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The compounds, 5-methyl-5H-dibenzo[b,f ]azepine (1) and 5-(4-methylbenzyl)-5H-dibenzo[b,f ]azepine (2), were synthesized and
characterized by spectral studies, and finally confirmed by single crystal X-ray diffraction method. The compound 1 crystallizes in
the orthorhombic crystal system inPca2

1
space group, having cell parameters 𝑎 = 11.5681 (18) Å, 𝑏 = 11.8958 (18) Å, 𝑐 = 8.0342 (13)

Å, and 𝑍 = 4 and 𝑉 = 1105.6 (3) Å3. And the compound 2 crystallizes in the orthorhombic crystal system and space group Pbca,
with cell parameters 𝑎 = 16.5858 (5) Å, 𝑏 = 8.4947 (2) Å, 𝑐 = 23.1733 (7) Å, and𝑍 = 8 and𝑉 = 3264.92 (16) Å3.The azepine ring of
both molecules 1 and 2 adopts boat conformation with nitrogen atom showing maximum deviations of 0.483 (2) Å and 0.5025 (10)
Å, respectively. The C–H⋅ ⋅ ⋅ 𝜋 short contacts were observed. The dihedral angle between fused benzene rings to the azepine motif
is 47.1 (2)∘ for compound 1 and 52.59 (6)∘ for compound 2, respectively. The short contacts were analyzed and Hirshfeld surfaces
computational method for both molecules revealed that the major contribution is from C⋅ ⋅ ⋅H and H⋅ ⋅ ⋅H intercontacts.

1. Introduction

Azepine derivatives have showed to be associated with
different pharmacological activities such as antiviral, anti-
cancer, anti-insecticidal, and vasopressin antagonist. Imi-
nostilbene derivatives are found in montainine, coccinine,
manthine, and pancracine alkaloids present in Haemanthus
andRhodophiala species [1].They are the derivatives of drugs,
such as carbamazepine [2], opipramol [3], and oxcarbazepine
[4], which are used as anticonvulsants and antidepressants
and in the treatment of epilepsy and trigeminal neuralgia [5].
Another compound, G32883, an iminostilbene derivative,
shows effect on peripheral nerves [6]. Recently, it is reported
that carbamazepine with magnesium oxide is used to treat
anticonvulsant in albino rats [7]. Lateral dibenzazepine moi-
eties are known to have potential to act as substituents for

the binding site of the acetylcholine M
2
receptor [8]. The

11-phenyl-[b,e]-dibenzazepine compounds are proved to be
novel antitumor compounds [9].

Synthesis and crystal structures of other iminostilbene
derivatives, 5-(prop-2-yn-1-yl)-5H-dibenzo[b,f ]-azepine, or-
thorhombic polymorph, and 5-[(4-Benzyl-1H-1,2,3-triazol-1-
yl)methyl]-5H-dibenzo[b,f]azepine have been reported [10,
11]. As a part of our ongoing research on the synthesis
and crystal structures and their importance of iminostil-
bene derivatives, we report here the synthesis and char-
acterization by spectral studies and crystal structure using
single crystal X-ray crystal diffraction of compounds 5-
methyl-5H-dibenzo[b,f ]azepine (1) and 5-(4-methylbenzyl)-
5H-dibenzo[b,f]azepine (2). Here, we investigate the role of
the main intermolecular interactions on stabilization of the
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solid state architecture of the iminostilbene derivatives. And,
Hirshfeld surface analysis and fingerprint plots analyzing
intermolecular interactions were presented in the same pro-
cedure as we reported [12].

2. Material and Methods

2.1. Synthesis of 5-Methyl-5H-dibenzo[b,f]azepine (1). 5H-
Dibenzo[b,f ]azepine (0.0025mol) was taken in dimethylfor-
mamide (DMF) solvent, and K

2
CO
3
(0.0038mol) was added

at room temperature and stirred for 5 minutes. The reaction
mixture was cooled to 0∘C, then iodomethane was added
(0.0038mol). After 15minutes, the resulting reactionmixture
was heated at 60∘C for 7 hours (Scheme 1). After completion
of reaction (monitored by TLC), the reaction mixture was
diluted with water (50mL). The aqueous layer was extracted
with ethyl acetate (3∗20mL), and the combined ethyl acetate
layer was washed with 0.1 N hydrochloric acid (2 ∗ 25mL),
followed by brine solution (2∗25mL).Then, the organic layer
was dried over anhydrous sodium sulfate and filtered and
concentrated under reduced pressure to afford crude product,
which was purified by column chromatography over silica gel
(60–120mesh) using hexane : ethyl acetate mixture in 9.5 : 0.5
ratios as eluent.The pure compound was crystallized in ethyl
acetate and hexane to obtain yellow hexagonal shaped single
crystals.

2.2. Spectral Data
1H NMR (CDCl

3
, 400MHz); 𝛿 7.21 (q, 𝐽 = 4.99Hz,

2H), 7.01–6.91 (m, 6H), 6.66 (d, 𝐽 = 7.82Hz, 2H), and
3.30 (d, 𝐽 = 7.82Hz, 2H).

Mass: Calc. 207.27 found: 208.27 (M++1).
13C NMR (100MHz, CDCl

3
): 𝛿 152.28, 132.81, 132.42,

129.21, 128.90, 123.15, 118.82, and 39.30.
MS: 𝑚/𝑧 = 207.27 (calculated) 𝑚/𝑧 = 208.27
[M+H]+ (found). Anal. Calcd. for C

22
H
19
N
2
: C,

86.92; H, 6.32; N, 6.76.

(We also performed DEPT (distortionless enhancement
by polarization transfer), which will be given as supple-
mentary data in Supplementary Material available online at
http://dx.doi.org/10.1155/2014/862067.)

2.3. Synthesis of 5-(4-Methylbenzyl)-5H-dibenzo[b,f]azepine
(2). 5H-Dibenzo[b,f ]azepine (0.0025mol) was taken in a
mixture of toluene and water in the ratio of 1 : 1, and
sodium hydroxide (0.029mol) was added followed by
tetra-n-butylammonium bromide (TBAB) (0.00029mol) at
room temperature. After 15 minutes, 1-(chloromethyl)-4-
methylbenzene (0.0031mol) was added to the reaction mix-
ture at room temperature. Then, the resulting reaction
mixture was heated at 60∘C for 5 hours (Scheme 2). After
completion of reaction (monitored by TLC), the reaction
mixture was diluted with water (50mL). The aqueous layer
was extracted with ethyl acetate (3 ∗ 20mL), and the com-
bined ethyl acetate layer was washed with 0.1 N hydrochloric
acid (2 ∗ 25mL), followed by brine solution (2 ∗ 25mL).
Then, the organic layer was dried over anhydrous sodium
sulfate and filtered and concentrated under reduced pressure
to afford crude product, which was purified by column
chromatography over silica gel (60–120mesh) using hexane:
ethyl acetate mixture in 9.5 : 0.5 ratios as eluent. The pure
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Table 1: Crystal data, data collection, and structure refinement.

Compound 1 2
Empirical formula C15 H13 N1 C22 H19 N1
Formula weight 207.26 297.38
Temperature (K) 296 100
Wavelength (Å) 1.54178 1.54178
Crystal system Orthorhombic Orthorhombic
Space group Pca21 Pbca

Unit cell dimension (Å)
𝑎 = 11.5681(18) 𝐴 = 16.5858(5)
𝑏 = 11.8958(18) 𝑏 = 8.4947(2)
𝑐 = 8.0342(13) 𝑐 = 23.1733(7)

Volume Å3 1105.6(3) 3264.92(16)
𝑍 4 8
Calculated density g/cm3 1.245 1.210
Absorption coefficient mm−1 0.554 0.530
𝐹(000) 440 1264
Crystal size mm3

0.20 × 0.20 × 0.21 0.21 × 0.21 × 0.22

Theta range for data collection (∘) 3.7 to 64.2 6.2 to 64.4

Limiting indices
−13 ≤ ℎ ≤ 12 −18 ≤ ℎ ≤ 19

−13 ≤ 𝑘 ≤ 13 −9 ≤ 𝑘 ≤ 9

−6 ≤ 𝑙 ≤ 9 −27 ≤ 𝑙 ≤ 26

Reflections
collected/unique

9156/1417
𝑅(int) = 0.130

54177/2696
𝑅(int) = 0.034

Refinement method Full-matrix least
squares on 𝐹2

Full-matrix least
squares on 𝐹2

Data/restraints/parameters 1417/1/146 2696/0/209
Goodness-of-fit on 𝐹2 1.16 1.08

Final 𝑅 indices [𝐼 > 2𝜎(𝐼)] 𝑅
1
= 0.0786,
𝑤𝑅
2
= 0.2070

𝑅
1
= 0.0385,
𝑤𝑅
2
= 0.0895

Largest diff. peak and hole −0.32 and 0.28 𝑒 Å−3 −0.17 and 0.20 𝑒 Å−3

CCDC 959827 958853

compound was crystallized in ethyl acetate and hexane,
which yields colorless needle single crystals.

2.4. Spectral Data
1H NMR (CDCl

3
, 400MHz); 𝛿 7.31 (d, 𝐽 = 7.56Hz,

2H), 7.15 (T, 𝐽 = 7.78Hz, 2H), 7.05–6.99 (m, 6H), 6.92
(T, 𝐽 = 7.34Hz, 2H), 6.79 (s, 2H), 4.91 (s, 2H), and
2.16 (s, 3H).
Mass: Calc. 297.39 found: 298.39 (M++1).
13C NMR (100MHz, CDCl

3
): 𝛿 150.52, 135.87, 134.51,

133.48, 131.92, 128.87, 128.70, 128.53, 128.28, 128.13,
127.50, 122.90, 120.15, 54.32, and 20.70.
MS: 𝑚/𝑧 = 297.39 (calculated) 𝑚/𝑧 = 298.39
[M+H]+ (found). Anal. Calcd. for C

22
H
19
N: C, 88.85;

H, 6.44; N, 4.71.

(We also performed DEPT (distortionless enhancement
by polarization transfer), which will be given as supplemen-
tary data.)

2.5. Single Crystal X-Ray Diffraction Studies. X-ray intensity
data were collected for 1 (hexagonal shaped) and 2 (needle
shaped) using Bruker X8 Proteum diffractometer at 296K
and 100K, respectively. Data were collected using CuK𝛼
radiation (𝜆 = 1.54178 Å) with the 𝜑 and𝜔 scanmethod [13].
The final unit cell parameters were based on all reflections.
Data collections, integration, and scaling of the reflections
were performed using the APEX2 program [13].

The structures were solved by direct methods using
SHELXS [14] and all of the nonhydrogen atoms were refined
anisotropically by full-matrix least-squares on 𝐹2 using
SHELXL [14]. Summary of crystal data, data collection pro-
cedures, structure determination methods, and refinement
results are summarized in Table 1.

ORTEP (Figures 1 and 2) and packing diagrams (Figures
3 and 4) were generated using MERCURY [15]. And the
program Crystal Explorer 3.0 [16] was used to perform
Hirshfeld surfaces computational analysis and to quantify the
intermolecular interactions in terms of surface contribution
and generating graphical representations (Figure 5), plotting
2D fingerprint plots (Figures 6 and 8) [17], and generating



4 Journal of Crystallography

C15

C16

C13

C12

C11

C10

C9

C8

C7 C6

C5
C4

C3

C2
C1N14

Figure 1: The molecular structure of compound 1 showing the atomic numbering system. Displacement ellipsoids are drawn at the 30%
probability.
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Figure 2: The crystal packing of compound 1 projected onto bc plane.

electrostatic potential (Figure 5) [18] with TONTO [19]. The
electrostatic potential is mapped on Hirshfeld surfaces using
Hartree-Fock (STO-3G basis set) theory over the range of
−0.020 a.u. to +0.020 a.u. (Figures 5 and 7). The electrostatic
potential surfaces are plotted with red region which is a
negative electrostatic potential (hydrogen acceptors) and blue
region which is a positive electrostatic potential (hydrogen
donor).

Crystallographic data (excluding structure factors) for the
structure reported in this paper have been deposited with the
Cambridge Crystallographic Data Center as supplementary
publications numbers 959827 (1) and 958853 (2).

3. Results and Discussion

TheX-ray crystallographic analysis of 1 and 2was performed,
confirming the structures previously established by the NMR
data. The crystal structure of each compound presents only
one molecule in the asymmetric unit. The ORTEP diagrams
of 1 and 2 including the atoms labeled are shown in Figures
1 and 3, respectively. The compounds 1 and 2 crystallize in
the centrosymmetric and noncentrosymmetric space groups
Pbca and Pca21, respectively. The structural analysis reveals
that all geometric parameters agree well with the expected
values reported in the literature, including the iminostilbene
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Figure 4: The crystal packing of compound 2 projected onto ac plane.
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Figure 5: 𝑑norm mapped on Hirshfeld surface (b) for visualizing the intercontacts of compound 1. Color scale in between −0.047 au (blue)
and 1.152 au (red). Electrostatic potential mapped (c) on Hirshfeld surface (different orientation) with ±0.020 au. Blue region corresponds to
positive electrostatic potential and red region to negative electrostatic potential.The ball and stick model represents the different orientations
(front, back, top, and bottom) and correspondingly the Hirshfeld surfaces and their electrostatic potentials are oriented.

derivatives previously published by us [10, 11]. Overall, both
the molecules adopt butterfly shape and the percentage of
intercontacts of 1 and 2 to the Hirshfeld surface is compared
(Figure 9).

3.1. Compound 1. The fused benzene ring (C1–C5/C15 and
C9–C14) to the azepine motif makes a dihedral angle of
47.1(2)∘. Seven-membered (azepine) ring adopts a boat con-
formation with nitrogen atom showing maximum deviations
of 0.483 (2) Å, the puckering parameters Q

2
= 0.663(5) Å,

𝜑
2
= 182.1(4)

∘, Q
3
= 0.2050(4) Å, and 𝜑

3
= 179.7(15)

∘,
and the total puckering amplitude Q

𝑇
= 0.6940(4) Å

[20]. The ORTEP of compound 1 is shown in Figure 1. The
packing (Figure 2) of the molecules is stabilized with the
short contacts C–H ⋅ ⋅ ⋅ 𝜋 (Table 2), which exist betweenC12—
H12 and the centroid (Cg(1): C1–C5/C15) of the ring of the
neighboring molecules with a distance of 0.930 Å.

3.2. Hirshfeld Surface Analysis. Here, we estimated the inter-
molecular intercontacts contributing to the Hirshfeld sur-
faces shown in Figures 5 and 9. It shows that the major
contribution is from C–H (39%) (Figures 6(d) and 9) and
H–H (57%) (Figures 6(a) and 9). This is evidence that
van der Waals forces exert an important influence on the
stabilization of the packing in 1. And other intercontacts C–C
(2%) (Figures 6(c) and 9) and N–H (2%) (Figures 6(b) and
9) contribute less to the Hirshfeld surfaces. The mentioned
intercontacts are highlighted by conventional mapping 𝑑norm

Table 2: Intermolecular interactions geometry [Å, ∘].

D–H⋅ ⋅ ⋅A D–H (Å) H–A (Å) D–A (Å) D–H⋅ ⋅ ⋅A(∘)
1

C12–H12⋅ ⋅ ⋅Cg(1)iii 2.895 0.9300 3.775 (12) 166.41
2

C3–H3⋅ ⋅ ⋅Cg(1)i 2.990 0.7613 3.7513 (15) 141
C7–H7⋅ ⋅ ⋅Cg(2)ii 2.880 0.8726 3.7526 (14) 156
C8–H8⋅ ⋅ ⋅Cg(1)ii 2.620 0.8787 3.4987 (14) 159

i
𝑥−1/2, 𝑦−1/2, and 𝑧; ii𝑥−1, 𝑦+1/2, and 𝑧−1/2; iii −𝑥, 𝑦−2, and 𝑧−1/2.

on the molecular Hirshfeld surfaces (Figure 5), where the red
spot areas indicate intercontacts involved in the C–H ⋅ ⋅ ⋅ 𝜋
interactions. And the electrostatic potential (Figure 7) shows
the distribution of positive and negative potential over the
Hirshfeld surfaces.

3.3. Compound 2. The fused benzene rings (C1–C6 and C9–
C14) to azepine motif make a dihedral angle of 52.59(6)∘.
The terminal benzene ring (C17–C22) makes dihedral angles
of 26.66(6)∘ and 77.06(6)∘ with benzene rings C1–C6 and
C9–C14, respectively. The ORTEP of the compound 2 is
shown in Figure 3. Seven-membered (azepine) ring adopts
a boat conformation with nitrogen atom showing maxi-
mum deviations of 0.5025 (10) Å, the puckering parameters
𝑄
2
= 0.7030(13) Å, 𝜑

2
= 1.07(11)

∘, 𝑄
3
= 0.2025(12) Å,

and 𝜑
3
= 359.2(12)

∘, and the total puckering amplitude
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Figure 6: Fingerprint of compound 1: (a) C⋅ ⋅ ⋅H, (b) N⋅ ⋅ ⋅H, (c) C⋅ ⋅ ⋅C, and (d) C⋅ ⋅ ⋅H.The outline of the full fingerprint is shown in gray. di
is the closest internal distance from a given point on the Hirshfeld surface and de is the closest external contacts.

Q
𝑇
= 0.7315(12) Å [20]. The packing (Figure 4) of the

molecules is stabilized with the short contacts of the type
C–H ⋅ ⋅ ⋅ 𝜋 (Table 2). These short contacts exist between
C3–H3⋅ ⋅ ⋅Cg(1) with a distance 3.7513 (15) Å (angle 141∘),
C7–H7. . ..Cg(2) with a distance of 3.7526 (14) Å (angle 156∘),
andC8–H8⋅ ⋅ ⋅Cg(1) with a distance 3.4987 (14) Å (angle 159∘),
with Cg(1): C1–C6; Cg(2): C9–C14.

3.4. Hirshfeld Surface Analysis. The major contribution is
from C—H (39%) (Figures 8(b) and 9) and H–H (61%)
(Figures 8(a) and 9) intercontacts. The mentioned intercon-
tacts are highlighted by conventional mapping 𝑑norm on the

molecular Hirshfeld surfaces (Figure 7). In Figure 7, the red
spot areas indicate intercontacts involved in the C–H⋅ ⋅ ⋅ 𝜋
interactions. And the electrostatic potential (Figure 7) shows
the distribution of positive and negative potential over the
Hirshfeld surfaces.

4. Conclusions

Two derivatives, called 5-methyl-5H-dibenzo[b,f ]azepine (1)
and 5-(4-methylbenzyl)-5H-dibenzo[b,f ]azepine (2), were
synthesized, charactrized by spectral studies (1H NMR,
13C NMR and DEPT) and finally, structural elucidation by
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Figure 7: 𝑑norm mapped on Hirshfeld surface (b) for visualizing the intercontacts of compound 2. Color scale in between −0.075 au (blue)
and 1.358 au (red). Electrostatic potential mapped (c) on Hirshfeld surface (different orientation) with ±0.020 au. Blue region corresponds to
positive electrostatic potential and red region to negative electrostatic potential.The ball and stick model represents the different orientations
(front, back, top, and bottom) and correspondingly the Hirshfeld surfaces and their electrostatic potentials are oriented.
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Figure 8: Fingerprint of compound 2: (a) C⋅ ⋅ ⋅H and (b) H⋅ ⋅ ⋅H.The outline of the full fingerprint is shown in gray. di is the closest internal
distance from a given point on the Hirshfeld surface and de is the closest external contacts.

single crystal X-ray diffraction studies. The azepine rings of
compounds 1 and 2 adopt the boat conformation, and, as a
whole, molecule assumes butterfly shape. The fused benzene
ring to azepine motif makes a dihedral angle of 47.1 (2)∘ for
compound 1 and 52.59 (6)∘ for compound 2, respectively.
Hirshfeld surface analysis of 1 and 2 reveals that H⋅ ⋅ ⋅H and
C⋅ ⋅ ⋅H are the most abundant intercontacts. This is evidence

that van derWaals forces exert an important influence on the
stabilization of the packing in 1 and 2.
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