THEORY OF THE NEAREST SQUARE CONTINUED
: FRACTION*

By A. A. KRISHNASWAMI AYYANGAR

(Department of Mathematics, Maharcja's College)
4. Special Critical Fractions

4.1. IN §2 of our previous communication} we have called the surds

x /R V4R — QF ; i RS et o
T e < 24/R), and N > 24/R),

M 3+ %5 20 © (1QI<2vR), and (i) 3+ 5" (1QI>2vR)

critical fractions, since they decide the nature of the representations to be

P+ R
Q

o Pt /R ] 4 R— Q2 R — Q* :

(iii) P 1Q\/ e VQR 7 yd I;Q Q.. g— I+ hids l,}Q. Q% _ an integer,

P
(|Q|< 2+/R) which implies 4 R — Q*= r?, 2 (; 4 an odd integer, Q, ¢ both

assigned to in a B.cf. development. Ambiguities arise when

even integers, and R is the sum of two squares; and
HAsriR. L S

(iv) o . W 3 TG 0 } — an integer (| Q | > 24/R); but these cases
have been circumvented by appropriate conventions.
+ 4R . ; + /R s
et }Qx * be a special surd with e Q\/ as its successor, and
1

R=Q,2+ 1 Q%> Q%+ 1 Q2 then it is easily seen that the fractional part of
P+ +/R
Q

fraction which takes the special form 34

in its positive representation is equal to the corresponding critical

'\/_R_(“)‘ Q. where Q,> | Q |.

Definition.—A proper fraction of the form 4 K (R a non-square
prop 4

B e
2q
positive integer) is called a special critical fraction when R = p®+-¢* and

p=>2q>0. :

* This is a continuation of the memoir published in the Journal of the Mysore University,
Vol. I, Part II, pp. 21-32.

+ See ibid., Vol. I, Part II, p. 26.
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98 A. A, Krishnaswami Ayyangar

4-2. Tuporem VI, Iffeat VR is a special surd with successors
-1

Pz*‘VR P+1| \/R Pis-+ +/R . SRRy -
. ? —— ina B. c.f, development, then Py ix
Q. Qiiis & 4 Al P Q,
sl IR Pyigt YR . g o =il
1S a successor of - oy all cases except when R= Q,2+ 1 Q2,
P di —'_ A R y Q
Let 2 +1 " b - + ___7;_2 o K2 1
F6 5 G - T
P,i1— +/R 5
Then, L b VR L b._. Epro Np+a
Qp+1 it o — R
: Pysa+ /R
L., €y +1 Q o Y e
' P, 1 +/R s Qo1
P, .o+ /R Q ‘
Henc ?"- 2 iy = b €241 7
nce (5 T pt1 T B i FVR (1)
where Q2+ 1Q% . <R, Q% .1+ 3Q,2< R.
e IR
Therefore Tzr1t VR Loy be a Bhaskara successor of Lztzt VR .

Qz’l Qz,r i |
all cases except when

Qz.'2 | } ngr"l-l =R and €pt+1 = ls
which will violate our convention in the ambiguous case.

- Py+1+ VR € Q-
Similarly, Q, =b,+ B R (2)
where Q%-1+4Q,2 <R, Q2+ 1Q%_,<R.

If .;=1, and Q,2+ 1 QZ%,.,= R, we have
Pg =R— Qw Qu s (Qz-_ %er+1)2;
smceQz—f‘;Q,,n—R = Q%1 +1Q%

Qz;> er.—l! and Pz:-klm z-_ '2' Qw-l-l (3)
= T /R =
Hence, ??-'+1(£ VR _ VR4 Q(w)z 3 Qyi
=0 '\/R Q ) '2' Qz #1
£/
. Q‘;+'l
b alt S
v/R+ Qv 3 % Qz: I (4)
Comparing (2) and (4)5 we have &= —1, Qza == Qw SSE Pzr_" Qz.r_— % Qa+1! v
y

and therefore } Q2,_,+ Q,2= R.
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Conversely, if Q2 +1Q%_; =R, we see that Q,> |Q,.,/,
P,=Q,— 1 ¢,Q, ,, where ¢,Q,_, is negative, and

Pff+ '\//R 2 £ ‘\/R I— Z | Q? S Qw ¥ [Qv——1|

= VR ’
Q?; Q‘Z) 3 Z | O?} = |I+ Qv
so that €p+1= ]3 Qﬂ'i'l-_"- !Qf)—lg* and Q7;2+ZQ7)+1=-‘-'R.
Hence, Byt VR will fail to be a successor of Py+ 2t VR, when and
Qv Q:,l +1

only when Q.2+ 4 Q2%,_;=

4.3, TuHeoreM IX: Two different semi-reduced surds cannot have the
same Bhaskara successor unless they are conjugates of — g and 1 —g, g being
any special critical fraction.

If possible, let two different semi-reduced surds
¢ Pt VR . Bk wR
Q. P Q’
P,’>'P,), while the predecessor of &, is &, _;.

VR | P+ VK .
Then . Ml + =%~ — an integer. 1
Q. , : i

Hence Q,= =+ Q’, the irrational part being equated to zero.

have the same successor &,., (where

But Q,, Q, are both positive, the surds being semi-reduced; hence Q, =Q’,
and the sign to be chosen in (1) is negative, so that

P,— P',= 0 (mod Q,) (2)
Arguing as in the proof of Theorem VII* replacing therein P, ., by P’, but
omitting the consideration P’,< R} P,> R} which has obviously no appli-
cation in the present context, we get P’f,.— P.< Q4 (3)
From (2) and (3), Pw=P, or P,—P,=Q, and in the: latter case,
P’ 2+ P,2= 2 R, from which we derive P,=|Q,_,|—1Q,,

o= | Qu-1] + $Q, R= Q% _, + 1Q.% since we may put

P2=R= | Qp2i|Qy
Thus the two surds which have the same successor are of the form

|-Q'zf—1___l__”' %Q;.-.l‘\/R 1Qf ~1 i"’%Q?}"" '\/R ] e
Q,., L

§o=
where R=Q2%,_,+ 1 Q.% Q, is even and less than [ Q,_;|.

o)

* See Journal of the Mysore University, Vol I, Paru 11, page 31,
Ala F
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Obviously, $Q,— loé g |yl is a special critical fraction, g say, &, is
i

the conjugate of — g and &, is the conjugate of (1 — g). This proves the

proposition.

4-4. THEOREM X: [f g be a special critical fraction, then g* has no
Bhaskara predecessor, (1 - g)™ is semi-reduced, and the Bhaskara successors
of g and (1— g)* are respectively the conjugates of | —g and — g; the
conjugate of 1 — g has no semi-reduced predecessor, while the conjugate of
— g has a unique semi-reduced predecessor.

TE PR :
Let g= =R N e (p> 2g>0). Then a predecessor of g~ or

29
(I —g)-1 will be of the form « 4+ g, where a is an integer.
- /R o p o ST S
Put Q =a+g= aip VR =a+1—(1—g)=a-+l FEwpy 7
where R = p?+ ¢
P++/R

Then Q=2¢ < p < R¥; p?+ 1 Q=R > Q¥+ 4 p? so that —6—isa
special surd.

Hence g-' has no predecessor of the form a-+ g. while (1 — g)- 1, has one
of the form a+'1— (1— g).

Similarly, it can be shown that g~ has no predecessor of the form a— g,
while (1 — g)~* has a predecessor of the form a— 1+ (1 — g).
i gt VR PR 20
ey 14 lkavR p p+q+ vR
I .
"~ conjugate of (1 —g)°
gy 1o Pt AR 3p—4q
and (1—g)- 1= 5 =3 — 3o—u+ VR
29 i SO ol |
P—q+ vR conjugate of (— g)
Since 2g< p< 3 p— 4 q, the Bhaskara successors of g ! and (1 —g)-1 are
respectively the conjugates of (I — g) and — g.

Any predecessor of the conjugate of (1 —g) must be of the forma + £ qp— B

5 v R

where a is an integer. For a semi-reduced predecessor, a - £ is

p .
inadmissible and @ must be an integer such that p (a— 1)—¢> 0, and
(pa—p—¢)* is nearest to R: all these conditions are satisfied only

&———‘_
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7

when a — 2. for it can be easily verified that p— g< v/R, pa—p—q> vR
when a> 2, and R— (p— ¢)?< 2p— q)*— R, when p> 2¢q. Thus the only
possible semi-reduced predecessor of the conjugate of 1 —g is g—* But
since ¢—' has no Bhaskara predecessor, it cannot be semi-reduced.
Similarly, the possible semi-reduced predecessors of the conjugate of

¢ must be of the form Pa—_p-ipq--r- VR Where a is an integer such that

pa—p—q>0, and (pa— p— ¢)* is nearest to R. Obviously a= 2, since
when a =2, pa—p-+q> +/R, and when a= 1, ¢< +/R, while

(p+ ¢)?—R< R— ¢ Thus the possible semi-reduced predecessor is (1 — g)~",
which is certainly semi-reduced with a ‘ special * surd as its predecessor.

Hence the proposition is proved.
Cor. 1. Two different reduced surds cannot have the same successor.
Cor. 2. Neither the conjugate of — g nor that of (1 —g) can

£
be the successor of a standard surd of the form \JQR'

5. Pure Recurring Bhaskara Continued Fractions

5.1 Definition.—A pure recurring B.c.f. is one in which the complete
quotients recur from the first.

We have already seen that the complete quotients in a B.c.f. develop-
ment are ultimately reduced surds. Hence a pure recurring B.c.f. is equal
to a reduced surd.

The converse of this will now be proved.

5.2. THeOREM X1: The Bhaskara development of a reduced surd is a
pure recurring half-regular continued fraction.

. u po i \."IR . . '

Let £,=— Q. be a reduced surd and if possible, let its B.c.f.
0

development be the periodic h.r.c.f.

b[] b 2 € -1 €x EJ,_{:,. gp e l,
b1+' " "":‘b,{-—i‘f"b,é'i" Rie e A_L_bé__ﬂ._l
X x
where &iip=Epayem v=0,1--+«,n=1) ¢ a positive integer, and

bk L ba{' todn
Since &, is reduced, &, and &, -, are also reduced; but their respective
successors &, and &, are equal.

T i — S —————
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By Theorem X, Cor. (1), therefore, ¢, = &, ,, &

If €,y 5= €4 -1, then &, _, =% £, ., _, which will contradict Theorem X,
Cor. (1), so that e, ;= €., _,, i.e., the recurrence begins one step earlier.
This process can be evidently continued backwards until &, 1s reached.
The first complete quotient therefore recurs and the h.r.c.f. is a pure

£ €7

recurring one, of the form b, + h'l : Bl
; g o e U

X

5:3. Tueorem, XII: The B.c.f. development of the standard surd

VE (= 1) has only one term in the acyclic part.

Q
Proof: lﬁtfn;'yarrarpElm,BRJ,whaeglzlﬁngE.
Q L Q,
Then Pi=05,Q, ¢QQ;=R~ Py %
'\6!% being in the standard form, we may write R = QQ’, where Q, Q'

are positive integers having no common factor; hence ¢,Q,= Q' — 5,2 Q.
By Theorem I, since Q< v/R, Py, Q, are positive and |Q, — 4 ¢, Q| < P,. (1)
When Q< 1 Q. and ¢=1,1Q,—Q < Q;— 1 Q < P, by (1).

We éhall now prove that |Q—4% ¢ Q,| < P;, which is equivalent to

Gt %’ Q'+ :i: be? Q< b, Q,

i.e. Q(I=bot+ 15,2 < 1Q,
ie., (bo— 1) < 8 — 1, when Q> 1 Q, (2)
If €= ]s bl] Q < \/R_ '\/QQ: !'-()-5 1'502*: 8 » 50 that
(bo— 1)< by2— 1 <8 — 1. (3)
If e, = —'1, we have from (1), Q;+1Q < P,,
ie., bp2Q— Q'+ 1 Q < b,Q,
ie., bo®— b+ 3 <Q'| Q.
When ¢;= — 1, by> 1, and 50 (by— 1)2+ 1< by — by+ §;
hence (by— 1)2< 8 Tl (4)
Thus, in all cases, | Q=4 .6,0Qy] <Py (5
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From (1) and (3), \8( is a special surd, and therefore ¢, is a semi-reduced

surd, &, is a reduced surd and the period of recurrence must begin at least
from £,, the successor of ¢,.

By Theorem X, Cor. (2), é cannot be the conjugate of — g or
I — g, where g is a special critical fraction. &, is, therefore, the unique semi-
reduced predecessor of £,. Hence ¢, must recur.

Further, &, cannot recur; for if ¢,= &, ., (say), then P,,,— 0, and
Q. Q. ., = R, an impossible relation when Q,,, Q,, ., are each less than VR,

Y Hence the recurring period begins from £, and the B.c.f. development

' /R 5 y
Ir of 3(5 has one and only one term in the acyclic part.

. Cor.—b, is such that h,* Q? is the nearest to R among the square
multiples of Q2.

5-4. TueoreM XII: If g be a special critical fraction, then (1 — g)!
develops as a pure recurring B.c.f.

We know that (1 — g) ' is of the form P-i-q; VR here p>2q>0,

R=p*+ ¢* It is sufficient for our purpose to prove that there exists a
Bhaskara predecessor of (1-— g) ' which is semi-reduced, and the rest will
follow from Theorem XI.

As we have seen already in Theorem X, a semi-reduced predecessor
2n—-1)g—p+ /R

5 » where »n is an
~q

of (1 —g) "' must be of the form

integer (>2) and (2n— 1)g— p> 0, such that its Bhaskara predecessor

« is a special surd of the form
. 2qe : : p—(2n—1)g+ /R
B e A= pa AR (1l = {(2n*—2n)q—p 2n— 1)}
p being any integer and e= 1.
The condition for special surds gives
; |2¢—3@n—Dp+qgn*—n| < 2n—1) g— p, and (1)
lg—pQn—1)+q 2n*—2n)| < (20— 1) g— p. (2)
We have to consider four cases :
(i) 2¢g—3@2n—NDp+q@m*—n)=0,q9g—p2n-1)+ g(2n*—2n)>0;
(ii) S 5 =0, R ) =0
y" (iii) . 3 < 0, & »s =0;
v (iv) o o <0, i <0.
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n—n+2 n*—n+4i. . . ;
T = : is impossible, simultaneous
pe= n—%

equality has to be excluded.

In case (i), since p/g=

The upper limits (U) and the lower limits (L) of p/q corresponding to the
four cases are as follows:

Case U L
.. nN:—n-+2 n2—n+41* n>— 3n+ 3
([} - T— ) ]--f 3 =¥ H— ]*
n—+% «n—3 it— 4§
. ne— n-- 2* n*—3n-+3 n— n+ i*
(i1) n , —_— - 5 e
n—3% n—3% n—4
o BE4n-1 n®—n4 4* nt—n+ 2%
(111) ol ; t+ 3 n— 1,
n+ 4% n—4 n—3%
2.1 ax * 2
. n4+n+1 n:—n+ 2 n:—n+
(iv) — y— n* ' ¥
n-+z n—% n—1

the starred expressions signifying lesser upper limits (U) and greater lower
limits (L) when n> 4.

Case (iil) is impossible since the lesser upper limit is obviously less than
the greater lower limit; since p> 2 ¢, n= 2 is impossible in all the four cases:
when n= 3, 4, the limits for p/q are respectively (2 and 13/5) and (3, 25/7)
in case (i) and (13/5 and 3) and (25/7, 4) in case (ii), while case (iv) is in-
applicable.

For integral n = 4, the first two and the last case are applicable, in order,
for the values of p/q in the intervals I,, T,, I, corresponding respectively to
n—n+3\ (ni—n+1 n*—n+2\ (n:—n+2 ¥
("“ kot 3 ) ( n—} ' n—1 ) TR T closed . on

the right and open to the left.

Thus, for every value of p/q greater than 2, we can always fix up a unique
value of n also greater than 2, since p/¢ is bound to lie in one and only one of the
rational intervals (closed on the right and open on the left), (2, 13/5), (13/5, 3),
(3,25/7), (25/7,4), (4, 41/9), (41/9, 44/9), (44/9, 5) and so on, which cover the
entire set of rational numbers greater than 2. This proves our theorem.

5-5. Before discussing further the properties of the recurring B.c.f.,
we require certain lemmas on the behaviour of unit partial quotients in
simple continued fractions.

Lemma (1): If &= _P-}_Q\KR develops as a pure recurring simple con-

tinued fraction with a set of successive unit partial quotients preceded and
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followed by other partial quotients, then the denominators of the complete
quotients corresponding to the unit partial quotients other than the first
and the last of the set are less than /R.

NP AR i R, B ]
Leté=—n = ST Bt it voart T T o
1 !
+ 1+ drsnert - - +as
P X
= (al}! y dgy * » ¢ a;"l[?{u Qpypr1 " " ap)n and
X x %
P,,,+ VR
S —?"'”i:" = (Lppmgi1yy Gutrt1 = " Gp Qoo Q1) ° " © 1[:;—1])
P x
= f, (say) (1)
By* Galois’s theorem of inverse periods,
_p?lryl_fi_xx[{ = (i lg=1]s Qps -t 8o Apy * Ayt +1s \]_[f:ﬂ-y+1])-
s P rl_u R ’
Hence, Byt X = (0, lip-13s * * * dpw-o+1) = f", (say). (2)
QHJ—p' X x
Adding (1) and (2), Q = f- f’, so that
Oin= AR accordmg as £ =Q2—f)=f" (say).
But, 2__3{ e (2_ 09 lm—-ll : iy ]ru --z-+1ﬂ')
= (!1 19 O:u ‘['zr—2]* """ )
=l Logeqpss e i )

If n— | > >3, the second complete quotient of f is less than the cor-
responding complete quotient of f”and therefore /= /", 1mply1ng Qr +< VR,
Ifv—2andn >3, wehave f"=2—(0,1,4a,, - - - V=, 14a, - )<f
and again Q, ;, <+v/R.

Thus for all values of © greater than [ and less than n ( >3), Q, .+ < VR.

The lemma is therefore proved.

Cor. (1).—If n> 2, anda, > 2, then Q' ., > v/R; if n >2, and
Qyvpprd = 2 then Q', 1 ,> -\f’rR.

Cor.(2).—Ifn=2, and 1-+a, <@ +u+1 then Q’,.; < /R and
Q',in> V/R; the inequalities are reversed when 1+ @, 11<@ while both
the Q's are less than /R if d, =y .y 11

* Vide pp. 82-85, Die Lehre von den Kettenbriichen, by O. Perron, 1929,
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Lemma (2): 1In the simple continued fraction development of a surd

+ vVPF g i
of the form ¢ "';;02+ Z, P, 4, being integers such that p> 2 ¢> 0, there

cannot occur a complete quotient of the same form more than once in the
recurring period; when such a complete quotient does occur, the recurring
period is symmetric, with an even number of terms, which include a central
set of an even number of unit partial quotients.

Let £,= Dot VR _ g+ v+ @ with ¢ ( s L V}l-{) as the o-th
Vi QO P 5 Q‘.’;

successor of £, Let ¢, be the conjugate of &, Then, Efo= —1;

1< €,< . “5"2-‘/5 =(1, 1, - )=(1) or (1) and — 1 < Z,< 0 (1)

By a well-known theorem of Galois. the simple continued fraction for
&, has a pure recurring period (ap, ay, - - - a,), say.
' x X

From (1), ap=1 and if a,, is the first partial quotient greater than 1,
m must be odd; for, if m be even, we have successively

(am! KT 1 ) = (]oc)9 (]1 Ay = * ) = {l&:}s (IF2]s am* """ ) = (lco) >
o (Ipms @ - - @) > (1), which contradicts (1).

Hence ‘.:én— ([[m}! oy * aﬂ.}' (2)
Again, ‘fu: ) .-"I?;:n: (am ety I_m]]- (3)

Comparing (2) and (3), we have @, = a,, = - - =a, ., — 1, a,,— Wi
i.e., the period is a symmetric one, beginning and ending with an odd number
of unit partial quotients.

The comparison of the complete quotients in (2) and (3) gives
Pg}+ \’_’IR ) Pﬂ--i—l—-w"}" '\/K,

Q = Q W), Lk, Pu=Pi iy 0= [
7 %=y
P+ \,/JR" I +1-s+ VR

f =0 0 inen e == — ik 2N
Civopeg B s o

_Puyi-ot VR ik

Qn-l-l - ¢ w ot

and so v=n+1—uy, ie, v= n—é—_] which implies that » should be odd.

Thus, only when n is odd, Q-”;l = Q"i‘ and these are the only con-

secutive Q’s which can be equal to each other. 4)
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~If a complete quotient, say, &, should be of the same form as &,, its
simple continued fraction development should have the same properties.
Writing Q,, Q, -+ + - - Q, round a circle at the verticies of a regular polygon
of n4 1 sides, we find that they arrange themselves symmetrically about
a diameter, such that the Q’s symmetrically placed about this diameter are
also equal, since Q, = Q,,

The symmetry of the Q’s corresponding to &, imply that Q,=Q,
just as Q,= Q,. From (4) we see that this can happen only once and so,
there cannot be more than one ¢, of the same form as ¢ and it occurs when
n is odd and v = 512 4 In this case we realise the same symmetry of
Q’s starting from Q, ., going round the circle and ending with Q-1 as

2 2

in the first set (Qq Qp, + + + - Q,). _

This proves the existence of ¢, of the same form as &, only when
Qu+,=1, where r=1, 3, 5. - -(2k— 1), and k, n are both odd.

Hence, if ¢, should have a remote successor of the same form as itself in
the recurring period of its simple continued fraction development, then the
recurring period must consist of an even number of symmetrically disposed
partial quotients including an initial, a central and a final set of unit partial
quotients. In order that the recurring cycle may not lose its character as
a primitive period, it is necessary that the first half of the cycle is not itself
symmetrical.

27+ 4/27% + 82
Example.— | VSZ < = (1, 2, 115, 2, 1) has a remote successor
X X

37+ VI T8

within the recurring period of the same form 78

Lemma (3): If the standard surd of the form YR have in its simple
0

continued fraction development a complete quotient of the form 47 VR,
where R = p*+ ¢* p> 2 g> 0, then the symmetric portion of the recurring
period of partial quotients will include a central even number, of the form
4 n— 2, of unit partial quotients; and there cannot occur any other com-
plete quotient of a similar form within the recurring period, which must
consist of an odd number of terms.

Conversely, if any simple continued fraction development of the standard
/R oy : : 3 = -

surd Y. has in its recurring period an odd number of partial quotients with
(1]

Q
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a central even number (4 #— 2) of unit partial quotients, in the svmmetric

9 % e .—"’R
part, then R=p?+¢% p>2¢> 0 and the complete quotient 4 pr :
occurs just once in the recurring period.

/R
Let Yo (ap, @1, @, + + - ap 1, 2 ay) ()
Qn A X

From Lemma (2), a complete quotient, say &, of the form in question
in (1) cannot have either a, or 2 a, (obviously + 1) as its first partial quotient

so that we may write &,=(a,, - - - a,_4), where a, += a; or 24, From
X X

the equality of the first and last Q’s in ¢, we must have Q,= Q. _; in (1),
which implies, by a well-known theorem of Muir,* that k is odd and

k+1, and in this case, it is easily seen that &, — P“"-:'B—VR-, and

V= 2 iy |
R= P:'g + Q%

Further, there cannot be another complete quotient of the same form
in the recurring period, since it is possible only when the number of terms
in the recurring period is even.

We infer therefore that &z.,=(aps1, © © * Gp-1, 2a0, @y, * * * Api1)s
T X_Q_ X 2
where an odd number of unit partial quotients must begin with a;,, and
T

also an equal odd number of such partial quotients end with a, ;.
AR

Qo
4 n— 2, of unit partial quotients in the centre of the symmetric portion, as,
for example, 4/58 = (7, 1y, 14); v/97=(9, 1, 5, 1,4, 5, 1, 18).

Thus must contain in its period an even number, of the form

In this case, €., is of the form
2 ‘
fraction begins with an odd number of unit partial quotients.

2l 21 g2 Y :
q- \/5" T4 (1), as the continued

5 il W S i

— 1_| '\,-":.5
Hence, - = ST e

P 2
subtracting the second from the first, 2¢g/p< 1, and obviously p and ¢
are positive in a recurring period. :

» 80 that,

This completes our proof.

* Vide n. 91, Perron, loc. cit.
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5-5 1. We will now point out an application of the last two lemmas to the
most rapidly convergent continued fractions. Tietze* has shown that such
continued fractions are characterised by the property that the complete

: : 3 1+ 4/5 .
quotients are, after a certain point, always greater than ?_v - The B.c.f.’s

are therefore of this class. We have proved elsewheret that the only trans-
formations (apart from the P-transformation) which convert a simple con-
tinued fraction into one.of the most rapidly convergent h.r.c.f.’s are the
annihilatory transformations which we have called the C,, C,, and C,Cs,
types. The effect of an annihilatory transformation applied to a unit partial
quotient is obviously to increase the following complete quotient by 1,
without affecting the preceding complete quotient.

From these considerations, we see that a complete quotient of the form

ol S 2 L.t Z - >
g+ p+p\/p T4 will occur in any most rapidly convergent h.r.c.f. deve-
lopment (not involving a P-transformation) of +/R/Q, (> 1, and in the

standard form), when and only when either ¢ \-;pg +& o 1T ptpy’é'i +4*

occurs in the simple continued fraction development. But ¢ -l—_ij_bv_’E{;F}z'
is not a reduced surd in Perron’s sense} and therefore cannot occur in the
recurring period of the simple continued fraction, while e VP g will
occur just once in the recurring period under the conditions of I{’emma (3).

Hence, every most rapidly convergent h.r.c.f. development of
VR/Q, (not involving a P-transformation) will contain in its period
q+p+ VpP*+¢*

p
quotient corresponding to ‘—fi—";p—ei"f in the simple continued fraction is

not annihilated.

as a complete quotient just once when the unit partial

lf \/R!Qfl i (an“ dy, a‘.!‘ i lap‘ l[-“ + 2] a{h R e 2 aﬂ)'-‘ Whel’e‘ g'p O 49
: : 4+ Vg |
is the only complete quotient of the form S the result of applying
the C;-transformation gives the complete quotient 1+ €4+ 2 +2, While the

C,-transformation will annihilate the unit partial quotient corresponding to

* Tietze, H., Montashefte fii- Mathematik und Physik, 1913, 24,
T Ayyangar, A. A. K., Maths. Student, 1938, 6.
i Vidz p. 79, Perron, loc. cit.
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€4+ and so there will be no complete quotient of the form in question.
To preserve the complete quotient, we may also apply the eclectic trans-
formation C,C¢,, provided that C, process is continued at least until it anni-
hilates the (2¢ + 1)— th central unit partial quotient. Hence we may state
that it is possible to have a complete quotient of the form in question in
the B.c.f. development as well as in the continued fraction to the nearest
integer, but not in the singular continued fraction (all of which do not
involve the P-transformation®). :

5.6. We are now in a position to resume our original thread of dis-
cussion and study the nature of the recurring period of the B.c.f. develop-
ment of vE, We at once recognize three possible types:

: QI]

Type I.—This occurs when the recurring cycle does not contain any
g+p+ VP ie
P
critical fraction pertaining to R. Evidently, this type must occur when
R cannot be expressed as the sum of two squares, or when y/R/Q, does not
satisfy the conditions of Lemma (3). We will presently show that the
characteristic property of this type is that it simulates the simple continued
fraction period in its symmetries and also in the property of the last partial
quotient. e.g., vV46=T7—% 3, 3.¢:3.3-1% _TE_;.

x

complete quotient of the form (1 — g) ', i.e.. » g being a special

Type 1I.—This occurs when the recurring cycle contains a complete

g+ p+ VP +q',
p -

the symmetries are slightly disturbed, as for example, /58 = 8 — 1 4 1 _ .

X

quotient of the form We call this * almost * symmetrical, as

Type 111 —This is an extreme case of Type II, with only two terms in

the recurring period, e.g., vni*4fn-+4=n+1- l !

2 4+ 20T
f o P =T 'V:R
5:6 1. Let Eo=by+ 1 £k=a1. Sk ? WL
F h Ju e h .‘, v ' EJ
ik A=14 xt Q

PT}_Q:/R. and ¢, = _'Eif e S ol

Zr-:'

where &, is the v-th successor of &, &= &,, &= &,.

* Vide Maths. Student, 6, 63 ; and Journal of the Mysore University. Vol. 1, Part 11, Note (2).
Th, II.
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Then, as in the simple continued fraction it is easily seen that

e —b: -‘A-l €4 - € L
1 b,{. 3+b‘,{...3_...+bﬂ4bl_1

fomy= br oyt Gt Pae it VR, M
By Theorem VIII, (. is the Bhaskara successor of {,_, in all cases
except when Q% 1+ 4Q% 2= R, which implies that ¢ _, ,= — 1,
€t—p =1 and &, , is of the form (1 —g)~', g being a special critical
fraction.
When no successor (immediate or remote) of +/R/Q,= +/D (say)

v €g-1 % 2
__b“Fh 524- --Pbé—l+hl'¥b2+" (2)

is of the form in question, we may write

PRI, = e bt LT 2
VD =g bi+b24" +be 1*‘?‘
and by (1), /D+ bg)=b L il T
4 y (1) €16z (v/D+ by) » '+b_g+-°'4bl+bf"1 ®

Since the r.h.s. is positive €;e;= 1.

Comparing (2) and (3) which are both B.c.f.'s we get by, = 2b, and
the symmetries, which may be characterised thus :

by1=bp o (=2,3,-++k—1);
Qr1=Qr, =23+ k—1;
o =g gli=1, 2« - k=1);
P, omer P o (00 105 Tl msieassil)

When & is even, or the number of terms in the recurring period is odd, two
consecutive b’s and two consecutive Q’s are equal, viz., by o= by, Qzo= Qp,
7 F !

When k is odd or the number of terms in the recurring period is even, we

have two consecutive ¢'s and P’s equal, viz., € 1= € .13 Pp_1=Priy.
2 5 e =

Conversely, if two consecutive Q’s are equal in the recurring cycle, say,

Q9=er 1s then 'ff'?': Pk .6:—_..\/R p(;:—YR

k is even. Similarly for two consecutive P’s, v = k_; i and k is odd.

= ¢, so that v= k/2 and
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TueorREM XIV: If /R/Qq (= 1) develops as a Type I. B.c.f., R isa
non-square positive integer divisible by Q,, and the number of terms in the
recurring cycle is odd, then R is either a sum of two squares or a composite
number or is equal to 3.

" Let k be the number of terms in the recurring cycle.

Then, P% i1+ €1 Q+1Qu= R, and Q,= Q, +1 when v = k_g_l .
If ¢,.,= + 1, R is evidently the sum of two squares.
]f Ep = =% ], 'clnd R 15 a prime, Prr-,..|.1—|_ QE-“i'l - R, and p?! P Q,‘,, }_121,
R— I

so that Q.= —5— < /R, and therefore R is either 3 or 5. In both these
cases, it is easily verified that k= 1.

When R is neither 3, nor a sum of two squares, ¢,.,;= — 1, and R is
composite.

Cor.—When R is a prime (+ 3) and is not the sum of two squares, k is
even.

5.6 2. 1If in the B.c.f. development of 4/R/Q, given in (2) of §5-61,
£, _, happens to be of the form (1 — g)*, then &, is the conjugate of - g
(vide Theorem X), and being the predecessor of & is also of the form /D +u,
where ;o is an integer; i.e., p—gq is divisible by 2g¢ (p=>2qg=>10):
Hence, we may put p= (2n+ 1) ¢, R=p*+ ¢*=¢* (4 n:+4 4 n--2),

i 1=n+ ‘,f%{, so that 4/D is of the form v/4n*-4-4n-+-2/ 2.

\ ‘ VAEFang2 . o . 1
The B.c.f. development of > s nt 1 2., 2n+1

This is what we have called Type III.

5.63. As we have already seen, the recurring period in Type IT will
p+a+ VIt a
P
and therefore, the recurring cycle will be merely a cyclic permutation of

that of this complete quotient.

contain one and only one complete quotient of the form

By Theorem XIII, (I'— g)1=P T 4T VP'HE (5 545 0) develops

P
as a pure recurring B.c.f. We will now proceed to study its nature.
) 4, ptg+vR, ., P ++vR 5 ptg— R
i AP 1_:1'7T‘¢_]_|_‘\/_ : C—;: e s == Dl miove o8
o= g) » S o, £ p

el
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X . ; 5
By Theorem X, ¢, =2 + I/(conjugate of —g) =2 + qi V.
I €’2 5!3 E‘f 1 E’f’ g l
’)!lab'.: b’:ir .... +b"_i| bl ( _gi] ( )
As in § 5-6 1, we write ’
f = i . — —_ - €jd‘: f ~ e’éf.:l E.’..a l E‘{'f ]
L ( 1 { Col’ljllgate Or g) = f!o b A=1 T b’,{-' o brl .|'2 % b’_{-' =
X %

which will be a B.c.f. development for the first (k'— 2) terms, since £, is
not of the form (1 —g)-! for v=1,2,3, - - - (k"= 1).

Hence,

conjugate of —g= — 1 — epby_, — i;k; 4 ;::3 Ty 5.1 ;:"'f+. S

From (1) the conjugate of — g=5b';+ ;:‘2 Ezf 3)
24 = T+ .

Comparing the first (k' — 1) complete quotients and the first (k' — 2) terms
of (2) and (3), which correspond to the B.c.f. developments of the same
number we obtain the following properties of (1):

(i) —epbpy_=>b'y+ 1, a positive integer, so that ¢,,= — 1, and
byp_y=b1+ 1.
(i) The symmetries b',=b'y ., (@=2,3, ... . k—2);
Q=% =12 - - r—1):
€o=€p_pi1 0=2,3,- - .- k= 1);
Po=Pp o33 (=23~ » = o' k—1).

(i) Py =p —q, Q1=2q, Pp=P/=p +q.Pp_;=¢q@2n —1)—p,
Q' 1= 2¢, where n= b’y _, = the integer just greater than p/q when p is
not divisible by ¢, and n = p/q otherwise.*

As in §5-6 1, we can prove that two consecutive Q’s will be equal only
when k" is odd, and that two consecutive P’s will be equal only when,
k" is even. For example, if P, = P’, .,

EPELWR. P R P R
[henf?l-_:‘ L - r_-l’ <= & ;-\r
Q o) Q o Q F—v
s E.{"-:‘-
so that v=k'"— v, or v=Kk'/2, ie., k' is even.

5-6 4. Reverting to the B.c.f. development of 4/D (= +/R/Q,= &,) and
following the notation of § 5:6 1, we notice that, if &, ., (v>1), is the only

*Vide Theorem XIII.
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complete quotient of the form (1 - ¢)~* in the period of v/D, then by _; = 2b,,
bk*z'—_'bl- €1 &% —25 P,="P;1, Qi=Qs 2 (n

As observed already, the recurring periods of /D and ¢, of the
form (1 — g)*

s €! __G‘Z G!" -1 !
4 i b] -} b-z R e L bﬂ'—l) (a)
5 €y & e 3 1 :
d ( A SESE AL
a8 ot E S 3 ®

are cyclic permutations of each other.

Now ;'5" cannot occur as the first partial fraction in (), for it will lead
E—1
to Type III with b, as an odd integer, while b, is equal to 2b,, which

is a contradiction. Again if ;‘ ! is the last partial fraction of (B) it will
k-1

contradict Theorem X, Cor. (2).

Hence ;i 1 will occur somewhere in the middle of the period (B),
G |

coinciding with ;-,"'. say; then by (1) P’ ., = P’., indicating v = k'[2, and k'

is even (=k— 1). The period of Type II, viz., (a) is of the form

1 €t-3 L1 €k+3 k-1

D=b,+ — : o Sp—

% LR SR e ~|'~bu—2"".-b,¢-|1-':-b»-a+"' - 2b,
X 2 2 2 x

having an even number of recurring terms and possessing the same sym-
metries as Type I with the following exceptions:
bé '1.—_- 2. E{:-'_l: — 1. €k 1= 1, b‘{_lz bk@.l-}— l, P&'-l + P,§+!; which
2 2 5 z N e R o T

justify our characterisation of this type as ° almost * symmetric.

It may be useful to telescope the'results of this section applicable to
the case of v/R where R is a non-square positive integeryin the form of a
theorem. ' !

TurorREM XV: The period of the B.c.f. development of /R is either
a completely symmetrical type simulating the corresponding simple continued
fraction, or an almost symmetrical type consisting of an even number of partial
quotients, say, 2v with a central set of three unsymmetrical terms of the form
ey 1

bo-1—2+by-1—1
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I
Cor.—In the almost symmetrical type of 2 v terms, Q. is always
greater than 4.

For Pot VR ¢ of the form 219+ VP*+g?
Q. AL
If g=1, VR=/pPHi=p+ Ip which is not of Type II. Hence

» so that Q,=p> 24.

g =2and Q, >4. In fact, when Q=35 9=2,VI=5+1_%.4:%
X X
(Type 1I).

We give below a table of B.c.f.’s equal to the square-roots of non-
square integers less than 100.

R . Bef: R B.c..

2 | 143 | 23 | 5—3_

3t 2—14 24 | 5—2% .
5 | 243 _ 26 | 5+% '
6 | 2+3:3 27 | S+t

7 " 314 28 | 5+ditidids

8 | 3—3 29 [ S5+3_1.3.% A
10 3+3 30 S+3:+4% \
1 [T 3hgad 3| 6—pidibadid gy

12 | 3+4,4 32 | 6—4.%&

13 | 4—3.4.} 3B | 6-3-%

14 | 4—1_ 4 3 | 6—%_ %

15 1-4=4 35 | 6— &

17 | 444 3 | 6+

18 | 4+4.4 3B | 6+

19 | 4+34.3_3.4 | 3 6+1 ., 7

b ALk 0 | 6+

21 | 5—3.t.d-% | 41| 6+4d.ts

2 | 5—3:3.4-% ‘ 42 | 643,

MYSORE UNIVERSITY LIBRARY
\ Manasa Gargouy
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The basic elements of the theory are now fairly complete, and it should
be obvious that the B.c.f. has a complicated individuality of its own, that
claims recognition and cannot easily be brushed aside by such remarks
as “ Bhaskara’s method is the same as that rediscovered by Lagrange ™.
We have only constructed **an arch, wherethro’ gleam untravelled and
partly travelled regions”, such as the character of the acyclic part, the trans-
formations that convert the simple continued fraction into the continued
fraction to the nearest square, and the associated quadratic forms. These

difficult problems need further investigation.

Alp
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