

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Flunarizinium isonicotinate

Channappa N. Kavitha,^a Manpreet Kaur,^a Jerry P. lasinski^{b*} and H. S. Yathiraian^a

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA Correspondence e-mail: jjasinski@keene.edu

Received 26 April 2014; accepted 7 May 2014

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.110; data-to-parameter ratio = 9.5.

In the cation of the title salt {systematic name: 4-[bis(4fluorophenyl)methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium pyridine-4-carboxylate}, C₂₆H₂₇F₂N₂⁺·C₆H₄NO₂⁻, the piperazine ring is in a slightly distorted chair conformation. The dihedral angle between the mean planes of the fluoro-substituted benzene rings is $81.9(1)^{\circ}$ and these benzene rings form dihedral angles of 6.5 (1) and 87.8 $(1)^{\circ}$ with the phenyl ring. In the crystal, a single $N-H\cdots O$ hydrogen bond links the cation and the anion. In addition, weak C-H···O hydrogen bonds and π - π stacking interactions involving one of the fluoro-substituted benzene rings and the phenyl ring, with a centroid-centroid distance of 3.700 (7) Å, link molecules along [100].

Related literature

For the bioligical activities of flunarizine, see: Amery (1983); Holmes et al. (1984). For related structures, see: Kavitha et al. (2013*a*,*b*,*c*,*d*). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Crystal data $C_{26}H_{27}F_2N_2^+ \cdot C_6H_4NO_2^ M_r = 527.60$

Monoclinic, Pc a = 11.0023 (3) Å b = 10.6435 (3) Å c = 11.3393 (3) Å $\beta = 92.481 \ (3)^{\circ}$ V = 1326.63 (6) Å³ Z = 2

Data collection

Agilent Eos Gemini diffractometer Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) $T_{\min} = 0.781, T_{\max} = 1.000$

Refinement

ł

3

3

2 F

$R[F^2 > 2\sigma(F^2)] = 0.040$	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
$\nu R(F^2) = 0.110$	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
1 = 1.02	Absolute structure: Flack (198
403 reflections	857 Friedel pairs
57 parameters	Absolute structure parameter:
restraints	0.2 (2)
I atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{\begin{array}{c} N2A - H2A \cdots O1B^{i} \\ C6A - H6A \cdots O2B^{ii} \end{array}}$	0.94 (4)	1.62 (4)	2.557 (3)	176 (4)
	0.93	2.60	3.439 (4)	151

Symmetry codes: (i) $x, -y + 1, z - \frac{1}{2}$; (ii) x - 1, y + 1, z.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009); software used to prepare material for publication: OLEX2.

CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to do research. JPJ acknowledges the NSF-MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5702).

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Amery, W. K. (1983). Headache, 23, 70-74.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Holmes, B., Brogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. (1984). Drugs, 27, 6-44.
- Kavitha, C. N., Butcher, R. J., Jasinski, J. P., Yathirajan, H. S. & Dayananda, A. S. (2013d). Acta Cryst. E69, 0485-0486.

Cu $K\alpha$ radiation $\mu = 0.76 \text{ mm}^-$

 $0.22 \times 0.12 \times 0.06 \ \text{mm}$

8232 measured reflections 3403 independent reflections

3238 reflections with $I > 2\sigma(I)$

(1983),

T = 173 K

 $R_{\rm int} = 0.042$

- Kavitha, C. N., Jasinski, J. P., Matar, S. M., Yathirajan, H. S. & Ramesha, A. R. (2013b). Acta Cryst. E69, o1344.
- Kavitha, C. N., Yathirajan, H. S., Narayana, B., Gerber, T., van Brecht, B. & Betz, R. (2013a). Acta Cryst. E69, 0260–0261.
- Kavitha, C. N., Yildirim, S. O., Jasinski, J. P., Yathirajan, H. S. & Butcher, R. J. (2013c). Acta Cryst. E69, 0142–0143.
 Palatinus L. & Chapuis G. (2007). J. Appl. Cryst. 40, 786–790.
- Palatinus, L. & Chapuis, G. (2007). *J. Appl. Cryst.* **40**, 786–790. Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supplementary materials

Acta Cryst. (2014). E70, o681-o682 [doi:10.1107/S1600536814010423]

Flunarizinium isonicotinate

Channappa N. Kavitha, Manpreet Kaur, Jerry P. Jasinski and H. S. Yathirajan

1. Comment

Flunarizine (1-[bis(4-fluorophenyl)methyl]-4-[(2E)-3-phenylprop-2-en-1-yl]piperazine), a piperazine derivative is a nonselective calcium antagonist (Amery, 1983). It is effective in the prophylaxis of migraine, occlusive peripheral vascular disease, vertigo of central and peripheral origin, and as an adjuvant in the therapy of epilepsy. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use is published (Holmes *et al.*, 1984). The crystal structures of 4- [bis(4-fluorophenyl)methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium- 3-carboxy propanoate (Kavitha *et al.*, 2013*a*), flunarizinium hydrogen maleate (Kavitha *et al.*, 2013*b*), cinnarizinium fumarate (Kavitha *et al.*, 2013*c*) and cinnarizinium bis(p-toluenesulfonate)dihydrate (Kavitha *et al.*, 2013*d*) have been reported. In view of the importance of flunarizine, this paper reports the crystal structure study of flunarizinium isonicotinate, (I), $C_{26}H_{27}F_2N_2^+$. $C_6H_4NO_2^-$.

The title salt, (I), crystallizes with one piperazinium cation (A) and one isonicotinate anion (B) in the asymmetric unit (Fig. 1). In the cation, the piperazine ring is in a slightly distorted chair conformation (puckering parameters Q, θ , and $\varphi = 0.596$ (3)Å, 3.3 (3)° and 10 (4)°, respectively (Cremer & Pople, 1975) and is twisted from the mean plane of the phenyl ring in an anti-periplanar conformation with a torsion angle of -178.9 (7)°. The dihedral angle between the mean planes of the two fluoro-substituted benzene rings is 81.9 (1)°. Of the two fluro-substituted benzene ring rings, one (C8A–C13A) is almost planar with respect to the mean plane of the phenyl ring forming a diherdral angle of 6.5 (1)°, while the other (C2A–C7A) is twisted by 87.8 (1)°. Bond lengths are in normal ranges (Allen *et al.*, 1987). A single N2A–H2A…O1Bⁱ intermolecular hydrogen bond links the cation with the anion (Fig. 2). In addition, weak C—H…O intermolecular interactions (Table 1) and a weak π – π stacking interaction involving one of the fluoro-substituted benzene rings and the phenyl ring, link the molecules along [100] (Cg1–Cg2 = 3.700 (7)Å; -1+x, 1+y, z; Cg1 = C8A–C13A; Cg2 = C21A–C26A).

2. Experimental

Flunarizine (2.025 g, 0.01 mol) and isonicotinic acid (0.61 g, 0.005 mol) were dissolved in hot dimethylformamide solution and stirred over a magnetic stirrer for 10 minutes. The resulting solution was allowed to cool slowly at room temperature. The crystals of the title compound appeared after a few days and were subsequently used for x-ray studies.

3. Refinement

Atom H2A was refined isotropically and the remaining H atoms were placed in calculated positions and then refined using a riding-model approximation with C—H = 0.93Å or 0.98Å(CH) or 0.97Å (CH₂). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH₂) times U_{eq} of the parent atom.

Figure 1

The asymmetric unit of (I) showing 30% probability displacement ellipsoids.

Figure 2

Part of the crystal structure of (I) with hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonds have been removed for clarity.

4-[Bis(4-fluorophenyl)methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium pyridine-4-carboxylate

F(000) = 556

 $\theta = 4.0-71.5^{\circ}$ $\mu = 0.76 \text{ mm}^{-1}$

Block, colourless

 $0.22 \times 0.12 \times 0.06 \text{ mm}$

T = 173 K

 $D_{\rm x} = 1.321 \text{ Mg m}^{-3}$

Cu Ka radiation, $\lambda = 1.54184$ Å

Cell parameters from 4115 reflections

Crystal data

 $C_{26}H_{27}F_2N_2^{+}C_6H_4NO_2^{-1}$ $M_r = 527.60$ Monoclinic, *Pc* a = 11.0023 (3) Å b = 10.6435 (3) Å c = 11.3393 (3) Å $\beta = 92.481$ (3)° V = 1326.63 (6) Å³ Z = 2

Data collection

Agilent Eos Gemini	8232 measured reflections
diffractometer	3403 independent reflections
Radiation source: Enhance (Cu) X-ray Source	3238 reflections with $I > 2\sigma(I)$
Detector resolution: 16.0416 pixels mm ⁻¹	$R_{\rm int} = 0.042$
ω scans	$\theta_{\rm max} = 71.3^{\circ}, \ \theta_{\rm min} = 4.0^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 7$
(CrysAlis PRO and CrysAlis RED; Agilent,	$k = -12 \rightarrow 13$
2012)	$l = -13 \rightarrow 13$
$T_{\min} = 0.781, \ T_{\max} = 1.000$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0764P)^2 + 0.0707P]$
Least-squares matrix: full	where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.040$	$(\Delta/\sigma)_{\rm max} < 0.001$
$wR(F^2) = 0.110$	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.02	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$
3403 reflections	Extinction correction: SHELXL2012 (Sheldrick,
357 parameters	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
2 restraints	Extinction coefficient: 0.0050 (8)
Primary atom site location: structure-invariant	Absolute structure: Classical Flack method
direct methods	preferred over Parsons because s.u. lower. 857
Hydrogen site location: mixed	Friedel pairs
H atoms treated by a mixture of independent	Absolute structure parameter: 0.2 (2)
and constrained refinement	•

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates an	<i>id isotropic or</i>	equivalent isotropic	displacement	parameters ($(Å^2)$
----------------------------------	------------------------	----------------------	--------------	--------------	---------

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1A	-0.1154 (2)	1.19666 (19)	0.98648 (18)	0.0538 (5)	
F2A	0.0248 (2)	1.5040 (2)	0.2592 (2)	0.0696 (7)	
N1A	0.2572 (2)	1.0742 (2)	0.58937 (19)	0.0263 (5)	
N2A	0.4826 (2)	0.9352 (2)	0.5718 (2)	0.0272 (5)	
H2A	0.461 (4)	0.877 (4)	0.513 (4)	0.048 (10)*	
C1A	0.1259 (2)	1.0983 (2)	0.5668 (2)	0.0270 (5)	

H1A	0.0897	1.0231	0.5298	0.032*
C2A	0.0641 (2)	1.1206 (2)	0.6827 (2)	0.0271 (5)
C3A	0.1256 (3)	1.1748 (2)	0.7798 (2)	0.0291 (5)
H3A	0.2080	1.1932	0.7763	0.035*
C4A	0.0650(3)	1.2017 (2)	0.8823 (3)	0.0336 (6)
H4A	0.1062	1.2378	0.9472	0.040*
C5A	-0.0561 (3)	1.1741 (3)	0.8856 (3)	0.0362 (6)
C6A	-0.1212 (3)	1.1206 (3)	0.7915 (3)	0.0375 (7)
H6A	-0.2037	1.1033	0.7959	0.045*
C7A	-0.0596 (3)	1.0937 (3)	0.6905 (3)	0.0323 (6)
H7A	-0.1016	1.0569	0.6264	0.039*
C8A	0.1019 (2)	1.2089 (2)	0.4835 (2)	0.0286 (5)
C9A	0.0496 (3)	1.1870 (3)	0.3720 (3)	0.0350 (6)
H9A	0.0320	1.1052	0.3482	0.042*
C10A	0.0231 (3)	1.2866 (4)	0.2952 (3)	0.0441 (8)
H10A	-0.0122	1.2723	0.2204	0.053*
C11A	0.0504 (3)	1.4057 (3)	0.3327 (3)	0.0460 (8)
C12A	0.1034 (3)	1.4311 (3)	0.4423 (3)	0.0454 (8)
H12A	0.1216	1.5132	0.4649	0.054*
C13A	0.1292 (3)	1.3318 (3)	0.5183 (3)	0.0366 (6)
H13A	0.1649	1.3471	0.5927	0.044*
C14A	0.3274(2)	1.0792 (3)	0.4828(2)	0.0301 (6)
H14A	0.3156	1.1601	0.4446	0.036*
H14B	0.2991	1.0145	0.4281	0.036*
C15A	0.4611 (3)	1.0600 (3)	0.5144 (2)	0.0297 (6)
H15A	0.5070	1.0650	0.4434	0.036*
H15B	0.4895	1 1261	0.5676	0.036*
C16A	0.4061(2)	0 9246 (2)	0.6769(2)	0.0280 (5)
H16A	0.4332	0.9853	0.7362	0.034*
H16B	0.4148	0.8413	0.7108	0.034*
C17A	0.2741 (3)	0.9485(2)	0.6415(2)	0.0286 (5)
H17A	0.2463	0.8855	0.5847	0.034*
H17B	0.2253	0.9412	0.7104	0.034*
C18A	0.6153 (3)	0.9189(3)	0.6037(3)	0.0338 (6)
H18A	0.6603	0.9180	0.5321	0.041*
H18B	0.6435	0.9900	0.6508	0.041*
C19A	0.6416 (3)	0.8002(3)	0.6713 (3)	0.0328 (6)
H19A	0.6247	0.7235	0.6349	0.039*
C20A	0.6277(3)	0.8008(3)	0.7806 (3)	0.0324 (6)
H20A	0.7019	0.8796	0.8139	0.039*
C21A	0.7198(2)	0.6926 (3)	0.8567(2)	0.0306 (6)
C22A	0.7056(3)	0.5679(3)	0.8189(3)	0.0360 (6)
H22A	0.6718	0.5512	0.7440	0.043*
C23A	0.7412 (3)	0.3512 0.4696 (3)	0.8918 (3)	0.0420(7)
H23A	0.7306	0.3872	0.8658	0.050*
C24A	0 7929 (3)	0.4928(3)	1.0041(3)	0.020
H24A	0.8182	0 4263	1 0523	0.053*
C25A	0.8162 0.8064 (3)	0.6152 (3)	1.0436 (3)	0.022 0.0420(7)
H25A	0.8398	0.6314	1.1188	0.050*
	0.00/0	0.00 - 1		0.000

C26A	0.7696 (3)	0.7141 (3)	0.9699 (3)	0.0353 (6)	
H26A	0.7785	0.7963	0.9969	0.042*	
O1B	0.4163 (2)	0.2192 (2)	0.9087 (2)	0.0479 (6)	
O2B	0.5711 (2)	0.1759 (2)	0.7956 (2)	0.0434 (5)	
N1B	0.3838 (3)	0.5717 (3)	0.6228 (4)	0.0636 (10)	
C1B	0.4838 (3)	0.2391 (3)	0.8226 (2)	0.0326 (6)	
C2B	0.4475 (3)	0.3537 (3)	0.7500 (2)	0.0328 (6)	
C3B	0.4993 (3)	0.3812 (3)	0.6435 (3)	0.0438 (7)	
H3B	0.5574	0.3281	0.6132	0.053*	
C4B	0.4628 (4)	0.4892 (4)	0.5830(3)	0.0604 (11)	
H4B	0.4956	0.5046	0.5102	0.072*	
C5B	0.3354 (4)	0.5444 (4)	0.7234 (4)	0.0584 (10)	
H5B	0.2787	0.6003	0.7518	0.070*	
C6B	0.3624 (3)	0.4388 (3)	0.7899 (3)	0.0401 (7)	
H6B	0.3244	0.4246	0.8603	0.048*	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
F1A	0.0610 (13)	0.0588 (12)	0.0435 (11)	0.0125 (10)	0.0239 (9)	0.0020 (9)
F2A	0.0701 (15)	0.0701 (14)	0.0688 (15)	0.0143 (11)	0.0076 (12)	0.0431 (12)
N1A	0.0251 (11)	0.0285 (10)	0.0256 (11)	0.0021 (8)	0.0031 (8)	0.0020 (8)
N2A	0.0258 (12)	0.0318 (11)	0.0238 (11)	0.0027 (9)	-0.0002 (8)	-0.0024 (9)
C1A	0.0282 (13)	0.0253 (12)	0.0272 (13)	-0.0001 (10)	-0.0023 (10)	-0.0015 (10)
C2A	0.0277 (13)	0.0240 (12)	0.0296 (13)	0.0034 (10)	0.0017 (10)	0.0034 (9)
C3A	0.0301 (13)	0.0258 (12)	0.0316 (13)	0.0011 (10)	0.0017 (10)	0.0002 (9)
C4A	0.0445 (16)	0.0266 (12)	0.0295 (13)	0.0066 (11)	0.0006 (12)	-0.0001 (10)
C5A	0.0448 (17)	0.0306 (13)	0.0345 (14)	0.0099 (12)	0.0149 (12)	0.0086 (11)
C6A	0.0300 (14)	0.0377 (15)	0.0452 (17)	0.0050 (12)	0.0074 (12)	0.0109 (12)
C7A	0.0305 (14)	0.0316 (13)	0.0342 (14)	0.0005 (10)	-0.0029 (11)	0.0066 (11)
C8A	0.0257 (12)	0.0324 (13)	0.0277 (13)	0.0044 (11)	0.0021 (10)	0.0024 (10)
C9A	0.0313 (14)	0.0428 (15)	0.0309 (14)	0.0020 (11)	0.0016 (11)	0.0018 (12)
C10A	0.0341 (16)	0.067 (2)	0.0311 (15)	0.0048 (14)	-0.0008 (12)	0.0123 (14)
C11A	0.0438 (18)	0.0467 (18)	0.0480 (19)	0.0079 (14)	0.0085 (14)	0.0221 (15)
C12A	0.0536 (19)	0.0324 (15)	0.0510 (19)	0.0035 (14)	0.0122 (15)	0.0096 (13)
C13A	0.0435 (17)	0.0324 (15)	0.0340 (15)	0.0027 (12)	0.0029 (12)	0.0029 (11)
C14A	0.0310 (14)	0.0338 (13)	0.0255 (13)	0.0031 (11)	0.0032 (11)	0.0035 (10)
C15A	0.0310 (14)	0.0338 (13)	0.0243 (13)	-0.0010 (11)	0.0036 (10)	0.0020 (10)
C16A	0.0305 (14)	0.0298 (12)	0.0238 (12)	0.0038 (10)	0.0019 (10)	0.0026 (10)
C17A	0.0293 (13)	0.0290 (12)	0.0277 (13)	0.0011 (10)	0.0032 (10)	0.0037 (10)
C18A	0.0260 (14)	0.0421 (15)	0.0332 (15)	0.0021 (11)	0.0007 (11)	-0.0016 (11)
C19A	0.0269 (14)	0.0351 (14)	0.0363 (15)	0.0047 (11)	0.0005 (11)	-0.0066 (11)
C20A	0.0276 (13)	0.0329 (14)	0.0368 (14)	-0.0007 (11)	0.0023 (11)	-0.0035 (11)
C21A	0.0220 (12)	0.0361 (14)	0.0338 (15)	-0.0008 (10)	0.0030 (10)	0.0008 (11)
C22A	0.0325 (15)	0.0396 (15)	0.0357 (15)	-0.0031 (12)	-0.0024 (12)	-0.0045 (12)
C23A	0.0389 (17)	0.0326 (14)	0.0545 (19)	0.0005 (13)	0.0029 (14)	-0.0015 (13)
C24A	0.0395 (17)	0.0445 (17)	0.0476 (18)	0.0031 (13)	0.0013 (14)	0.0131 (14)
C25A	0.0391 (16)	0.0529 (18)	0.0338 (14)	0.0006 (14)	-0.0025 (12)	0.0029 (13)
C26A	0.0339 (15)	0.0368 (15)	0.0351 (15)	-0.0031 (12)	0.0015 (12)	-0.0028 (11)
O1B	0.0465 (13)	0.0533 (13)	0.0444 (13)	0.0075 (11)	0.0073 (10)	0.0189 (10)

supplementary materials

O2B	0.0362 (12)	0.0411 (11)	0.0529 (13)	0.0060 (9)	0.0027 (10)	-0.0053 (9)
N1B	0.0457 (18)	0.068 (2)	0.077 (2)	-0.0050 (15)	-0.0011 (16)	0.0407 (18)
C1B	0.0317 (14)	0.0346 (14)	0.0311 (13)	-0.0056 (12)	-0.0023 (11)	-0.0033 (11)
C2B	0.0324 (14)	0.0361 (14)	0.0294 (13)	-0.0091 (11)	-0.0023 (10)	-0.0008 (11)
C3B	0.0436 (17)	0.0529 (18)	0.0353 (15)	-0.0173 (14)	0.0043 (13)	-0.0030 (13)
C4B	0.057 (2)	0.087 (3)	0.0363 (18)	-0.026 (2)	-0.0027 (16)	0.0219 (18)
C5B	0.045 (2)	0.050(2)	0.081 (3)	0.0008 (16)	0.0043 (19)	0.0200 (19)
C6B	0.0408 (17)	0.0391 (15)	0.0407 (17)	-0.0044 (13)	0.0048 (13)	0.0056 (12)

Geometric parameters (Å, °)

F1A—C5A	1.363 (3)	C16A—H16A	0.9700
F2A—C11A	1.360 (4)	C16A—H16B	0.9700
N1A—C1A	1.479 (3)	C16A—C17A	1.511 (4)
N1A—C14A	1.463 (3)	C17A—H17A	0.9700
N1A—C17A	1.471 (3)	C17A—H17B	0.9700
N2A—H2A	0.94 (4)	C18A—H18A	0.9700
N2A—C15A	1.493 (3)	C18A—H18B	0.9700
N2A—C16A	1.492 (3)	C18A—C19A	1.499 (4)
N2A—C18A	1.499 (3)	C19A—H19A	0.9300
C1A—H1A	0.9800	C19A—C20A	1.319 (4)
C1A—C2A	1.524 (3)	C20A—H20A	0.9300
C1A—C8A	1.525 (3)	C20A—C21A	1.472 (4)
C2A—C3A	1.392 (4)	C21A—C22A	1.401 (4)
C2A—C7A	1.398 (4)	C21A—C26A	1.393 (4)
СЗА—НЗА	0.9300	C22A—H22A	0.9300
C3A—C4A	1.395 (4)	C22A—C23A	1.379 (4)
C4A—H4A	0.9300	C23A—H23A	0.9300
C4A—C5A	1.366 (4)	C23A—C24A	1.395 (5)
C5A—C6A	1.381 (5)	C24A—H24A	0.9300
С6А—Н6А	0.9300	C24A—C25A	1.383 (5)
C6A—C7A	1.386 (4)	C25A—H25A	0.9300
С7А—Н7А	0.9300	C25A—C26A	1.393 (4)
C8A—C9A	1.387 (4)	C26A—H26A	0.9300
C8A—C13A	1.394 (4)	O1B—C1B	1.270 (4)
С9А—Н9А	0.9300	O2B—C1B	1.223 (4)
C9A—C10A	1.395 (4)	N1B—C4B	1.329 (6)
C10A—H10A	0.9300	N1B—C5B	1.311 (5)
C10A—C11A	1.366 (5)	C1B—C2B	1.515 (4)
C11A—C12A	1.377 (5)	C2B—C3B	1.388 (4)
C12A—H12A	0.9300	C2B—C6B	1.392 (4)
C12A—C13A	1.385 (4)	C3B—H3B	0.9300
C13A—H13A	0.9300	C3B—C4B	1.389 (6)
C14A—H14A	0.9700	C4B—H4B	0.9300
C14A—H14B	0.9700	C5B—H5B	0.9300
C14A—C15A	1.512 (4)	C5B—C6B	1.379 (5)
C15A—H15A	0.9700	C6B—H6B	0.9300
C15A—H15B	0.9700		
C14A—N1A—C1A	113.4 (2)	H15A—C15A—H15B	108.0

C14A—N1A—C17A	107.66 (19)	N2A-C16A-H16A	109.6
C17A—N1A—C1A	109.43 (19)	N2A—C16A—H16B	109.6
C15A—N2A—H2A	104 (2)	N2A-C16A-C17A	110.1 (2)
C15A—N2A—C18A	110.1 (2)	H16A—C16A—H16B	108.2
C16A—N2A—H2A	113 (2)	C17A—C16A—H16A	109.6
C16A—N2A—C15A	109.35 (19)	C17A—C16A—H16B	109.6
C16A—N2A—C18A	112.1 (2)	N1A—C17A—C16A	111.3 (2)
C18A—N2A—H2A	108 (2)	N1A—C17A—H17A	109.4
N1A—C1A—H1A	108.0	N1A-C17A-H17B	109.4
N1A—C1A—C2A	110.3 (2)	C16A—C17A—H17A	109.4
N1A—C1A—C8A	112.5 (2)	C16A—C17A—H17B	109.4
C2A—C1A—H1A	108.0	H17A—C17A—H17B	108.0
C2A—C1A—C8A	110.0 (2)	N2A—C18A—H18A	109.1
C8A—C1A—H1A	108.0	N2A—C18A—H18B	109.1
C3A—C2A—C1A	121.8 (2)	H18A—C18A—H18B	107.8
C3A—C2A—C7A	118.5 (2)	C19A—C18A—N2A	112.7 (2)
C7A—C2A—C1A	119.6 (2)	C19A—C18A—H18A	109.1
С2А—С3А—НЗА	119.6	C19A—C18A—H18B	109.1
C2A—C3A—C4A	120.7 (3)	C18A—C19A—H19A	118.8
С4А—С3А—НЗА	119.6	C20A—C19A—C18A	122.3 (3)
C3A—C4A—H4A	120.6	C20A—C19A—H19A	118.8
C5A—C4A—C3A	118.7 (3)	C19A—C20A—H20A	115.9
C5A—C4A—H4A	120.6	C19A—C20A—C21A	128.3 (3)
F1A—C5A—C4A	119.2 (3)	C21A—C20A—H20A	115.9
F1A—C5A—C6A	118.0 (3)	C22A—C21A—C20A	122.7 (3)
C4A—C5A—C6A	122.8 (3)	C26A—C21A—C20A	119.1 (2)
C5A—C6A—H6A	121.0	C26A - C21A - C22A	118.1 (3)
C_{5A} C_{6A} C_{7A}	1179(3)	C21A - C22A - H22A	119.6
C7A - C6A - H6A	121.0	C_{23A} C_{22A} C_{21A}	120.7(3)
$C^2A - C^7A - H^7A$	1193	$C^{23}A - C^{22}A - H^{22}A$	119.6
C6A - C7A - C2A	121 4 (3)	$C^{22}A - C^{23}A - H^{23}A$	119.8
C6A - C7A - H7A	1193	C^{22A} C^{23A} C^{24A}	1204(3)
C9A - C8A - C1A	119.3 (2)	C24A - C23A - H23A	119.8
C9A - C8A - C13A	119.5(2) 119.4(3)	C^{23A} C^{24A} H^{24A}	120.1
$C_{13A} - C_{8A} - C_{1A}$	119.4(3) 1213(2)	$C_{25A} - C_{24A} - C_{23A}$	120.1 119.7(3)
C8A - C9A - H9A	119 7	C25A - C24A - H24A	120.1
C8A - C9A - C10A	120.6 (3)	C^{24A} C^{25A} H^{25A}	120.1
$C_{10A} - C_{9A} - H_{9A}$	110 7	$C_{24A} = C_{25A} = C_{26A}$	120.2 119.6 (3)
$C_{0A} = C_{0A} = H_{0A}$	120.0	$C_{24}A = C_{25}A = C_{20}A$	119.0 (3)
$C_{JA} = C_{I0A} = M_{I0A}$	118 3 (3)	$C_{20}A - C_{20}A - C_{20}A$	120.2 121.4(3)
C_{11A} C_{10A} H_{10A}	120.0	C_{21A} C_{26A} H_{26A}	110.3
$F_{2A} = C_{11A} = C_{10A}$	120.9	C_{21} C_{20} C	110.3
F_{2A} C_{11A} C_{10A}	119.1(3) 118.1(3)	C5B = N1B = C4B	119.5 116.4(3)
$\frac{12}{10} - \frac{11}{11} = \frac{12}{11}$	122 8 (3)	01B-C1B-C2B	112 8 (3)
$C11\Delta C12\Delta H12\Lambda$	122.0 (3)	O2B-C1B $O1B$	126 2 (2)
$C_{11} \Delta = C_{12} \Delta = C_{12} \Delta$	120.7	02B-C1B-C2B	120.3(3) 1100(3)
C11A - C12A - C13A $C13A - C12A - U12A$	120.7	$\begin{array}{c} 02B \\ \hline 02B \\ 02B \\ \hline 0$	117.7(3) 177.2(3)
C13A = C12A = H12A	120.7	$C3B_C2B_C4B$	122.3(3) 1160(3)
C12A C12A C0A	117.7	$C_{2D} = C_{2D} = C_{1D}$	110.9 (3)
UI2A-UIJA-UOA	120.5 (5)	COD - C2D - CID	120.0(2)

C12A—C13A—H13A	119.9	С2В—С3В—Н3В	120.6
N1A—C14A—H14A	109.7	C2B—C3B—C4B	118.9 (3)
N1A—C14A—H14B	109.7	C4B—C3B—H3B	120.6
N1A—C14A—C15A	110.0 (2)	N1B—C4B—C3B	124.0 (3)
H14A—C14A—H14B	108.2	N1B—C4B—H4B	118.0
C15A—C14A—H14A	109.7	C3B—C4B—H4B	118.0
C15A—C14A—H14B	109.7	N1B—C5B—H5B	117.6
N2A—C15A—C14A	111.0 (2)	N1B-C5B-C6B	124.8 (4)
N2A—C15A—H15A	109.4	C6B—C5B—H5B	117.6
N2A—C15A—H15B	109.4	C2B—C6B—H6B	120.5
C14A—C15A—H15A	109.4	C5B—C6B—C2B	119.0 (3)
C14A—C15A—H15B	109.4	C5B—C6B—H6B	120.5
F1A—C5A—C6A—C7A	-177.8 (2)	C14A—N1A—C1A—C8A	-44.2 (3)
F2A—C11A—C12A—C13A	179.6 (3)	C14A—N1A—C17A—C16A	61.8 (3)
N1A—C1A—C2A—C3A	30.7 (3)	C15A—N2A—C16A—C17A	54.7 (3)
N1A—C1A—C2A—C7A	-153.4 (2)	C15A—N2A—C18A—C19A	175.0 (2)
N1A—C1A—C8A—C9A	112.3 (3)	C16A—N2A—C15A—C14A	-55.8 (3)
N1A—C1A—C8A—C13A	-69.0 (3)	C16A—N2A—C18A—C19A	53.1 (3)
N1A—C14A—C15A—N2A	60.2 (3)	C17A—N1A—C1A—C2A	72.5 (3)
N2A—C16A—C17A—N1A	-59.2 (3)	C17A—N1A—C1A—C8A	-164.4 (2)
N2A-C18A-C19A-C20A	-116.8 (3)	C17A—N1A—C14A—C15A	-61.5 (3)
C1A—N1A—C14A—C15A	177.2 (2)	C18A—N2A—C15A—C14A	-179.3 (2)
C1A—N1A—C17A—C16A	-174.5 (2)	C18A—N2A—C16A—C17A	177.0 (2)
C1A—C2A—C3A—C4A	175.8 (2)	C18A—C19A—C20A—C21A	-179.0 (2)
C1A—C2A—C7A—C6A	-175.5 (2)	C19A—C20A—C21A—C22A	0.9 (4)
C1A-C8A-C9A-C10A	178.0 (3)	C19A—C20A—C21A—C26A	179.0 (3)
C1A—C8A—C13A—C12A	-178.2 (3)	C20A—C21A—C22A—C23A	177.5 (3)
C2A—C1A—C8A—C9A	-124.4 (3)	C20A—C21A—C26A—C25A	-177.2 (3)
C2A—C1A—C8A—C13A	54.3 (3)	C21A—C22A—C23A—C24A	-0.5 (5)
C2A—C3A—C4A—C5A	-0.1 (4)	C22A—C21A—C26A—C25A	1.0 (4)
C3A—C2A—C7A—C6A	0.5 (4)	C22A—C23A—C24A—C25A	1.3 (5)
C3A—C4A—C5A—F1A	178.1 (2)	C23A—C24A—C25A—C26A	-0.9 (5)
C3A—C4A—C5A—C6A	-0.1 (4)	C24A—C25A—C26A—C21A	-0.3 (5)
C4A—C5A—C6A—C7A	0.4 (4)	C26A—C21A—C22A—C23A	-0.6 (4)
C5A—C6A—C7A—C2A	-0.7 (4)	O1B—C1B—C2B—C3B	-171.0 (3)
C7A—C2A—C3A—C4A	-0.1 (4)	O1B—C1B—C2B—C6B	11.0 (4)
C8A—C1A—C2A—C3A	-93.9 (3)	O2B—C1B—C2B—C3B	9.0 (4)
C8A—C1A—C2A—C7A	82.0 (3)	O2B—C1B—C2B—C6B	-169.0 (3)
C8A—C9A—C10A—C11A	0.2 (4)	N1B—C5B—C6B—C2B	0.4 (6)
C9A—C8A—C13A—C12A	0.5 (4)	C1B—C2B—C3B—C4B	-178.9 (3)
C9A—C10A—C11A—F2A	-179.8 (3)	C1B—C2B—C6B—C5B	177.5 (3)
C9A—C10A—C11A—C12A	0.5 (5)	C2B—C3B—C4B—N1B	2.7 (6)
C10A—C11A—C12A—C13A	-0.7 (5)	C3B—C2B—C6B—C5B	-0.6 (5)
C11A—C12A—C13A—C8A	0.1 (5)	C4B—N1B—C5B—C6B	1.2 (6)
C13A—C8A—C9A—C10A	-0.7 (4)	C5B—N1B—C4B—C3B	-2.8 (6)
C14A—N1A—C1A—C2A	-167.3 (2)	C6B—C2B—C3B—C4B	-0.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
$N2A$ — $H2A$ ···O1 B^{i}	0.94 (4)	1.62 (4)	2.557 (3)	176 (4)
$C6A$ — $H6A$ ···O2 B^{ii}	0.93	2.60	3.439 (4)	151

Symmetry codes: (i) *x*, -*y*+1, *z*-1/2; (ii) *x*-1, *y*+1, *z*.