

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368

[2-(Benzylideneamino)-4,5,6,7-tetrahydrobenzo[*b*]thiophen-3-yl](phenyl)methanone

Manpreet Kaur, Jerry P. Jasinski, Channappa N. Kavitha, Hemmige S. Yathirajan and K. Byrappa

Acta Cryst. (2014). E70, o507-o508

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Acta Crystallographica Section E: Structure Reports Online is the IUCr's highly popular open-access structural journal. It provides a simple and easily accessible publication mechanism for the growing number of inorganic, metal-organic and organic crystal structure determinations. The electronic submission, validation, refereeing and publication facilities of the journal ensure very rapid and high-quality publication, whilst key indicators and validation reports provide measures of structural reliability. The average publication time is less than one month. Articles are published in a short-format style with enhanced supplementary materials. Each publication consists of a complete package – the published article, HTML and PDF supplements, CIF, structure factors, graphics, and any other submitted supplementary files.

Crystallography Journals Online is available from journals.iucr.org

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[2-(Benzylideneamino)-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl](phenyl)methanone

Manpreet Kaur,^a Jerry P. Jasinski,^b* Channappa N. Kavitha,^a Hemmige S. Yathirajan^a and K. Byrappa^c

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and ^cMaterials Science Center, University of Mysore, Vijyana Bhavan Building, Manasagangothri, Mysore 570 006, India Correspondence e-mail: jjasinski@keene.edu

Received 18 March 2014; accepted 26 March 2014

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.043; wR factor = 0.113; data-to-parameter ratio = 25.3.

In the title compound, C₂₂H₁₉NOS, the cyclohexene ring of the tetrahydrobenzothiophenyl ring system adopts a slightly distorted half-chair conformation and is twisted slightly $[7.5 (8)^{\circ}$ for the major disorder component] from the mean plane of the thiophene ring. The dihedral angles between the mean planes of the thiophene ring and the phenyl rings are 65.7 (3) and 8.3 (4) $^{\circ}$. The phenyl rings are twisted with respect to each other by $73.8 (7)^{\circ}$. Disorder was modeled for four C atoms of the cyclohexene ring over two sets of sites with an occupancy ratio of 0.659 (2):0.341 (2). In the crystal, a single weak $C-H \cdots O$ interaction links the molecules into [001] chains.

Related literature

For the importance of thiophene derivatives, see: Molvi et al. (2007); Rai et al. (2008); Asthalatha et al. (2007). For applications of 2-aminothiophene derivatives, see: Sabnis et al. (1999); Puterová et al. (2010); Cannito et al. (1990); Nikolakopoulos et al. (2006); Lütjens et al. (2005). For the biological and industrial importance of Schiff bases, see: Desai et al. (2001); Karia & Parsania (1999); Samadhiya & Halve (2001); Singh & Dash (1988); Aydogan et al. (2001); Taggi et al. (2002). For a related structure, see: Kubicki et al. (2012). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data
C ₂₂ H ₁₉ NOS
$M_r = 345.44$
Monoclinic, $P2_1/n$
a = 8.78760 (16) Å
b = 14.0091 (3) Å
c = 14.4120 (2) Å
$\beta = 94.8913 \ (17)^{\circ}$

Data collection

(

Agilent Eos, Gemini diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) $T_{\min} = 0.896, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.113$ S = 1.036047 reflections 239 parameters

Mo Kα radiation $\mu = 0.19 \text{ mm}^{-1}$ T = 173 K $0.24 \times 0.22 \times 0.12 \text{ mm}$

V = 1767.75 (5) Å³

Z = 4

22680 measured reflections 6047 independent reflections 4745 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.029$

48 restraints
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$
$\Delta \rho = -0.25 e \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry	(A,	°).
------------------------	-----	-----

 $D - H \cdot \cdot \cdot A$ D - H $D - H \cdot \cdot \cdot A$ $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $C18\!-\!H18\!\cdot\cdot\cdot\!O1^i$ 2.45 3.4034 (15) 0.95 176 Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

MK is grateful to the CPEPA-UGC for the award of a JRF and thanks the University of Mysore for research facilities. JPJ acknowledges the NSF-MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2292).

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Asthalatha, B. V., Narayana, B., Vijaya Raj, K. K. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 719–728.
- Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.
- Cannito, A., Perrisin, M., Luu-Duc, C., Huguer, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635–639.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Hetrocycl. Commun. 7, 83-90.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991-995.
- Kubicki, M., Dutkiewicz, G., Yathirajan, H. S., Dawar, P., Ramesha, A. R. & Dayananda, A. S. (2012). Crystals, 2, 1058-1066.

- Lütjens, H., Zickgraf, A., Figler, H., Linden, J., Olsson, R. A. & Scammells, P. J. (2005). J. Med. Chem. 46, 1870–1877.
- Molvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). *Eur. J. Med. Chem.* 42, 1049–1058.
- Nikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). *Bioorg. Med. Chem.* 14, 2358–2365.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Puterová, Z., Krutošíková, A. & Végh, D. (2010). Arkivoc, i, 209-246.
- Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.
- Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333–345.
- Samadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17 119-122.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.
- Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.

supplementary materials

Acta Cryst. (2014). E70, o507–o508 [doi:10.1107/S1600536814006679]

[2-(Benzylideneamino)-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl](phenyl)methanone

Manpreet Kaur, Jerry P. Jasinski, Channappa N. Kavitha, Hemmige S. Yathirajan and K. Byrappa

1. Comment

Thiophene derivatives have been reported to exhibit a broad spectrum of biological properties such as anti-inflammatory, analgesic, antidepressant, antimicrobial and anticonvulsant activities (Molvi *et al.*, 2007; Rai *et al.*, 2008; Asthalatha *et al.*, 2007). 2-Aminothiophene derivatives have been used in a number of applications in pesticides, dyes and pharmaceuticals. A review on the synthesis and properties of these compounds was reported in 1999 by Sabnis *et al.* and more recently by Puterová *et al.* (2010). Substituted 2-aminothiophenes are active as allosteric enhancers at the human A1 adenosine receptor (Cannito *et al.*, 1990; Nikolakopoulos *et al.*, 2006; Lütjens *et al.*, 2005). Schiff base compounds are an important class of compounds both synthetically and biologically. These compounds show biological properties including antibacterial, antifungal, anticancer and herbicidal activities (Desai *et al.*, 2001; Karia & Parsania, 1999; Samadhiya & Halve, 2001; Singh & Dash, 1988). Furthermore, Schiff bases are utilized as starting materials in the synthesis of compounds of industrial (Aydogan *et al.*, 2001) and biological interest such as b-lactams (Taggi *et al.*, 2002). The crystal structures and molecular structures of two 2-aminothiphenes have been previously reported by our group (Kubicki *et al.*, 2012). In view of the importance of 2-aminothiphenes and Schiff bases, we report the crystal structure of the Schiff base of the previously reported 2-aminothiphene, C₂₂H₁₉NOS, (I).

The title compound (I) crystallizes with one independent molecule in the asymmetric unit (Fig. 1). In the molecule, the cyclohexene moiety of tetrahydrobenzothiophenyl ring adopts a slightly distorted half-chair conformation and is slightly twisted from the mean plane of the thiophene ring by 7.5 (8)° for the major disorder component. The dihedral angle between the mean planes of the thiophene ring and the two phenyl rings is 65.7 (3)° (C10–C15) and 8.3 (4)° (C17–C22), respectively. The two phenyl rings are twisted with respect to each other by 73.8 (7)°. Disorder was modeled for the C4, C5, C6 and C7 carbon atoms of the cyclohexene ring over two sites with occupancy ratios of 0.659 (2):0.341 (2). Bond lengths are within normal ranges (Allen *et al.*, 1987). A single weak intermolecular C18—H…O1ⁱ hydrogen-bonding interaction (Table 1) links the molecules into dimers (Fig. 2) but no classical hydrogen bonds are present.

2. Experimental

To a solution of (2-amino-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl)- phenylmethanone (200 mg, 0.79 mmol) in 10 ml of methanol, an equimolar amount of benzaldehyde (84 mg, 0.79 mmol) was added dropwise with constant stirring. The mixture was refluxed for 4 hours. A yellow precipitate was obtained. The reaction completion was confirmed by thin layer chromatography. The precipitate was filtered and dried at room temperature overnight. The solid was recrystallized from dichloromethane and the crystals were used as such for the X-ray diffraction studies.

3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H bond lengths of 0.95 Å (CH) or 0.99 Å (CH₂). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH₂) times U_{eq} of the parent atom. Disorder was modeled for the C4, C5, C6 and C7 carbon atoms of the tetrahydrobenzothiophenyl ring over two sites with an occupancy ratio of 0.659 (2):0.341 (2).

Figure 1

An ORTEP drawing of (I) showing the labeling scheme of the molecule with 30% probability displacement ellipsoids. Disorder is shown modeled for the C4, C5, C6 and C7 carbon atoms of the tetrahydrobenzothiophenyl ring over two sites with an occupancy ratio of 0.659 (2):0.341 (2).

Figure 2

Molecular packing for (I) viewed along the c axis. Dashed lines indicate weak C—H…O intermolecular interactions which link the molecules into dimers. H atoms not involved in hydrogen bonding have been removed for clarity.

[2-(Benzylideneamino)-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl](phenyl)methanone

Curvatal data	
Crystal data	
$C_{22}H_{19}NOS$	F(000) = 728
$M_r = 345.44$	$D_{\rm x} = 1.298 { m Mg} { m m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.78760 (16) Å	Cell parameters from 6837 reflections
b = 14.0091 (3) Å	$\theta = 3.9 - 32.5^{\circ}$
c = 14.4120 (2) Å	$\mu = 0.19 \text{ mm}^{-1}$
$\beta = 94.8913 \ (17)^{\circ}$	T = 173 K
V = 1767.75 (5) Å ³	Irregular, yellow
Z = 4	$0.24 \times 0.22 \times 0.12 \text{ mm}$
Data collection	
Agilent Eos, Gemini	22680 measured reflections
diffractometer	6047 independent reflections
Radiation source: Enhance (Mo) X-ray Source	4745 reflections with $I > 2\sigma(I)$
Detector resolution: 16.0416 pixels mm ⁻¹	$R_{\rm int} = 0.029$
ω scans	$\theta_{\rm max} = 32.9^\circ, \ \theta_{\rm min} = 3.0^\circ$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(CrysAlis PRO; Agilent, 2012)	$k = -20 \rightarrow 18$
$T_{\min} = 0.896, T_{\max} = 1.000$	$l = -21 \rightarrow 21$
Refinement	
Refinement on F^2	Primary atom site location: structure-it

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.113$ S = 1.036047 reflections 239 parameters 48 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0485P)^2 + 0.5445P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.39$ e Å⁻³ $\Delta\rho_{min} = -0.25$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.43796 (4)	0.38720 (2)	0.29828 (2)	0.02980 (8)	
01	0.24466 (11)	0.32510(7)	0.59768 (6)	0.0331 (2)	
N1	0.38490 (11)	0.20786 (7)	0.37310(7)	0.02681 (19)	
C1	0.36366 (13)	0.30555 (8)	0.37431 (8)	0.0252 (2)	
C2	0.28925 (12)	0.35256 (8)	0.44102 (7)	0.0242 (2)	
C3	0.29554 (12)	0.45436 (8)	0.43292 (8)	0.0256 (2)	
C4	0.2295 (15)	0.5272 (10)	0.4954 (9)	0.0321 (5)	0.659 (2)
H4A	0.2554	0.5088	0.5612	0.038*	0.659 (2)
H4B	0.1169	0.5270	0.4838	0.038*	0.659 (2)
C4A	0.232 (3)	0.523 (2)	0.4994 (18)	0.0321 (5)	0.341 (2)
H4AA	0.3050	0.5316	0.5550	0.038*	0.341 (2)
H4AB	0.1347	0.4984	0.5198	0.038*	0.341 (2)
C5	0.2890 (2)	0.62862 (13)	0.47989 (14)	0.0319 (3)	0.659 (2)
H5A	0.2274	0.6752	0.5123	0.038*	0.659 (2)
H5B	0.3963	0.6337	0.5066	0.038*	0.659 (2)
C5A	0.2063 (4)	0.6169 (3)	0.4479 (3)	0.0319 (3)	0.341 (2)
H5AA	0.1771	0.6663	0.4921	0.038*	0.341 (2)
H5AB	0.1208	0.6095	0.3991	0.038*	0.341 (2)
C6	0.2800 (3)	0.65215 (15)	0.37652 (16)	0.0358 (4)	0.659 (2)
H6A	0.1733	0.6457	0.3492	0.043*	0.659 (2)
H6B	0.3129	0.7189	0.3678	0.043*	0.659 (2)
C6A	0.3481 (6)	0.6498 (3)	0.4029 (3)	0.0358 (4)	0.341 (2)
H6AA	0.4342	0.6544	0.4516	0.043*	0.341 (2)
H6AB	0.3291	0.7145	0.3768	0.043*	0.341 (2)
C7	0.3826 (19)	0.5846 (14)	0.3276 (11)	0.0324 (10)	0.659 (2)
H7A	0.3563	0.5888	0.2595	0.039*	0.659 (2)
H7B	0.4901	0.6053	0.3404	0.039*	0.659 (2)
C7A	0.396 (4)	0.583 (3)	0.324 (2)	0.0324 (10)	0.341 (2)
H7AA	0.3326	0.5955	0.2649	0.039*	0.341 (2)
H7AB	0.5045	0.5921	0.3135	0.039*	0.341 (2)
C8	0.36852 (13)	0.48275 (8)	0.35769 (8)	0.0270 (2)	
C9	0.21326 (13)	0.30278 (8)	0.51617 (8)	0.0249 (2)	
C10	0.09322 (12)	0.23048 (8)	0.49013 (7)	0.0247 (2)	
C11	0.04152 (14)	0.17248 (10)	0.55985 (8)	0.0323 (3)	
H11	0.0872	0.1772	0.6218	0.039*	
C12	-0.07579 (16)	0.10824 (11)	0.53899 (10)	0.0393 (3)	
H12	-0.1096	0.0685	0.5865	0.047*	
C13	-0.14437 (15)	0.10158 (11)	0.44890 (10)	0.0389 (3)	
H13	-0.2253	0.0576	0.4348	0.047*	
C14	-0.09461 (14)	0.15925 (11)	0.37946 (9)	0.0354 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Acta Cryst. (2014). E70, o507-o508

H14	-0.1421	0.1551	0.3179	0.042*	
C15	0.02434 (13)	0.22300 (9)	0.39966 (8)	0.0297 (2)	
H15	0.0590	0.2617	0.3516	0.036*	
C16	0.46997 (13)	0.16863 (8)	0.31614 (8)	0.0266 (2)	
H16	0.5178	0.2077	0.2732	0.032*	
C17	0.49574 (13)	0.06571 (8)	0.31511 (8)	0.0249 (2)	
C18	0.58705 (14)	0.02651 (9)	0.25008 (8)	0.0295 (2)	
H18	0.6283	0.0665	0.2052	0.035*	
C19	0.61767 (16)	-0.07066 (10)	0.25078 (9)	0.0352 (3)	
H19	0.6790	-0.0971	0.2061	0.042*	
C20	0.55903 (16)	-0.12931 (9)	0.31650 (10)	0.0366 (3)	
H20	0.5809	-0.1957	0.3172	0.044*	
C21	0.46824 (17)	-0.09070 (10)	0.38127 (9)	0.0378 (3)	
H21	0.4284	-0.1309	0.4265	0.045*	
C22	0.43529 (15)	0.00601 (9)	0.38046 (8)	0.0318 (2)	
H22	0.3716	0.0317	0.4243	0.038*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
S 1	0.03553 (16)	0.02847 (15)	0.02699 (14)	-0.00477 (11)	0.01203 (11)	-0.00210 (10)
01	0.0397 (5)	0.0347 (5)	0.0252 (4)	-0.0062 (4)	0.0050 (3)	-0.0039 (3)
N1	0.0272 (4)	0.0253 (5)	0.0284 (4)	-0.0026 (4)	0.0051 (4)	-0.0034 (4)
C1	0.0254 (5)	0.0259 (5)	0.0248 (5)	-0.0038 (4)	0.0050 (4)	-0.0017 (4)
C2	0.0227 (5)	0.0255 (5)	0.0247 (5)	-0.0027 (4)	0.0048 (4)	-0.0016 (4)
C3	0.0234 (5)	0.0261 (5)	0.0276 (5)	-0.0023 (4)	0.0042 (4)	-0.0024 (4)
C4	0.0324 (7)	0.0280 (13)	0.0370 (12)	0.0004 (7)	0.0102 (7)	-0.0051 (9)
C4A	0.0324 (7)	0.0280 (13)	0.0370 (12)	0.0004 (7)	0.0102 (7)	-0.0051 (9)
C5	0.0309 (8)	0.0251 (7)	0.0393 (9)	0.0007 (7)	-0.0001 (6)	-0.0055 (6)
C5A	0.0309 (8)	0.0251 (7)	0.0393 (9)	0.0007 (7)	-0.0001 (6)	-0.0055 (6)
C6	0.0434 (13)	0.0235 (7)	0.0396 (11)	0.0008 (9)	-0.0026 (8)	-0.0002 (7)
C6A	0.0434 (13)	0.0235 (7)	0.0396 (11)	0.0008 (9)	-0.0026 (8)	-0.0002 (7)
C7	0.035 (3)	0.0269 (9)	0.0360 (14)	-0.0065 (16)	0.0068 (14)	0.0024 (8)
C7A	0.035 (3)	0.0269 (9)	0.0360 (14)	-0.0065 (16)	0.0068 (14)	0.0024 (8)
C8	0.0272 (5)	0.0261 (5)	0.0282 (5)	-0.0038 (4)	0.0047 (4)	-0.0013 (4)
C9	0.0247 (5)	0.0250 (5)	0.0258 (5)	-0.0002 (4)	0.0061 (4)	-0.0006 (4)
C10	0.0230 (5)	0.0275 (5)	0.0243 (5)	-0.0011 (4)	0.0057 (4)	-0.0007 (4)
C11	0.0327 (6)	0.0387 (7)	0.0260 (5)	-0.0081 (5)	0.0050 (4)	0.0032 (5)
C12	0.0385 (7)	0.0443 (8)	0.0359 (6)	-0.0144 (6)	0.0082 (5)	0.0059 (5)
C13	0.0325 (6)	0.0449 (8)	0.0396 (7)	-0.0137 (6)	0.0048 (5)	-0.0028 (6)
C14	0.0290 (6)	0.0480 (8)	0.0290 (6)	-0.0081 (5)	0.0018 (5)	-0.0038 (5)
C15	0.0270 (5)	0.0373 (6)	0.0252 (5)	-0.0033 (5)	0.0057 (4)	0.0012 (4)
C16	0.0276 (5)	0.0260 (5)	0.0266 (5)	-0.0026 (4)	0.0050 (4)	-0.0006 (4)
C17	0.0243 (5)	0.0256 (5)	0.0250 (5)	-0.0016 (4)	0.0027 (4)	-0.0024 (4)
C18	0.0316 (6)	0.0300 (6)	0.0277 (5)	-0.0004 (4)	0.0070 (4)	-0.0009 (4)
C19	0.0379 (6)	0.0329 (6)	0.0355 (6)	0.0056 (5)	0.0082 (5)	-0.0041 (5)
C20	0.0447 (7)	0.0261 (6)	0.0387 (7)	0.0029 (5)	0.0015 (6)	-0.0015 (5)
C21	0.0505 (8)	0.0284 (6)	0.0356 (6)	-0.0072 (5)	0.0101 (6)	0.0013 (5)
C22	0.0370 (6)	0.0292 (6)	0.0305 (5)	-0.0057 (5)	0.0108 (5)	-0.0036 (4)

Geometric parameters (Å, °)

S1—C1	1.7485 (11)	С7—Н7В	0.9900
S1—C8	1.7282 (12)	C7—C8	1.50 (2)
O1—C9	1.2241 (14)	С7А—Н7АА	0.9900
N1—C1	1.3815 (15)	С7А—Н7АВ	0.9900
N1—C16	1.2804 (15)	C7A—C8	1.51 (4)
C1—C2	1.3758 (15)	C9—C10	1.4873 (16)
C2—C3	1.4323 (16)	C10—C11	1.3978 (16)
C2—C9	1.4930 (15)	C10—C15	1.3938 (15)
C3—C4	1.509 (16)	C11—H11	0.9500
C3—C4A	1.50 (3)	C11—C12	1.3821 (18)
C3—C8	1.3651 (16)	C12—H12	0.9500
C4—H4A	0.9900	C12—C13	1.3872 (19)
C4—H4B	0.9900	С13—Н13	0.9500
C4—C5	1.537 (13)	C13—C14	1.3856 (19)
C4A—H4AA	0.9900	C14—H14	0.9500
C4A—H4AB	0.9900	C14—C15	1.3868 (17)
C4A—C5A	1.52 (3)	С15—Н15	0.9500
С5—Н5А	0.9900	C16—H16	0.9500
С5—Н5В	0.9900	C16—C17	1.4597 (16)
С5—С6	1.521 (3)	C17—C18	1.3973 (15)
С5А—Н5АА	0.9900	C17—C22	1.3978 (16)
С5А—Н5АВ	0.9900	C18—H18	0.9500
C5A—C6A	1.524 (6)	C18—C19	1.3874 (18)
С6—Н6А	0.9900	С19—Н19	0.9500
С6—Н6В	0.9900	C19—C20	1.3860 (19)
C6—C7	1.521 (15)	C20—H20	0.9500
С6А—Н6АА	0.9900	C20—C21	1.3883 (19)
С6А—Н6АВ	0.9900	C21—H21	0.9500
C6A—C7A	1.56 (3)	C21—C22	1.3852 (18)
С7—Н7А	0.9900	С22—Н22	0.9500
C8—S1—C1	91.70 (5)	С8—С7—Н7В	109.0
C16—N1—C1	121.35 (10)	С6А—С7А—Н7АА	110.7
N1—C1—S1	125.59 (8)	С6А—С7А—Н7АВ	110.7
C2—C1—S1	110.48 (8)	Н7АА—С7А—Н7АВ	108.8
C2-C1-N1	123.77 (10)	C8—C7A—C6A	105 (2)
C1—C2—C3	113.31 (10)	С8—С7А—Н7АА	110.7
C1—C2—C9	123.50 (10)	C8—C7A—H7AB	110.7
C3—C2—C9	123.16 (10)	C3—C8—S1	112.18 (9)
C2—C3—C4	127.2 (5)	C3—C8—C7	124.3 (6)
C2—C3—C4A	124.6 (9)	C3—C8—C7A	128.7 (11)
C8—C3—C2	112.26 (10)	C7—C8—S1	123.5 (6)
C8—C3—C4	120.5 (5)	C7A—C8—S1	119.2 (11)
C8—C3—C4A	123.2 (9)	O1—C9—C2	119.91 (10)
C3—C4—H4A	109.1	O1—C9—C10	120.87 (10)
C3—C4—H4B	109.1	C10—C9—C2	119.12 (9)
C3—C4—C5	112.7 (8)	C11—C10—C9	118.78 (10)
H4A—C4—H4B	107.8	C15—C10—C9	121.96 (10)

Acta Cryst. (2014). E70, o507-o508

C5—C4—H4A	109.1	C15-C10-C11	119.14 (11)
C5—C4—H4B	109.1	C10—C11—H11	119.9
С3—С4А—Н4АА	110.3	C12—C11—C10	120.29 (12)
С3—С4А—Н4АВ	110.3	C12—C11—H11	119.9
C3—C4A—C5A	106.9 (16)	C11—C12—H12	119.9
Н4АА—С4А—Н4АВ	108.6	C11—C12—C13	120.25 (12)
С5А—С4А—Н4АА	110.3	C13—C12—H12	119.9
С5А—С4А—Н4АВ	110.3	C12—C13—H13	120.1
С4—С5—Н5А	109.5	C14—C13—C12	119.88 (12)
C4—C5—H5B	109.5	C14—C13—H13	120.1
H5A—C5—H5B	108.1	C13—C14—H14	119.9
C6—C5—C4	110.7 (5)	C13—C14—C15	120.16 (12)
С6—С5—Н5А	109.5	C15—C14—H14	119.9
С6—С5—Н5В	109.5	C10—C15—H15	119.9
C4A - C5A - H5AA	109.2	C14 - C15 - C10	120.28 (11)
C4A—C5A—H5AB	109.2	C14—C15—H15	119.9
C4A - C5A - C6A	112 1 (11)	N1-C16-H16	119.0
$H_{5AA} = C_{5A} = H_{5AB}$	107.9	N1-C16-C17	122 01 (10)
C6A - C5A - H5AA	109.2	C17 - C16 - H16	119.0
C6A - C5A - H5AB	109.2	C18 - C17 - C16	119.57 (10)
C5-C6-H6A	109.2	C18 - C17 - C22	119.37(10) 119.32(11)
C5-C6-H6B	109.7	$C_{10} = C_{17} = C_{22}$	119.52(11) 121.06(10)
	109.7	$C_{22} = C_{17} = C_{10}$	110.0
C7 C6 C5	108.2	$C_{10} = C_{10} = C_{110}$	120 10 (11)
$C_{7} = C_{6} = U_{6}$	109.0 (7)	$C_{19} = C_{18} = C_{17}$	120.19 (11)
C7 C6 H6B	109.7	C19 - C18 - H10	119.9
$C_{1} = C_{0} = H_{0}$	109.7	$C_{10} = C_{10} = C_{18}$	119.9
$C_{A} = C_{A} = H_{A} P$	108.7	$C_{20} = C_{19} = C_{18}$	120.23 (12)
C_{A} C_{C} C_{C} C_{C}	100.7	$C_{20} = C_{19} = H_{19}$	119.9
CA - CA - CA	114.0 (14)	C19 - C20 - H20	120.1
10AA - COA - 10AB	107.0	$C_{19} = C_{20} = C_{21}$	119.79 (12)
C/A = COA = HOAA	108.7	$C_{21} = C_{20} = H_{20}$	120.1
C/A = COA = HOAB	108.7	$C_{20} = C_{21} = H_{21}$	119.8
C_{0} C_{1} H_{A}	109.0	$C_{22} = C_{21} = C_{20}$	120.47 (12)
C_{0} H/B	109.0	C22—C21—H21	119.8
H/A - C/ - H/B	107.8	C17—C22—H22	120.0
$C_8 - C_7 - C_6$	113.0 (11)	$C_{21} = C_{22} = C_{17}$	119.98 (11)
C8—C/—H/A	109.0	C21—C22—H22	120.0
S1—C1—C2—C3	-1.73(12)	C4A—C3—C8—C7A	-2 (2)
S1-C1-C2-C9	179.95 (9)	C4A - C5A - C6A - C7A	65.0(19)
01 - C9 - C10 - C11	-14.66(17)	C5-C6-C7-C8	44.1 (12)
01 - C9 - C10 - C15	161.26 (12)	C5A—C6A—C7A—C8	-39(2)
N1-C1-C2-C3	173.90(10)	C6-C7-C8-S1	165 8 (6)
N1-C1-C2-C9	-442(18)	C6-C7-C8-C3	-11.9(15)
N1-C16-C17-C18	178 62 (11)	C6-C7-C8-C7A	-164(23)
N1-C16-C17-C22	-3.83(18)	C6A - C7A - C8 - S1	-1691(10)
C1 - S1 - C8 - C3	1.38 (9)	C6A - C7A - C8 - C3	10(3)
C1-S1-C8-C7	-176.6(8)	C6A - C7A - C8 - C7	40 (21)
C1—S1—C8—C7A	-179.6 (15)	C8—S1—C1—N1	-175.30(10)

C1—N1—C16—C17	178.88 (10)	C8—S1—C1—C2	0.23 (9)
C1—C2—C3—C4	-178.5 (6)	C8—C3—C4—C5	-14.7 (10)
C1—C2—C3—C4A	-176.3 (12)	C8—C3—C4A—C5A	22.6 (19)
C1—C2—C3—C8	2.81 (14)	C9—C2—C3—C4	-0.2 (6)
C1—C2—C9—O1	127.09 (13)	C9—C2—C3—C4A	2.0 (12)
C1-C2-C9-C10	-56.53 (15)	C9—C2—C3—C8	-178.86 (10)
C2—C3—C4—C5	166.7 (4)	C9-C10-C11-C12	176.41 (12)
C2—C3—C4A—C5A	-158.4 (7)	C9-C10-C15-C14	-175.46 (12)
C2—C3—C8—S1	-2.58 (13)	C10-C11-C12-C13	-0.7 (2)
C2—C3—C8—C7	175.4 (8)	C11—C10—C15—C14	0.45 (18)
C2—C3—C8—C7A	178.5 (17)	C11—C12—C13—C14	0.3 (2)
C2-C9-C10-C11	169.00 (11)	C12—C13—C14—C15	0.5 (2)
C2-C9-C10-C15	-15.07 (16)	C13—C14—C15—C10	-0.9 (2)
C3—C2—C9—O1	-51.06 (16)	C15—C10—C11—C12	0.37 (19)
C3—C2—C9—C10	125.31 (12)	C16—N1—C1—S1	3.22 (17)
C3—C4—C5—C6	47.5 (9)	C16—N1—C1—C2	-171.74 (11)
C3—C4A—C5A—C6A	-51.6 (16)	C16—C17—C18—C19	177.34 (12)
C4—C3—C4A—C5A	-11 (25)	C16—C17—C22—C21	-176.47 (12)
C4—C3—C8—S1	178.7 (6)	C17—C18—C19—C20	-0.6 (2)
C4—C3—C8—C7	-3.4 (10)	C18—C17—C22—C21	1.09 (18)
C4—C3—C8—C7A	-0.3 (18)	C18—C19—C20—C21	0.6 (2)
C4—C5—C6—C7	-62.7 (10)	C19—C20—C21—C22	0.3 (2)
C4A—C3—C4—C5	132 (26)	C20-C21-C22-C17	-1.1 (2)
C4A—C3—C8—S1	176.6 (11)	C22-C17-C18-C19	-0.25 (18)
C4A—C3—C8—C7	-5.5 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C18—H18…O1 ⁱ	0.95	2.45	3.4034 (15)	176

Symmetry code: (i) x+1/2, -y+1/2, z-1/2.