Beldon 
et al. did comparable studies between mechanochemical and 
microwave-assisted methods for the synthesis of ZIF at room 
temperature [50]. In the mechanochemical method, the reac-
tion was completed within 30 min whereas, in microwave-
assisted methods, reactants gave a mixture of products at low 
conversion after a few hours. The illustration of the ball mill-
ing method is seen in Fig. 8. Furthermore inspired by geo-
logical biomineralization, Friscic et al. proposed the envi-
ronmentally friendly age-accelerating method is also used 
to prepare ZIFs, which is different from solvent-based or 

Fig. 6  Microwave synthesis of ZIFs. Reproduce from the reference 
number 04
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other solvent-free synthesis methods [55]. The proton trans-
fer mechanism was also proposed by Friscic et al. Where the 
catalytic salts could induce and accelerate the transformation 
of a metal oxide into a ZIF material.

Compare to other methods, solvent-free synthesis has 
emerged as an eco-friendly method with potential advan-
tages such as fast, reduced waste or toxic disposal, minimum 
usage of templates, and uninterrupted formation of products.

4  Summary for the synthesis methods 
of ZIFs

We have discussed various methods for the synthesis of 
ZIFs. Undoubtedly, all the methods have their advantages 
and disadvantages. Among solvent-assisted methods such 
as hydrothermal, solvothermal, ionothermal, microwave, 

and sonochemical methods. These novel approaches offer 
reproducibility, scalability, and high surface area in a short 
period. But excessive usage of linker and solvent makes 
these methods inefficient. Further, Solvent-free synthesis 
methods have their credits and drawbacks. These methods 
are cost-effective and skip the use of solvents which cor-
respondingly reduces the impurity or solvent molecules 
trapped in the pores of the crystal.

5  Thermal and chemical properties of ZIFs

5.1  Thermal properties

Using TGA under an inert atmosphere it was reported 
that ZIFs are thermally highly stable up to 450–550 °C 
[56]. Later, using various characterization techniques it 
was studied that ZIF-8 undergoes partial carbonization in 
inert, oxidizing, and reducing atmospheres to form an imi-
dazole–Zn–azirine structure above 300 °C [57]. Remark-
able degradation of ZIF-8 was observed above 300 °C 
under different atmospheres using static TGA. It is also 
claimed that the size of a particle and the synthesis condi-
tion plays a vital role in the thermal stability of a particle 
of ZIFs [58]. Comprehensively, it suggests that 200 °C 
is the standard operating temperature at any atmospheric 
temperature [7]. In Fig. 9, it is seen that the ZIF-8 is stable 
till 300 °C and then slow decomposition starts further.

Fig. 7  SEM images of ZIF-8 
(a and b), ZIF-11 (c and d), 
and ZIF-20 (e and f) using 
sonocrystallization. Reproduced 
from reference number 49

Fig. 8  Ball-mill grinding method for the synthesis of ZIFs. Repro-
duced from reference number 04
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5.2  Chemical properties

The invention of highly stable ZIFs in hydrothermal con-
ditions overcomes the major drawback of MOFs, Thus 
strengthening the desirability of MOF compounds [58]. 
The chemical stability was profoundly studied by Kyo 
Sung Park and Co-workers, the ZIF samples (ZIF-8 and 

ZIF-11) were submerged in the desired solvents such as 
boiling water, methanol, benzene, and aqueous sodium 
hydroxide for 1–7 days at 50 °C. The experiment was 
continuously under observation under a microscope and 
found that to be remaining inert in each condition [7]. 
Figure 10 shows the XRD patterns and the SEM images of 
ZIF-8 kept in methanol for some days to study the chemi-
cal reactivity of ZIF-8.

Fig. 9  Thermo-gravimetric 
curves of ZIF-8 synthesized 
using different heating methods: 
(a) 72 h of reaction time by con-
ventional heating; (b) 60 min 
of reaction time by microwave 
heating. Reproduced from refer-
ence number 48

Fig. 10  a. XRD patterns and 
b–d SEM pictures of synthe-
sized ZIF-67 nanocrystals 
immersed in boiling methanol 
for 1–5 days. Reproduced from 
reference number 64
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5.3  Surface area

Surface area is the major parameter for characterizing porous 
materials. ZIFs have a high surface area which is measured 
using BET. Sometimes the reason for the low surface area is 
low or partial activation of samples [59]. Nitrogen adsorp-
tion/desorption, Langmuir and Brunauer–Emmett–Teller 
(BET) analysis are the major analysis for evaluating.

Specific surface area and recorded in  (m2/g). The highest 
SSA recorded was determined by the BET method as 2490 
 m2/g. The SSA ranges from 6.050 to 2490  m2/g. The finer 
the particle size, the larger the surface area thus the more 
availability of active binding sites for pollutants. The pore 
diameter ranges from 0.34 to 2350 nm [60]. The reduction in 
the surface area may be due to the guest molecules or unre-
acted species struck in the pore of the compounds. Hence, 
the samples should be heated to a high temperature above 
200 °C to eliminate the trapped molecules [61].

6  Applications

6.1  Adsorption

Adsorption is a highly favorable method due to its low cost 
and high efficiency. MOFs are multi-skilled components for 
contaminated groundwater. Meipeng Jian et al. showed that 
adsorption on ZIF-8 at different pH. Arsenic [62], humic 
acid [63], phthalic acid [64], benzotriazoles [65] and antibi-
otics like tetracycline (TC) and oxytetracycline (OTC) with 
high adsorption capacity of 122.0 and 149.3 mg  g−1, respec-
tively using ZIF-8 [66]. ZIFs are the efficient compounds 
for the adsorption of most organic dyes, such as methyl blue 
[67], malachite green [68], and rhodamine B [69]. Adsorp-
tion is the basic principle in the synthesis of styrene carbon-
ate from  CO2 and styrene oxide using ZIF-8 as the catalyst. 
In ZIF-8, Lewis acid metal (II) sites and the nitrogen basic 
moieties from the imidazole linker in the ZIF-8 framework 
promoted the adsorption of carbon dioxide on the solid sur-
face and its further conversion to the carbonate [70]. For 
adsorption applications, ZIFs should exhibit excellent rigid-
ity and robustness to retain their structural integrity under 

high-pressure environments. Pores are driven by the inter-
action between acid and base, electrostatic interactions, π 
bonds stacking, co-ordination interactions, and hydrogen 
bonding [3], which helps to preferentially adsorb molecules 
that fit in tightly inside the pores and they exclude the mol-
ecules that are too large or too small [71]. Adsorption mech-
anism of Malachite green on ZIF-67 is illustrated in Fig. 11. 
The adsorption of malachite green on ZIF-67 is consider to 
be significantly involved in the chemical interaction with 
ZIF-67 gleaned from exploration of the kinetics, adsorp-
tion isotherm and thermodynamics [68]. The imidazole ring 
in 2-methylimidazole contain two double bonds and a pair 
of electrons from the pronated nitrogen, which all interact 
on the planar surface of the imidazole ring. Therefore, the 
imidazole ring can be considered as an aromatic compound 
which can interact with other aromatic compounds via the 
π–π stacking interaction [68].

6.2  Separation

Separation technique has emerged as one of the frontier 
applications with the rapid increase of global issues such 
as natural gas purification, carbon dioxide capture, hydro-
gen separation, etc. In 2015, air separation experiences huge 
market value approximately around $4 billion and it was 
predicted by 2022 that it will reach around $6 billion [72]. 
Hence, making it economically less expensive is essential 
because of the main components like  O2 and  N2. Oxygen 
is essential due to its medical applications, gasification 
combined cycle for power generation, oxy-fuel combus-
tion, and many more. Nitrogen has its own importance in 
the industries such as in petroleum industries. Separation 
using cryogenic distillation and pressure swing adsorption 
are high energy-consuming and expensive methods. Thus, 
another method for efficient and economical gas separations 
is membrane-based approaches. So far, membranes for this 
separation are held either by low selectivity (polymeric 
membranes) or high sensitivity that results in cracking (ion 
transport membranes) [73, 74].

ZIFs membranes have evolved as particularly remark-
able because they require less energy to synthesize and 
have relatively short synthesis time and they are chemically 

Fig. 11  Proposed mechanism 
for the adsorption of malachite 
green using ZIF-67. Repro-
duced from the reference 
number 74
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and thermally stable and can achieve low defect fraction 
compared to zeolites [75]. Moreover, they exhibit outstand-
ing performance in kinetic-driven gas separations because 
they can sieve molecules with size less than 1 Å. Figure 12 
summarizes the applications of ZIFs for the many different 
separation. It is quite advisable to develop eminent ways for 
effective separation to maintain a clean eco-friendly envi-
ronment. Since ZIF exhibits physical dimensions propor-
tional to that of natural zeolites, it is an excellent plan to 
incorporate ZIF in these applications. Pure ZIF and modified 
forms of ZIF have a great validity for the exposure of gas 
separation.

Based on data gathered from Citation Index from 2009 
to the end of 2020, ZIF-8 gains 70% of the entire number of 
papers published in sorption/separation with ZIFs. ZIF-8 is 
an ideal selectivity for He/CH4,  H2/CH4,  O2/N2,  CO2/CH4, 
and  CO2/N2 as shown in Fig. 13 [76]. Adsorption-based gas 
separation processes by nanoporous materials are widely 
used because of their low energy demands and environmen-
tally friendly nature. As depicted in the Fig. 14 adsorption 
capacity in ZIF-67 is greater for  CO2 than  CH4,  N2, and  H2 
[77].

Nature and content of the target gas, variety of ZIF and 
mode of operation, physical conditions all together affect 
the efficiency of separation. By introducing organic linkers 
to ZIF, paves a pronounced compatible way when compared 
with other forms. This also helps to equilibrate the process-
ing of polymers. In addition to this gas separation, the pre-
sent research studies have shown clearly that ZIF materials 
can be served in vapor separation, biofuel recovery, etc. 
It is advisable to note that the flexibility of ZIFs and their 

modified forms under sarcastic conditions are on the way in 
research [78].

6.3  Sensing

The sensing of hazardous and inflammable gases is impor-
tant for health and environmental welfare. A few decades 
early, many metal oxide-based sensors were developed such 
as  SnO2, ZnO,  In2O3, and NiO film [79]. Since surface area 
plays an important role in absorbing more gases, inorganic 
metal oxide has a low surface area and requires a high tem-
perature for the gas sensing process [3]. Since ZIFs are 

Fig. 12  Summary of gas separa-
tion on both pure ZIFs and 
ZIF-based compounds

Fig. 13  Gas adsorption isotherms of ZIF-67 nanocrystals at room 
temperature. Reproduced from reference number 84
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materials with high surface area and good thermal stability, 
Hupp and co-workers came up ZIF materials as sensors and 
developed a ZIF-based sensing device for chemical vapors 
and gases called Fabry P'erot [80]. They found that ZIFs are 
excellent candidates as sensing materials due to their unique 
properties of water-resistant and high porosity. Inspired by 
the idea of Hupp et al. many researchers put forth their work 
with promising approaches [81].

One such approach by Er-Xia Chen et al. by employing 
ZIF-67 as a formaldehyde gas sensor at 150 °C with low 
concentration as low as 5 ppm. ZIF-67 has shown good 
sensitivity towards detecting various gases like formalde-
hyde, methanol, acetone, ammonia, and methane between 
the ranges between 75 and 200 °C [82]. It is worth noting 
that ZIF-67 shows maximum response to formaldehyde and 
least response to ammonia and methane as shown in Fig. 15.

Also, ZIF-8 has strong selectivity towards detecting small 
molecules and ions such as Copper and Cadmium ions [83]. 

In Fig. 16 it is depicted the effect of different solvents on 
the intensity of luminescence. It is clearly shown that the 
intensity of luminescence largely depends upon the solvent 
molecules. Also, it is noted that the luminescence property 
of ZIF-8 increases with an increase in the concentration of 
acetone.

6.4  Catalysis

Many researchers have devoted a lot of joint efforts to study-
ing high-performance, low-cost, and highly stable catalysts. 
ZIFs are synonymous with a porous material such as alu-
minosilicate zeolites. They serve as both homogenous and 
heterogeneous catalysts, but the latter is quite prominent 
than the former. They are one of the most prominent and 
economically placed catalytical materials for many reactions 
as depicted in Fig. 15 such as Knoevenagel condensation 
[84], Friedel–crafts acylation [85], Sonogashira coupling 
reaction [86], Suzuki cross-coupling reaction [87], synthe-
sis of Styrene carbonate [70], synthesis of cyclic carbonates 

Fig. 14  ZIF-8 based membranes 
as gas separation membranes. 
Reproduced from the reference 
83

Fig. 15  Sensitivity of the ZIF-67 sensor to different 100  ppm gases 
measured between 75 and 200 °C. Reproduced from reference num-
ber 90

Fig. 16  The effect of different solvents on the intensity of lumines-
cence. Reproduced from the reference number 91
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from carbon dioxide and epoxides [88], for the conversion 
of glucose to fructose and 5-hydroxymethyl furfural [89], 
aminocarbonylation [90], hydrogenation of 1,4-butanediol 
[91], reduction of alkenes such as 1-hexene and 1- hexyne 
[92, 93]. ZIF compounds not only exhibit great stability in 
the cyclo-addition reactions but also can be reused up to ten 
times in condensation reactions without losing their proper-
ties [94]. ZIFs can also be imposed in oxidation and epoxida-
tion reactions. For instant, ZIF-9 has been successfully used 
in the anaerobic oxidation of tetralin. Also, ZIF-9 is shown 
to be an efficient heterogeneous catalyst for the Knoevenagel 
reaction between benzaldehyde and malononitrile to form 
benzylidene malononitrile as the principal product. Excel-
lent conversions, high yield, and efficiency were achieved 
even without needing an inert atmosphere and can be reused 
as catalyzed without significant degradation [95]. With only 
2%–6% catalytic amount of ZIF-8, aromatic compounds 
with acid chlorides are converted into aryl ketones which 
are well-known as Friedal craft acylation reaction. It is a 
predominant process in the production of pharmaceuticals, 
agrochemicals, and fragrances. ZIFs used as a catalyst in 
many reactions are summarized in Table 1. The solid cata-
lyst can be easily separated from the reaction mixture by 
simple centrifugation or filtration and can be reused without 
significant degradation in catalytic activity [96, 97].

Even reactions that are difficult to handle can also be car-
ried out at room temperature with the help of ZIFs. Since 

natural ZIFs are used in many reactions, the modified ones 
also exhibit a large surface area and changeable pore size. 
Henceforth, it can be integral support for the introduction of 
different metals or oxide nanoparticles with eminent physi-
cal and chemical properties [98, 99] (Fig. 17).

In addition, ZIFs with nanomaterials have shown an 
increase in photocatalytic efficiency. Photocatalysis is a 
gifted method that aids to degrade toxic organic molecules, 
to purify water and air [100, 101]. Tayirjan et al. incorpo-
rated  TiO2 nanotubes with Pt/ZIF-8 and found a remarkable 
increase in the photodegradation of phenol. Wherein ZIF-65 
with molybdenum oxide was demonstrated the photocata-
lytic property towards the degradation of methyl orange and 
orange II dye under visible light [102, 103]. Interestingly, 
they can be easily separated from the reaction mixture and 
reused without any major changes to catalytic activity. Yi 
Feng et al. synthesized ZIF-8 and studied the adsorption of 
methyl orange, concluded that ZIF-8 has a high adsorption 
capacity than most adsorbents. The maximum adsorption 
capacity of ZIF-8 was found to be 2500 mg  g−1. The adsorp-
tion capacity does not decrease even after three cycles [67].

ZIF-67 derivatives such as CoP/g-C3N4 show excel-
lent photocatalytic activity for hydrogen production. 
A high photocatalytic hydrogen production rate of 
201.5 μmol  g−1  h−1 was obtained, which was almost 23 times 
higher than that of bulk g-C3N4 [104]. Co-ZIF-67 dodeca-
hedron was controllably carved via the different ways for 

Table 1  Summary of catalytical 
applications of ZIF or ZIFs 
based composites

Pure ZIF or ZIF 
composites

Applications Reference

ZIF-8 Photocatalytic degradation of Methylene blue [111]
ZIF-8 Conversion of Glucose to fructose and 5-hydroxy methyl furfural [89]
ZIF-8 Monoglycerine synthesis [112]
ZIF-8 Friedal-craft acylation [85]
ZIF-8/Ni/Pd Sonogashira coupling reaction [86]
ZIF-8/ Pd NPs Aminocarbonylation [90]
ZIF-8/ PVP-Pd Hydrogenation of 1,4-butynediol [91]
ZIF-8/Pd NPs Hydrogenation of Cinnamaldehyde [113]
ZIF-8/Pd/Au Ullmann Homocoupling reaction [114]
ZIF-8/Pd/Ag Dehydrogenation of formic acid [100]
ZIF-8/Ir NPs Hydrogenation of cyclohexene and phenylacetylene [115]
ZIF-8/Ru Dehydrogenation of dimethylamine-borane [116]
ZIF-8/Ru Asymmetric hydrogenation of acetophenone [117]
ZIF-8/Cu Cyclo-addition reaction [118]
ZIF-9 Knoevenagel Condensation [84]
ZIF-9/Co Hydrogen production from  NaBH4 hydrolysis [119]
ZIF-67 Synthesis of quinazolines [120]
ZIF-67/Co Synthesis of benzimadazoles [121]
ZIF-67/Pd Heck Reaction [122]
ZIF-95 Synthesis of cyclic carbonates from  CO2 and epoxides [88]
ZIF-8/ZIF-67 Fischer–Tropsch synthesis [123]
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efficiently boosting the photocatalytic property of hydrogen 
evolution. The mechanism of hydrogen evolution of ZIF-
67-derived P-ZIF-67 concave polyhedron showing a more 
excellent photocatalytic performance in the EY sensitization 
system was investigated as shown in Fig. 18 [105].

6.5  Drug delivery

The classical drug delivery system made from organic or 
inorganic-based materials has a major setback due to the 
consequences resulting from uncontrolled drug release, bio-
compatibility, and cytotoxicity, etc. It is not an easy task 
to bring a drug into the market from synthesis, altogether 
it takes decades of research. At last, they suffer from high 
side effects, minimum efficiency, and non-specific delivery 

with high cytotoxicity [106]. To overcome this drawback, 
precise and targeted delivery of drugs without affecting 
the healthy cells to the maximum extent is in great need 
for existence. Thus as such ZIF is one of the excellent sys-
tems for the controlled release of drug molecules as seen in 
Fig. 19; it is because of the excellent physical and chemical 
dimensions, high loading capacity, low toxicity, pH-sensitive 
degradation, stabilities, and tunable properties. The well-
defined pores of ZIFs play an important role in drug delivery 
because a substantial quantity of drugs can be fit within the 
framework to accomplish the targeted drug delivery. Even 
the changed materials of ZIF have evolved mutually of the 
potential frontiers during this field.  Zn2+, organic linkers, 
and target molecules were mixed, forming a  consistent 
system as illustrated in figure seventeen. At the side of the 

Fig. 17  Some of the appli-
cations ZIFs as catalysts in 
organic reactions

Fig. 18  Schematic representa-
tion of hydrogen evolution 
mechanisms. Reproduced from 
reference number 112
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coordination between  Zn2+ and linkers, target molecules 
were in place encapsulated at intervals ZIF-8, forming drug-
containing ZIF-8 cores (denoted as drug@ZIF-8) [107].

Romy Ettlinger et al. successfully loaded arsenite (As) in 
the ZIF-8 nanopores with a loading capacity as high as 74 µg 
of as per 1 mg of ZIF-8. Studies suggest that As is released 
thoroughly in acidic conditions at pH whereas at neutral con-
ditions only partial As is released due to the decomposition 
of nanocarrier ZIF-8 at acidic conditions [108].

So far many works have carried out, especially for the 
safe delivery of anticancer drugs. ZIF-8 has emerged as one 
of the potential candidates for its site-specific approach of 
anticancer drug—doxorubicin [109]. This being sustained to 
pH changes and shell-life is appreciable. As far as the best 
of our knowledge is considered, attempts are being made to 
construct hybrid nanocomposites for serving as drug deliv-
ery vehicles. Work has been done to build a ZIF-based mate-
rial that can serve as a carrier for simultaneous fluorescence 
imaging and pH-responsive drug delivery to cancer cells as 
shown in Fig. 20. DOX is step by step discharged upon the 
buildup of DOX@ZIF-8in tumour sites. The distinct unleash 

property of DOX@ZIF-8 makes it significant as a pretty pH-
responsive drug delivery system for tumor treatment.

ZIF-8 also exhibits excellent drug delivery capacity for 
anticancer drug 5-fluorouracil (5-FU) with 600 mg loading. 
Thus ZIF-8 proves to be an effective drug delivery agent. It 
was noted that in acidic condition drug are released much 
faster than in neutral conditions, thus ZIF-8 tends to be a 
pH-responsive drug delivery system [110].

7  Conclusion

Over a decade tremendous work is  distributed  for  the 
event  of ZIFs in synthesis, characterization, and  style 
of applications attributable to its versatile crystalline porous 
materials with nice potential in a very sizable amount of 
applications, ZIFs can emerge within the future. There are 
a variety of synthesis methods available for the preparation 
of a large number of ZIFs and ZIF-based composites using 
solvent-based and solvent-free methods.

Due to their unique exceptional chemical, thermal, and 
structural properties. There is explosive growth in the 
research and development in ZIFs from an application point 
of view more work is indeed going on. The Classical appli-
cations such as adsorption, separation, drug delivery, and 
sensing, utilization of ZIFs have been a long journey, most 
recently modified. Both ZIF and ZIF- based materials have 
been flourished as versatile tools in many fields, even their 
combinations forming composites have been extensively 
used. Despite these many advantages and distinct properties, 
some challenges need to be overcome to meet the potential 
needs of commercial application and large-scale production.

Moreover,  different  varied  approaches like mecha-
nochemical synthesis methods, dry-gel, or steam-
assisted conversion methods have been custom-made to 
prepare ZIFs. On the other hand, thus to bring ZIFs from 
laboratory studies to business applications, it's crucial to 
develop abundant on-market synthesis methods that unit of 

Fig. 19  Preparation of Drug@M-ZIF-8 Nano-Platform. Reproduced from the reference number 131

Fig. 20  Encapsulation of DOX inside ZIFs Framework. Reproduced 
from reference number 133
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measurement cost-effective and consistent with producing 
ZIFs on an outsized scale to satisfy the potential industrial 
application desires. So lot of work needs to be done to take 
advantage of ZIF for environmentally friendly sustain. ZIFs 
and ZIF-based materials, new applications of the distinctive 
fast growing materials, and even a lot of new opportuni-
ties for additional exploring ZIFs and ZIF-based materi-
als can still emerge within the future. To Further develop 
new methods, executions, mode of approach, permutations, 
and mixtures, analysis are needed for the event of this branch 
and to profit a man.

8  Limitations

No doubt, ZIFs are excellent compounds with distinguish 
properties such as high surface area, tunable pore size and 
volume, high thermal and chemical stabilities which leads to 
new opportunity. Perhaps the most important property is the 
ZIFs' hydrophobic properties and water stability. However, 
ZIFs tend to be expensive to synthesize. Synthesis methods 
with long reaction periods, high pressures, and high tem-
peratures, which aren’t methods that are easy to scale-up. 
Their use and study has been restricted to the bench top due 
to which significant amounts of information are missing.

9  Recommendation

Finally, we recommend for future work regarding differ-
ent parameters such as temperature, pressure, time, and pH 
which can play an important role in controlling the shape 
and morphology of ZIF materials. Besides, more important 
environmental issues should be taken into account before 
using these materials for any applications.
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