brought to you by 狵 CORE provided by University of Mysore - Digital Repository of Research, Innovation and Scholarship...

tion and Schol

organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(4-Hydroxy-3-methylphenyl)(phenyl)methanone

C. S. Dileep,^a V. Lakshmi Ranganatha,^b N. K. Lokanath,^a A. K. Shaukath^b and M. A. Sridhar^a*

^aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and ^bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 005, India Correspondence e-mail: mas@physics.uni-mysore.ac.in

Received 7 September 2013; accepted 11 September 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.046; *wR* factor = 0.129; data-to-parameter ratio = 12.4.

In the title compound, $C_{14}H_{12}O_2$, the benzene rings make a dihedral angle of 58.84 (12)°. In the crystal, molecules are linked into chains along the *b*-axis direction by $O-H\cdots O$ hydrogen bonds. These chains are further linked by $C-H\cdots O$ hydrogen bonds, forming layers parallel to the *bc* plane.

Related literature

For the biological activity of benzophenone derivatives, see: Khanum *et al.* (2004); Naveen *et al.* (2006); Selvi *et al.* (2003). For a related structure, see: Mahendra *et al.* (2005).

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{12}O_2 \\ M_r = 212.24 \\ \text{Orthorhombic, } Pbca \\ a = 7.7043 \ (4) \ \text{\AA} \\ b = 16.3770 \ (8) \ \text{\AA} \\ c = 17.7482 \ (9) \ \text{\AA} \end{array}$

V = 2239.4 (2) Å³ Z = 8Cu K α radiation $\mu = 0.67 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.25 \times 0.20 \text{ mm}$

Data collection

Bruker X8 Proteum diffractometer1518 reflections with $I > 2\sigma(I)$ 7657 measured reflections $R_{int} = 0.037$ 1828 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	147 parameters
$wR(F^2) = 0.129$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$
1828 reflections	$\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O14—H14···O8 ⁱ	0.82	1.91	2.7106 (19)	166
$C2-H2 \cdot \cdot \cdot O14^{ii}$	0.93	2.57	3.448 (3)	158

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors would like to thank the University of Mysore for providing the diffractometer facility under IoE. VLR acknowledges the financial support provided by the Department of Science and Technology, New Delhi, under the INSPIRE-Fellowship scheme [IF110555]. SAK gratefully acknowledges the financial assistance provided by the UGC under the major research project scheme [F.39/737/2010 (SR)]. CSD would like to thank the University of Mysore for the award of an RFSMS fellowship under the head DV5/Physics/ 389/RFSMS/2009–2010/10.07.2012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5303).

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Khanum, S. A., Venu, T. D., Shashikanth, S. & Firdouse, A. (2004). Bioorg. Med. Chem. Lett. 12, 2093–2095.
- Mahendra, M., Khanum, S. A., Singh, A. K., Shashikanth, S., Doreswamy, B. H., Sridhar, M. A. & Shashidhara Prasad, J. (2005). Acta Cryst. E61, o2990– o2991.
- Naveen, S., Khanum, S. A., Devaiah, V. T., Shashikanth, S., Anandalwar, S. M. & Prasad, S. (2006). Anal. Sci. 22, 183–184.
- Selvi, A. T., Joseph, G. S. & Jayaprakasha, G. K. (2003). Food Microbiol. 20, 455–460.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2013). E69, o1550 [doi:10.1107/S160053681302521X]

(4-Hydroxy-3-methylphenyl)(phenyl)methanone

C. S. Dileep, V. Lakshmi Ranganatha, N. K. Lokanath, A. K. Shaukath and M. A. Sridhar

1. Comment

Benzophenone and related compounds have a wide variety of biological activities such as anti-fungal and antiinflammatory (Khanum *et al.*, 2004; Selvi *et al.*, 2003). The presence of various substituents in the benzophenone nucleus is essential to determining the quantitative structure-activity relationships of these systems. The competence of benzophenones as chemotherapeutic agents, especially as inhibitors of HIV-1 reverse transcriptase RT, cancer and inflammation, is well established and their chemistry has been studied extensively. In addition, methyl-substituted benzophenones exhibit chemotherapeutical activity against fungi. Some studies were carried out to show that methylsubstituted benzophenones exhibit anti-fungal properties (Naveen *et al.*, 2006). In view of its extensive background, the title compound was prepared and characterized by single-crystal X-ray diffraction.

In the molecular structure of the title compound (Fig. 1), bond lengths and angles do not show large deviations and are comparable with those reported for a similar structure (Mahendra *et al.*, 2005). The dihedral angle between the two benzene rings (C1–C6) and (C9–C16) is 58.84 (12)°. The crystal structure is stabilized by intermolecular C—H···O and O —H···O hydrogen bonds (Table 1 & Fig. 2).

2. Experimental

The title compound was synthesized by Fries rearrangement. 3-Methylphenylbenzoate was treated with anhydrous aluminium chloride (0.002 mol) as a catalyst at 150–170 °C under without solvent condition for about 2–3 h. Then the reaction mixture was cooled to room temperature and quenched with 6 N HCl in the presence of ice water. The reaction mixture was stirred for about 2–4 h, and the solid was filtered and recrystallized with acetonitrile to obtain the title compound.

3. Refinement

All H-atoms were located in a difference map and then were positioned geometrically (C—H = 0.93–0.96 Å and O—H = 0.82 Å). They were refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O, C_{methyl})$.

Computing details

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT* (Bruker, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

An *ORTEP* view of the molecule with the atom-labeling scheme. The thermal ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.

Figure 2

A molecular packing view of the title compound down the *a*-axis, showing intermolecular interactions (dashed lines).

(4-Hydroxy-3-methylphenyl)(phenyl)methanone

Crystal data	
$C_{14}H_{12}O_2$	<i>a</i> = 7.7043 (4) Å
$M_r = 212.24$	b = 16.3770 (8) Å
Orthorhombic, Pbca	c = 17.7482 (9) Å
Hall symbol: -P 2ac 2ab	V = 2239.4 (2) Å ³

Z = 8 F(000) = 896 $D_x = 1.259 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54178 \mathcal{A} Cell parameters from 1828 reflections

Data collection

Bruker X8 Proteum diffractometer Radiation source: Bruker MicroStar microfocus rotating anode Helios multilayer optics monochromator Detector resolution: 10.7 pixels mm⁻¹ φ and ω scans 7657 measured reflections

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.046$ H-atom parameters constrained $wR(F^2) = 0.129$ $w = 1/[\sigma^2(F_0^2) + (0.0617P)^2 + 0.8504P]$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.031828 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 147 parameters $\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints $\Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant Extinction correction: SHELXL, $FC^* = KFC[1+0.001XFC^2\Lambda^3/SIN(2\Theta)]^{-1/4}$ direct methods Secondary atom site location: difference Fourier Extinction coefficient: 0.0023 (3) map

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

 $\theta = 5.0-64.4^{\circ}$

 $u = 0.67 \text{ mm}^{-1}$

Block, colorless

 $0.30 \times 0.25 \times 0.20$ mm

 $\theta_{\text{max}} = 64.4^{\circ}, \ \theta_{\text{min}} = 5.0^{\circ}$

1828 independent reflections

1518 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.037$

 $h = -3 \rightarrow 8$ $k = -18 \rightarrow 18$

 $l = -20 \rightarrow 20$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
08	0.1870 (2)	0.48369 (7)	0.06235 (8)	0.0564 (5)	
O14	0.1579 (2)	0.85740 (8)	0.13455 (8)	0.0637 (6)	
C1	0.1850 (3)	0.56879 (13)	-0.12119 (11)	0.0553 (7)	
C2	0.2200 (4)	0.54665 (17)	-0.19461 (13)	0.0756 (9)	
C3	0.3252 (4)	0.4804 (2)	-0.20900 (18)	0.0944 (11)	
C4	0.3942 (4)	0.43527 (19)	-0.15054 (18)	0.0886 (11)	
C5	0.3563 (3)	0.45538 (13)	-0.07775 (14)	0.0623 (8)	
C6	0.2522 (3)	0.52263 (11)	-0.06186 (11)	0.0457 (6)	
C7	0.2081 (2)	0.54037 (10)	0.01775 (10)	0.0407 (6)	
С9	0.1909 (2)	0.62549 (10)	0.04420 (10)	0.0374 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C10	0.0890 (2)	0.64224 (10)	0.10733 (10)	0.0385 (5)
C11	0.0763 (2)	0.71935 (10)	0.13776 (10)	0.0412 (6)
C12	-0.0375 (3)	0.73782 (12)	0.20447 (12)	0.0624 (8)
C13	0.1725 (2)	0.78203 (10)	0.10381 (10)	0.0426 (6)
C15	0.2755 (3)	0.76672 (11)	0.04110 (11)	0.0456 (6)
C16	0.2830 (2)	0.68939 (11)	0.01104 (10)	0.0431 (6)
H1	0.11670	0.61430	-0.11120	0.0660*
H2	0.17280	0.57630	-0.23430	0.0910*
H3	0.35000	0.46600	-0.25850	0.1130*
H4	0.46650	0.39120	-0.16080	0.1060*
Н5	0.40030	0.42390	-0.03850	0.0750*
H10	0.02750	0.59980	0.12970	0.0460*
H12A	-0.09550	0.68880	0.22030	0.0940*
H12B	-0.12210	0.77820	0.19070	0.0940*
H12C	0.03250	0.75820	0.24510	0.0940*
H14	0.21640	0.88990	0.11020	0.0950*
H15	0.33940	0.80880	0.01940	0.0550*
H16	0.34990	0.67960	-0.03160	0.0520*

Atomic displacement parameters $(Å^2)$

	I 711	1.72	1733	1.712	1713	1.723
	0	022	033	012	0.5	025
08	0.0647 (10)	0.0356 (7)	0.0688 (9)	0.0039 (6)	0.0086 (7)	0.0147 (6)
O14	0.0935 (12)	0.0353 (7)	0.0622 (9)	-0.0083 (7)	0.0170 (8)	-0.0035 (6)
C1	0.0597 (13)	0.0525 (11)	0.0538 (11)	-0.0129 (10)	0.0040 (10)	0.0005 (9)
C2	0.0883 (19)	0.0862 (17)	0.0524 (12)	-0.0340 (15)	0.0057 (13)	-0.0043 (12)
C3	0.096 (2)	0.111 (2)	0.0763 (18)	-0.0373 (19)	0.0327 (17)	-0.0442 (18)
C4	0.0747 (18)	0.0860 (19)	0.105 (2)	-0.0047 (15)	0.0238 (17)	-0.0464 (18)
C5	0.0519 (13)	0.0530 (12)	0.0819 (15)	-0.0007 (10)	0.0089 (12)	-0.0169 (11)
C6	0.0397 (10)	0.0400 (10)	0.0574 (11)	-0.0072 (8)	0.0047 (9)	-0.0047 (8)
C7	0.0341 (10)	0.0342 (9)	0.0538 (10)	-0.0001 (7)	0.0016 (8)	0.0057 (8)
C9	0.0352 (9)	0.0332 (9)	0.0438 (9)	-0.0001 (7)	-0.0005 (7)	0.0061 (7)
C10	0.0381 (10)	0.0347 (9)	0.0428 (9)	-0.0014 (7)	0.0007 (8)	0.0109 (7)
C11	0.0440 (11)	0.0389 (9)	0.0407 (9)	0.0017 (7)	0.0011 (8)	0.0068 (7)
C12	0.0773 (16)	0.0518 (12)	0.0582 (12)	0.0033 (11)	0.0216 (11)	0.0039 (10)
C13	0.0496 (11)	0.0332 (9)	0.0451 (10)	0.0001 (8)	-0.0030 (8)	0.0041 (7)
C15	0.0468 (11)	0.0375 (10)	0.0526 (10)	-0.0088(8)	0.0057 (9)	0.0097 (8)
C16	0.0419 (11)	0.0398 (9)	0.0476 (10)	-0.0025 (8)	0.0061 (8)	0.0054 (8)

Geometric parameters (Å, °)

08—C7	1.231 (2)	C11—C13	1.402 (2)	
O14—C13	1.354 (2)	C13—C15	1.390 (3)	
O14—H14	0.8200	C15—C16	1.375 (3)	
C1—C6	1.396 (3)	C1—H1	0.9300	
C1—C2	1.379 (3)	C2—H2	0.9300	
С2—С3	1.378 (4)	С3—Н3	0.9300	
C3—C4	1.380 (4)	C4—H4	0.9300	
C4—C5	1.365 (4)	C5—H5	0.9300	
C5—C6	1.391 (3)	С10—Н10	0.9300	

C6—C7	1.482 (3)	C12—H12A	0.9600
С7—С9	1.477 (2)	C12—H12B	0.9600
C9—C16	1.395 (2)	C12—H12C	0.9600
C9—C10	1.395 (2)	C15—H15	0.9300
C10-C11	1.377 (2)	C16—H16	0.9300
C11—C12	1.504 (3)		
O8…C6 ⁱ	3.385 (3)	C13····H16 ^{vii}	2.8700
O8····C7 ⁱ	3.383 (2)	C16…H1	2.8000
$O8 \cdots C1^i$	3.169 (3)	H1…C9	2.8200
O8…O14 ⁱⁱ	2.7106 (19)	H1…C16	2.8000
O14…O8 ⁱⁱⁱ	2.7106 (19)	H1…H16	2.5200
O8…H10	2.5600	H2…O14 ^{viii}	2.5700
O8…H5	2.6200	H3…C10 ^{ix}	3.0100
O8…H14 ⁱⁱ	1.9100	H3…H10 ^{ix}	2.4500
O14…H12B	2.7100	H5…O8	2.6200
O14…H12C	2.7200	H5····C7 ^v	3.1000
O14····H2 ^{iv}	2.5700	H10…O8	2.5600
C1…C16	3.159 (3)	H10…H12A	2.3700
C1···O8 ⁱ	3.169 (3)	H10····H3 ^{vi}	2.4500
C5…C7 ^v	3.522 (3)	H12A…H10	2.3700
C6…O8 ⁱ	3.385 (3)	H12B…O14	2.7100
C7···C7 ⁱ	3.525 (2)	H12C…O14	2.7200
C7…C5 ^v	3.522 (3)	H14…H15	2.2900
C7···O8 ⁱ	3.383 (2)	H14····O8 ⁱⁱⁱ	1.9100
C16…C1	3.159 (3)	H14····C7 ⁱⁱⁱ	3.0200
C1…H16	2.7300	H15…H14	2.2900
С6…Н16	2.7300	H15…C10 ^x	3.0700
C7…H14 ⁱⁱ	3.0200	H16…C1	2.7300
C7…H5 ^v	3.1000	H16…C6	2.7300
С9…Н1	2.8200	H16…H1	2.5200
C10…H3 ^{vi}	3.0100	H16…C11 ^x	3.0500
C10····H15 ^{vii}	3.0700	H16…C13 ^x	2.8700
C11····H16 ^{vii}	3.0500		
C13—O14—H14	109.00	C9—C16—C15	120.39 (17)
C2C1C6	119.9 (2)	C2—C1—H1	120.00
C1—C2—C3	119.8 (2)	C6—C1—H1	120.00
C2—C3—C4	120.6 (3)	C1—C2—H2	120.00
C3—C4—C5	120.0 (3)	C3—C2—H2	120.00
C4—C5—C6	120.4 (2)	С2—С3—Н3	120.00
C1—C6—C7	121.87 (18)	С4—С3—Н3	120.00
C5—C6—C7	118.73 (18)	C3—C4—H4	120.00
C1—C6—C5	119.32 (19)	C5—C4—H4	120.00
O8—C7—C9	119.71 (16)	C4—C5—H5	120.00
С6—С7—С9	120.58 (15)	C6—C5—H5	120.00
O8—C7—C6	119.71 (15)	C9—C10—H10	119.00
C7—C9—C10	119.43 (15)	C11—C10—H10	119.00
С7—С9—С16	121.90 (15)	C11—C12—H12A	109.00

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—C9—C16	118.53 (15)	C11—C12—H12B	110.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—C11	122.36 (15)	C11—C12—H12C	109.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C12	122.32 (15)	H12A—C12—H12B	110.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—C13	119.95 (15)	H12A—C12—H12C	109.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C13	117.73 (15)	H12B—C12—H12C	109.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O14—C13—C11	116.76 (15)	С13—С15—Н15	120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O14—C13—C15	122.31 (15)	C16—C15—H15	120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C13—C15	120.92 (16)	С9—С16—Н16	120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C15—C16	120.05 (17)	C15—C16—H16	120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C1—C2—C3	-1.8 (4)	C6—C7—C9—C16	-28.8 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—C6—C5	1.0 (3)	C7—C9—C10—C11	175.79 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-C6-C7	-175.6 (2)	C16—C9—C10—C11	0.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C3—C4	0.8 (5)	C7—C9—C16—C15	-174.39 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4—C5	1.0 (5)	C10-C9-C16-C15	1.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—C5—C6	-1.8 (4)	C9-C10-C11-C12	178.23 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6—C1	0.8 (3)	C9—C10—C11—C13	-1.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6—C7	177.5 (2)	C10-C11-C13-O14	179.90 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C6—C7—O8	142.2 (2)	C10-C11-C13-C15	0.7 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C6—C7—C9	-38.4 (3)	C12-C11-C13-O14	0.7 (2)
C5-C6-C7-C9 145.05 (18) O14-C13-C15-C16 -178.60 (17) O8-C7-C9-C10 -24.9 (2) C11-C13-C15-C16 0.6 (3) O8-C7-C9-C16 150.64 (17) C13-C15-C16-C9 -1.5 (3) C6-C7-C9-C10 155.66 (17) -155.66 (17) -155.66 (17)	C5—C6—C7—O8	-34.4 (3)	C12—C11—C13—C15	-178.57 (18)
O8—C7—C9—C10 -24.9 (2) C11—C13—C15—C16 0.6 (3) O8—C7—C9—C16 150.64 (17) C13—C15—C16—C9 -1.5 (3) C6—C7—C9—C10 155.66 (17)	С5—С6—С7—С9	145.05 (18)	O14—C13—C15—C16	-178.60 (17)
O8-C7-C9-C16 150.64 (17) C13-C15-C16-C9 -1.5 (3) C6-C7-C9-C10 155.66 (17)	O8—C7—C9—C10	-24.9 (2)	C11—C13—C15—C16	0.6 (3)
<u>C6–C7–C9–C10</u> 155.66 (17)	O8—C7—C9—C16	150.64 (17)	C13—C15—C16—C9	-1.5 (3)
	C6—C7—C9—C10	155.66 (17)		

Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1/2, y-1/2, z; (iii) -x+1/2, y+1/2, z; (iv) x, -y+3/2, z+1/2; (v) -x+1, -y+1, -z; (vi) -x+1/2, -y+1/2; (vi) x-1/2, -y+3/2, -z; (viii) x, -y+3/2, z-1/2; (ix) -x+1/2, -y+1, z+1/2; (vii)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O14—H14…O8 ⁱⁱⁱ	0.82	1.91	2.7106 (19)	166
C2—H2···O14 ^{viii}	0.93	2.57	3.448 (3)	158

Symmetry codes: (iii) -x+1/2, y+1/2, z; (viii) x, -y+3/2, z-1/2.