brought to you by T CORE provided by University of Mysore - Digital Repository of Research, Innovation and Scholarship...

Cu $K\alpha$ radiation

 $0.20 \times 0.19 \times 0.18 \text{ mm}$

15868 measured reflections

1972 independent reflections

1712 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 4.87 \text{ mm}^{-1}$

T = 295 K

 $R_{\rm int} = 0.062$

154 parameters

 $\Delta \rho_{\text{max}} = 0.30 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

CrossMark

organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Chloro-2-(2-chlorobenzoyl)phenol

A. Bushra Begum,^a S. Madan Kumar,^b B. C. Manjunath,^b Shaukath Ara Khanum^a* and N. K. Lokanath^b

^aDepartment of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysore, 570 005, India, and ^bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore, 570 006, India Correspondence e-mail: shaukathara@yahoo.co.in

Received 4 September 2013; accepted 16 September 2013

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.105; data-to-parameter ratio = 12.8.

In the title molecule, $C_{13}H_8Cl_2O_2$, the dihedral angle between the benzene rings is 74.53 (9)°. An intramolecular O-H···O hydrogen bond leading to a *S*(6) ring is observed. In the crystal, the molecules are connected into a three-dimensional network by C-H···O and π - π [inter-centroid distance = 3.6254 (10) Å] interactions.

Related literature

For the biological activity of benzophenone derivatives, see: Khanum *et al.* (2005, 2010). For a related structure, see: Devaiah *et al.* (2006).

Experimental

Crystal data $C_{13}H_8Cl_2O_2$ $M_r = 267.09$

Orthorhombic, *Pbca* a = 16.0231 (4) Å b = 7.4216 (2) Å c = 19.6843 (5) Å $V = 2340.80 (10) \text{ Å}^3$ Z = 8

Data collection

Bruker X8 Proteum diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2013) $T_{min} = 0.442, T_{max} = 0.474$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.105$ S = 1.061972 reflections

Table 1 Hydrogen-bond geometry (Å, °).

Tydrogen-bond geometry (A,).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O16-H16\cdots O9\\ C13-H13\cdots O9^i \end{array}$	0.82 0.93	1.88 2.50	2.598 (2) 3.413 (3)	146 168
C13-H13···O9 ⁱ	0.93	2.50	3.413 (3)	

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *Mercury*.

The authors thank the IOE and the University of Mysore for providing the single crystal X-ray diffractometer facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5253).

References

- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madaison, Wisconsin, USA.
- Devaiah, V. T., Naveen, S., Shashikanth, S., Anandalwar, S. M. & Prasad, J. S. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x157–x158.
- Khanum, S. A., Begum, B. A., Girish, V. & Khanum, N. F. (2010). Int. J. Biomed. Sci. 6, 60–65.
- Khanum, S. A., Shashikanth, S., Umesha, S. & Kavitha, R. (2005). Eur. J. Med. Chem. 40, 1156–1162.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2013). E69, o1568 [doi:10.1107/S1600536813025609]

4-Chloro-2-(2-chlorobenzoyl)phenol

A. Bushra Begum, S. Madan Kumar, B. C. Manjunath, Shaukath Ara Khanum and N. K. Lokanath

1. Comment

The on-going research in synthesizing benzophenone derivatives in our laboratory resulted in the title molecule. These derivatives used in the preparation of anti-inflammatory (Khanum *et al.*, 2010) and anti-fungal (Khanum *et al.*, 2005) compounds.

In the title molecule (Fig. 1), the dihedral angle between chlorobenzene (C1–C6) and chlorohydroxybenzene (C10–C15) rings is 74.53 (9)°. The molecule features an intramolecular O—H..O hydrogen bond forming a S(6) ring (Table 1). The bond lengths and bond angles are similar to those in the 5-chloro-2-hydroxyphenyl-4-chlorophenyl-methanone structure (Devaiah *et al.*, 2006)

The molecules are connected by C13–H13···O9 hydrogen bonds forming chains along the *a* axis (Fig. 2 and Table 1). Additional C6—C17··· π (Cg1), Table 1, and π (Cg2··· π (Cg2) interactions, with inter-centroid distance 3.6254 (10) Å [*x*-1, -*y*, *z*-1], lead to a three-dimensional architecture, Fig. 2; where Cg1: C1–C6 and Cg2: C10–C15.

2. Experimental

A mixture of anhydrous aluminium chloride (1.74 g, 12.94 mmol) and **include the name of the compound here** (2.0 g, 8.62 mmol), was protected from moisture by a calcium chloride guard tube and heated over an oil bath at 80–90 °C for 45 min. At the end of this period the contents were cooled and decomposed by acidulated ice-cold water. The residual solid was crushed into a powder, dissolved in ether (40 ml) and extracted with 10% sodium hydroxide (3 x 30 ml). The basic aqueous solution was neutralized with 10% hydrochloric acid. The filtered solid was washed with distilled water (3 x 30 ml) and recrystallized from ethanol to afford yellow needles of the title compound. Yield 1.6 g (80%). M.Pt: 357–359 K. IR (Nujol): 1615 v(C=O), 3525–3655 cm⁻¹ v(OH). ¹H NMR (CDCl₃): δ 6.9–7.5 (m, 7H, Ar—H), 9.2 (bs, 1H, OH). EI–MS: m/z 267 (*M*+, 81), 266 (100), 154.5 (57), 111.5 (50). Anal. Calcd. for C₁₃H₈Cl₂O₂ (267): C, 58.46; H, 3.02; Cl, 26.55. Found: C, 58.54; H, 3.25; Cl, 26.32%.

3. Refinement

All the hydrogen atoms of the compound are fixed geometrically (C—H = 0.93–0.97 Å, O—H= 0.82 Å) and refined as riding with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C, O)$.

Computing details

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *Mercury* (Macrae *et al.*, 2008).

Molecular structure of the title compound along *b*-axis with 50% probability ellipsoids.

Figure 2

Packing diagram, viewed along the crystallographic *b* axis. Dotted lines represents C—H…O interactions.

4-Chloro-2-(2-chlorobenzoyl)phenol

Crystal data	
$C_{13}H_8Cl_2O_2$	F(000) = 1088
$M_r = 267.09$	$D_{\rm x} = 1.516 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Cu <i>K</i> α radiation, $\lambda = 1.54178$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 1972 reflections
a = 16.0231 (4) Å	$\theta = 4.5 - 64.9^{\circ}$
b = 7.4216 (2) Å	$\mu = 4.87 \text{ mm}^{-1}$
c = 19.6843 (5) Å	T = 295 K
$V = 2340.80 (10) \text{ Å}^3$	Needle, yellow
Z = 8	$0.20\times0.19\times0.18\ mm$

Data collection

Bruker X8 Proteum diffractometer Radiation source: Bruker MicroStar microfocus rotating anode Helios multilayer optics monochromator Detector resolution: 10.7 pixels mm ⁻¹ \\$\\$\\$\\$\\$\\$\\$\\$\\$ and \\$\\$\\$\\$\\$\\$ scans Absorption correction: multi-scan (SADABS; Bruker, 2013)	$T_{\min} = 0.442, T_{\max} = 0.474$ 15868 measured reflections 1972 independent reflections 1712 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.062$ $\theta_{\text{max}} = 64.9^{\circ}, \theta_{\text{min}} = 4.5^{\circ}$ $h = -18 \rightarrow 18$ $k = -8 \rightarrow 4$ $l = -23 \rightarrow 22$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.105$ S = 1.06 1972 reflections 154 parameters 0 restraints Primary atom site location: structure-invariant direct matheds	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0717P)^2 + 0.4839P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30$ e Å ⁻³ $\Delta \alpha_{max} = 0.21$ e Å ⁻³

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C17	0.41862 (4)	0.46830 (6)	0.29403 (2)	0.0481 (2)	
Cl17	0.68664 (3)	0.11456 (7)	0.40130 (3)	0.0439 (2)	
09	0.29828 (9)	0.2266 (2)	0.43513 (7)	0.0486 (5)	
O16	0.38062 (10)	0.3221 (2)	0.54298 (7)	0.0428 (5)	
C1	0.37955 (13)	0.1912 (2)	0.21207 (9)	0.0330 (5)	
C2	0.35120 (13)	0.0191 (2)	0.19888 (9)	0.0341 (5)	
C3	0.32654 (14)	-0.0927 (2)	0.25143 (10)	0.0376 (6)	
C4	0.33080 (13)	-0.0318 (2)	0.31807 (9)	0.0356 (6)	
C5	0.36117 (12)	0.1391 (2)	0.33254 (9)	0.0289 (5)	
C6	0.38485 (12)	0.2493 (2)	0.27869 (9)	0.0296 (5)	
C8	0.36471 (13)	0.1988 (2)	0.40532 (9)	0.0317 (5)	
C10	0.44516 (12)	0.2149 (2)	0.43988 (9)	0.0288 (5)	
C11	0.44873 (12)	0.2764 (2)	0.50758 (9)	0.0310 (5)	
C12	0.52597 (14)	0.2929 (2)	0.53977 (9)	0.0390 (6)	
C13	0.59771 (13)	0.2463 (3)	0.50739 (10)	0.0373 (5)	
C14	0.59454 (12)	0.1799 (2)	0.44109 (10)	0.0324 (5)	

supplementary materials

C15	0.52003 (12)	0.1657 (2)	0.40762 (9)	0.0289 (5)
H1	0.39490	0.26710	0.17660	0.0400*
H2	0.34870	-0.02210	0.15430	0.0410*
Н3	0.30720	-0.20820	0.24220	0.0450*
H4	0.31320	-0.10620	0.35330	0.0430*
H12	0.52840	0.33640	0.58400	0.0470*
H13	0.64880	0.25860	0.52940	0.0450*
H15	0.51890	0.12320	0.36320	0.0350*
H16	0.33910	0.30760	0.51930	0.0640*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U ²³
C17	0.0670 (4)	0.0413 (3)	0.0359 (3)	-0.0138 (2)	-0.0087 (2)	0.0009 (2)
Cl17	0.0269 (3)	0.0563 (3)	0.0484 (3)	0.0061 (2)	-0.0024 (2)	0.0039 (2)
09	0.0283 (8)	0.0882 (10)	0.0294 (7)	0.0028 (7)	0.0032 (7)	-0.0086 (7)
016	0.0401 (9)	0.0647 (8)	0.0237 (7)	-0.0061 (7)	0.0043 (6)	-0.0069 (6)
C1	0.0312 (10)	0.0440 (9)	0.0239 (9)	0.0027 (8)	-0.0001 (8)	0.0026 (7)
C2	0.0311 (10)	0.0465 (9)	0.0247 (9)	0.0068 (8)	-0.0053 (8)	-0.0055 (7)
C3	0.0368 (11)	0.0413 (9)	0.0347 (10)	-0.0027 (8)	-0.0084 (10)	-0.0037 (7)
C4	0.0332 (10)	0.0454 (10)	0.0281 (9)	-0.0050 (8)	-0.0019 (9)	0.0052 (7)
C5	0.0208 (9)	0.0437 (8)	0.0222 (8)	0.0011 (7)	-0.0026 (8)	0.0000 (6)
C6	0.0264 (9)	0.0381 (8)	0.0244 (8)	0.0004 (7)	-0.0020 (8)	-0.0006 (7)
C8	0.0262 (10)	0.0449 (9)	0.0241 (9)	0.0002 (7)	0.0020 (8)	0.0012 (7)
C10	0.0295 (10)	0.0349 (8)	0.0220 (8)	-0.0020 (7)	-0.0023 (8)	0.0030 (6)
C11	0.0331 (11)	0.0382 (8)	0.0216 (8)	-0.0044 (7)	0.0024 (8)	0.0022 (6)
C12	0.0465 (13)	0.0476 (9)	0.0228 (9)	-0.0109 (9)	-0.0073 (9)	0.0013 (7)
C13	0.0336 (10)	0.0475 (9)	0.0307 (9)	-0.0070 (8)	-0.0104 (9)	0.0074 (7)
C14	0.0291 (10)	0.0359 (8)	0.0322 (9)	-0.0006 (7)	-0.0036 (9)	0.0066 (7)
C15	0.0291 (10)	0.0353 (8)	0.0224 (8)	0.0005 (7)	-0.0009 (8)	0.0013 (6)

Geometric parameters (Å, °)

Cl7—C6	1.7394 (16)	C10—C15	1.406 (3)	
Cl17—C14	1.740 (2)	C10—C11	1.410 (2)	
O9—C8	1.233 (2)	C11—C12	1.396 (3)	
016—C11	1.339 (2)	C12—C13	1.359 (3)	
O16—H16	0.8200	C13—C14	1.396 (3)	
C1—C6	1.383 (2)	C14—C15	1.368 (3)	
C1—C2	1.380 (2)	C1—H1	0.9300	
C2—C3	1.384 (3)	С2—Н2	0.9300	
C3—C4	1.389 (3)	С3—Н3	0.9300	
C4—C5	1.388 (2)	C4—H4	0.9300	
C5—C6	1.392 (2)	C12—H12	0.9300	
C5—C8	1.501 (2)	C13—H13	0.9300	
C8—C10	1.462 (3)	C15—H15	0.9300	
С11—О16—Н16	109.00	C11—C12—C13	120.98 (17)	
C2-C1-C6	119.15 (16)	C12—C13—C14	119.83 (19)	
C1—C2—C3	120.55 (16)	Cl17—C14—C13	119.24 (15)	

C2—C3—C4	119.79 (15)	C13—C14—C15	120.62 (18)
C3—C4—C5	120.55 (16)	Cl17—C14—C15	120.14 (15)
C4—C5—C8	118.62 (15)	C10-C15-C14	120.49 (17)
C6—C5—C8	122.91 (14)	C2	120.00
C4—C5—C6	118.45 (16)	C6—C1—H1	120.00
Cl7—C6—C5	120.12 (13)	C1—C2—H2	120.00
C1—C6—C5	121.49 (15)	C3—C2—H2	120.00
Cl7—C6—C1	118.36 (13)	С2—С3—Н3	120.00
O9—C8—C10	121.73 (16)	С4—С3—Н3	120.00
C5—C8—C10	120.10 (17)	C3—C4—H4	120.00
O9—C8—C5	118.11 (18)	C5—C4—H4	120.00
C8—C10—C11	120.13 (17)	C11—C12—H12	120.00
C8—C10—C15	121.39 (16)	C13—C12—H12	119.00
C11—C10—C15	118.46 (17)	С12—С13—Н13	120.00
O16—C11—C10	122.76 (17)	C14—C13—H13	120.00
O16—C11—C12	117.67 (16)	С10—С15—Н15	120.00
C10—C11—C12	119.57 (17)	C14—C15—H15	120.00
C6—C1—C2—C3	1.5 (3)	O9—C8—C10—C15	173.55 (16)
C2—C1—C6—Cl7	-178.65 (16)	C5-C8-C10-C11	178.00 (14)
C2-C1-C6-C5	-0.9 (3)	C5-C8-C10-C15	-3.7 (2)
C1—C2—C3—C4	-0.4 (3)	C8-C10-C11-O16	0.0 (2)
C2—C3—C4—C5	-1.3 (3)	C8-C10-C11-C12	-179.36 (14)
C3—C4—C5—C6	1.8 (3)	C15—C10—C11—O16	-178.36 (15)
C3—C4—C5—C8	-179.90 (19)	C15—C10—C11—C12	2.3 (2)
C4—C5—C6—C17	176.96 (15)	C8-C10-C15-C14	-179.27 (15)
C4—C5—C6—C1	-0.7 (3)	C11—C10—C15—C14	-0.9 (2)
C8—C5—C6—C17	-1.2 (3)	O16-C11-C12-C13	178.94 (17)
C8—C5—C6—C1	-178.93 (18)	C10-C11-C12-C13	-1.7 (2)
C4—C5—C8—O9	-69.0 (2)	C11—C12—C13—C14	-0.4 (3)
C4—C5—C8—C10	108.3 (2)	C12—C13—C14—Cl17	-178.09 (14)
C6—C5—C8—O9	109.2 (2)	C12—C13—C14—C15	1.8 (3)
C6—C5—C8—C10	-73.5 (2)	Cl17—C14—C15—C10	178.75 (12)
O9—C8—C10—C11	-4.8 (2)	C13-C14-C15-C10	-1.1 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H···A	D—H	H…A	D····A	D—H···A
O16—H16…O9	0.82	1.88	2.598 (2)	146
C13—H13…O9 ⁱ	0.93	2.50	3.413 (3)	168
C6—Cl7···Cg1 ⁱⁱ	1.74 (1)	3.89(1)	4.901 (2)	116 (1)

Symmetry codes: (i) x+1/2, -y+1/2, -z+1; (ii) -x, y+1/2, -z+3/2.