
Mathematical Theory and Modeling                                                                     www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.2, No.7, 2012 

 

278 
 

The General Theory of Space Time, Mass, Energy, Quantum 

Gravity, Perception, Four Fundamental Forces, Vacuum 

Energy, Quantum Field 

*1
Dr K N Prasanna Kumar,

 2
Prof B S Kiranagi And  

3
Prof C S Bagewadi 

*1Dr K N Prasanna Kumar, Post doctoral researcher, Dr KNP Kumar has  three PhD’s, one  each in Mathematics,  

Economics and Political science and a D.Litt. in Political  Science, Department of studies in Mathematics, Kuvempu  

University, Shimoga, Karnataka, India Correspondence Mail id : drknpkumar@gmail.com 

 

2Prof B S Kiranagi, UGC  Emeritus Professor (Department of studies in Mathematics),  Manasagangotri,  University  

 of Mysore, Karnataka, India 
 

3Prof C S Bagewadi, Chairman , Department of studies in Mathematics and Computer science,  Jnanasahyadri  

 Kuvempu   university, Shankarghatta, Shimoga district, Karnataka, India 
 

 

Abstract 

Essentially GUT and Vacuum Field are related to Quantum field where Quantum entanglement takes 

place. Mass energy equivalence and its relationship with Quantum Computing are discussed in various 

papers by the author. Here we finalize a paper on the relationship of GUT on one hand and space-time, 

mass-energy, Quantum Gravity and Vacuum field with Quantum Field. In fact, noise, discordant notes 

also are all related to subjective theory of Quantum Mechanics which is related to Quantum 

Entanglement and Quantum computing. 
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Introduction: 

Physicists have always thought quantum computing is hard because quantum states are incredibly fragile. 

But could noise and messiness actually help things along? (Zeeya Merali) Quantum computation, 

attempting to exploit subatomic physics to create a device with the potential to outperform its best 

macroscopic counterparts IS A Gordian knot with the Physicists. . Quantum systems are fragile, 

vulnerable and susceptible both in its thematic and discursive form and demand immaculate laboratory 

conditions to survive long enough to be of any use. Now White was setting out to test an unorthodox 

quantum algorithm that seemed to turn that lesson on its head. Energetic franticness, ensorcelled frenzy, 

entropic entrepotishness, Ergodic erythrism messiness and disorder would be virtues, not vices — and 

perturbations in the quantum system would drive computation, not disrupt it. 

Conventional view is that such devices should get their computational power from quantum entanglement 

— a phenomenon through which particles can share information even when they are separated by 

arbitrarily large distances. But the latest experiments suggest that entanglement might not be needed after 

all. Algorithms could instead tap into a quantum resource called discord, which would be far cheaper and 

easier to maintain in the lab.  

Classical computers have to encode their data in an either/or fashion: each bit of information takes a 

value of 0 or 1, and nothing else. But the quantum world is the realm of both/and. Particles can exist in 

'superposition’s' — occupying many locations at the same time, say, or simultaneously (e&eb)spinning 

clockwise and anticlockwise. 
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 So, Feynman argued, computing in that realm could use quantum bits of information — qubits — that 

exist as superpositions of 0 and 1 simultaneously. A string of 10 such qubits could represent all 1,024 10-

bit numbers simultaneously. And if all the qubits shared information through entanglement, they could 

race through myriad calculations in parallel — calculations that their classical counterparts would have to 

plod through in a languorous, lugubrious and lachrymososhish manner sequentially (see 'Quantum 

computing'). 

The notion that quantum computing can be done only through entanglement was cemented in 1994, when 

Peter Shor, a mathematician at the Massachusetts Institute of Technology in Cambridge, devised an 

entanglement-based algorithm that could factorize large numbers at lightning speed — potentially 

requiring only seconds to break the encryption currently used to send secure online communications, 

instead of the years required by ordinary computers. In 1996, Lov Grover at Bell Labs in Murray Hill, 

New Jersey, proposed an entanglement-based algorithm that could search rapidly through an unsorted 

database; a classical algorithm, by contrast, would have to laboriously search the items one by one. 

But entanglement has been the bane of many a quantum experimenter's life, because the slightest 

interaction of the entangled particles with the outside world — even with a stray low-energy photon 

emitted by the warm walls of the laboratory — can destroy it. Experiments with entanglement demand 

ultra-low temperatures and careful handling. "Entanglement is hard to prepare, hard to maintain and hard 

to manipulate," says Xiaosong Ma, a physicist at the Institute for Quantum Optics and Quantum 

Information in Vienna. Current entanglement record-holder intertwines just 14 qubits, yet a large-scale 

quantum computer would need several thousand. Any scheme that bypasses entanglement would be 

warmly welcomed, without any hesitation, reservation, regret, remorse, compunction or contrition. Says 

Ma. 

Clues that entanglement isn't essential after all began to trickle in about a decade ago, with the first 

examples of rudimentary regimentation and seriotological sermonisations and padagouelogical 

pontifications quantum computation. In 2001, for instance, physicists at IBM's Almaden Research Center 

in San Jose and Stanford University, both in California, used a 7-qubit system to implement Shor's 

algorithm, factorizing the number 15 into 5 and 3. But controversy erupted over whether the experiments 

deserved to be called quantum computing, says Carlton Caves, a quantum physicist at the University of 

New Mexico (UNM) in Albuquerque. 

The trouble was that the computations were done at room temperature, using liquid-based nuclear 

magnetic resonance (NMR) systems, in which information is encoded in atomic nuclei using(e) an 

internal quantum property known as spin. Caves and his colleagues had already shown that entanglement 

could not be sustained in these conditions. "The nuclear spins would be jostled about too much for them 

to stay lined up neatly," says Caves. According to the orthodoxy, no entanglement meant any quantum 

computation. The NMR community gradually accepted that they had no entanglement, yet the 

computations were producing real results. Experiments were explicitly performed for a quantum search 

without (e(e))exploiting entanglement. These experiments really called into question what gives quantum 

computing its power. 
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Order Out of Disorder 

 Discord, an obscure measure of quantum correlations. Discord quantifies (=) how much a system can be 

disrupted when people observe it to gather information. Macroscopic systems are not e(e&eb)affected by  

observation, and so have zero discord. But quantum systems are unavoidably (e&eb) affected because 

measurement forces them to settle on one of their many superposition values, so any possible quantum 

correlations, including entanglement, give (eb) a positive value for discord. Discord is connected  

(e&eb)to  quantum computing."An algorithm   challenged the idea that quantum computing requires (e) 

to painstakingly prepare(eb) a set of pristine qubits in the lab. 

In a typical optical experiment, the pure qubits might (e) consist of horizontally polarized photons 

representing 1 and vertically polarized photons representing 0. Physicists can entangle a stream of such 

pure qubits by passing them through a (e&eb) processing gate such as a crystal that alters (e&eb) the 

polarization of the light, and then read off the state of the qubits as they exit. In the real world, 

unfortunately, qubits rarely stay pure. They are far more likely to become messy, or 'mixed' — the 

equivalent of unpolarized photons. The conventional wisdom is that mixed qubits aree(e) useless for 

computation because they e(e&eb) cannot be entangled, and any measurement of a mixed qubit will yield 

a random result, providing little or no useful information. 

If a mixed qubit was sent through an entangling gate with a pure qubit. The two could not become 

entangled but, the physicists argued, their interaction might be enough to carry (eb)out a quantum 

computation, with the result read from the pure qubit. If it worked, experimenters could get away with 

using just one tightly controlled qubit, and letting the others be badly battered sadly shattered by 

environmental noise and disorder. "It was not at all clear why that should work," says White. "It sounded 

as strange as saying they wanted to measure someone's speed by measuring the distance run with a 

perfectly metered ruler and measuring the time with a stopwatch that spits out a random answer." 

Datta supplied an explanation he calculated that the computation could be(eb) driven by the quantum 

correlation between the pure and mixed qubits — a correlation given mathematical expression by the 

discord."It's true that you must have entanglement to compute with idealized pure qubits,"  "But when 

you include mixed states, the calculations look very different."Quantum computation without (e) the 

hassle of entanglement," seems to have become a point where the anecdote of life had met the aphorism 

of thought. Discord could be like sunlight, which is plentiful but has to be harnessed in a certain way to 

be useful. 

The team confirmed that the qubits were not entangled at any point. Intriguingly, when the researchers 

tuned down the polarization quality of the one pure qubit, making (eb) it almost mixed, the computation 

still worked. "Even when you have a system with just a tiny fraction of purity, that is (=) vanishingly 

close to classical, it still has power," says White. "That just blew our minds." The computational power 

only disappeared when the amount of discord in the system reached zero. "It's counter-intuitive, but it 

seems that putting noise and disorder in your system gives you power," says White. "Plus, it's easier to 

achieve."For Ma, White's results provided the "wow! Moment" that made him takes discord seriously. He 

was keen to test discord-based algorithms that used more than the two qubits used by White, and that 

could perform more glamorous tasks, but he had none to test. "Before I can carry out any experiments, I 

need the recipe of what to prepare from theoreticians," he explains, and those instructions were not 

forthcoming. 

Although it is easier for experimenters to handle noisy real-world systems than pristinely glorified ones, 

it is a lot harder for theoretical physicists to analyse them mathematically. "We're talking about messy 

physical systems, and the equations are even messier," says Modi. For the past few years, theoretical 

physicists interested in discord have been trying to formulate prescriptions for new tests. It is not proved 

that discord is (eb) essential to computation — just that it is there. Rather than being the engine behind 

computational power, it could just be along for the ride, he argues. Last year, Acín and his colleagues 

calculated that almost every quantum system contains discord. "It's basically everywhere," he says. "That 

makes it difficult to explain why it causes power in specific situations and not others." It is almost like we 

can perform our official tasks amidst all noise, subordination pressure, superordinational scatological 

pontification, coordination dialectic deliberation, but when asked to do something different we want 

“peace”.”Silence”, “No disturbance” .Personally, one thinks it is a force of habit. And habits die hard. 

Modi shares the concern. "Discord could be like sunlight, which is plentiful but has to be harnessed in a 

certain way to be useful. We need to identify what that way is," he says.Du and Ma are independently 
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conducting experiments to address these points. Both are attempting to measure the amount of discord at 

each stage of a computation — Du using liquid NMR and electron-spin resonance systems, and Ma using 

photons. The very ‘importance giving’, attitude itself acts as an anathema, a misnomer.  

 

 

A finding that quantifies how and where discord acts would strengthen the case for its importance, says 

Acín. We suspect it acts only in cases where there is ‘speciality’like in quantum level. Other ‘mundane 

‘world’ happenings take place amidst all discord and noise. Nobody bothers because it is ‘run of the mill’ 

But for ‘selective and important issues’ one needs ‘calm’ and ‘non disturbance’ and doing’ all ‘things’ 

amidst this worldly chaos we portend is ‘Khuda’ ‘Allah” or ‘Brahman”  And we feel that Quantum 

Mechanics is a subjective science and teaches this philosophy much better than others. But if these tests 

find discord wanting, the mystery of how entanglement-free computation works will be reopened. "The 

search would have to begin for yet another quantum property," he adds. Vedral notes that even if Du and 

Ma's latest experiments are a success, the real game-changer will be discord-based algorithms for 

factorization and search tasks, similar to the functions devised by Shor and Grover that originally ignited 

the field of quantum computing. "My gut feeling is that tasks such as these will ultimately need 

entanglement," says Vedral. "Though as yet there is no proof that they can't be done with discord alone." 

Zurek says that discord can be thought of as a complement to entanglement, rather than as a usurper. 

"There is no longer a question that discord works," he declares. "The important thing now is to find out 

when discord without entanglement can be (eb)exploited most usefully, and when entanglement is 

essential. ,and produces ‘Quantum Computation’"  

Notation :  

Space And Time 

    : Category One Of  Time                 

    :Category Two Of Time 

    : Category Three Of Time      

    : Category One Of Space 

    : Category Two Of Space 

    : Category Three Of Space  

 

 

 

 

1 

Mass And Energy 

    : Category One Of Energy              

    : Category Two Of Energy 

    : Category Three Of Energy 

    : Category One Of Matter 

    : Category Two Of Matter  

    : Category Three Of Matter 

Quantum Gravity And Perception: 

========================================================================== 

    :Category One Of  Perception 

    :Category Two Of  Perception 

    : Category Three Of Perception 

    : Category One Of Quantum Gravity 

    : Category Two Of Quantum  Gravity 

    : Category Three Of Quantum  Gravity 
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Strong Nuclear Force And Weak Nuclear Force: 

========================================================================== 

    : Category One Of Weak Nuclear Force 

    :  Category Two Of Weak Nuclear Force 

 

    : Category Three Of Weak Nuclear Force 

    :Category One Of Strong Nuclear Force 

    : Category Two Of Strong Nuclear Force  

    : Category Three Of Strong Nuclear Force 

 

Electromagnetism And Gravity: 

========================================================================== 

    :  Category One Of Gravity 

    :  Category Two Of Gravity 

    :  Category Three Of Gravity 

    :  Category One Of Electromagnetism 

    : Category Two Of Electromagnetism  

    :  Category Three Of Electromagnetism 

 

Vacuum Energy And Quantum Field: 

==========================================================================  

    :  Category One Of Quantum Field 

    :  Category Two Of Quantum Field 

    :  Category Three Of Quantum Field  

    :  Category One Of Vacuum Energy 

    : Category Two Of Vacuum Energy  

    :  Category Three Of Vacuum Energy 

 

Accentuation Coefficients:  
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Dissipation Coefficients 
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Governing Equations: For The System Space And Time: 

The differential system of this model is now  
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  )( )(   )     First detritions factor  16 

Governing Equations: Of The System Mass (Matter) And Energy 

The differential system of this model is now  
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Governing Equations: Of The System Quantum Gravity And Perception 

The differential system of this model is now  
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 (   
  )( )(     )     First detritions factor  33 

Governing Equations: Of The System Strong Nuclear Force And Weak Nuclear Force: 

The differential system of this model is now  
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Governing Equations: Of The System Electromagnetism And Gravity: 

The differential system of this model is now  

 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )]     42 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )]     43 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )]     44 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )((   )  )]     45 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )((   )  )]      46 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )((   )  )]      47 

 (   
  )( )(     )    First augmentation factor  48 

 (   
  )( )((   )  )     First detritions factor 49 

Governing Equations: Of The System Vacuum Energy And Quantum Field: 

The differential system of this model is now  
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 (   
  )( )(     )    First augmentation factor  56 
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  )( )((   )  )     First detritions factor 57 

Concatenated Governing Equations Of The Global System Space-Time-Mass-Energy-Quantum 

Gravity-Perception-Strong Nuclear Force –Weak Nuclear Force-Electromagnetism-Gravity-

Vacuum Energy And Quantum Field 
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Where (   
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and 3   

69 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )    (   

  )(    )(   )  – (   
  )(      )(     )   

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )

 ]      

70 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )    (   

  )(    )(   )  – (   
  )(      )(     )  

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )

 ]      

71 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )    (   

  )(    )(   )  – (   
  )(      )(     )   

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )

 ]      

72 

        (   
  )( )(     )    ,  (   

  )( )(     )   ,  (   
  )( )(     )    are first detrition coefficients for category 1, 2 and 3  

 (   
  )(    )(   )    (   

  )(    )(   )  ,  (   
  )(    )(   )   are second detrition coefficients for category 1,2 and 3  

 (   
  )(      )(     )    (   

  )(      )(     )    (   
  )(      )(     )   are  third  detrition coefficients for category 1,2 and 3  

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )   are  fourth detrition coefficients for category 1,2 and 

3  

 (   
  )(         )(     )  ,  (   

  )(         )(     )  ,  (   
  )(         )(     )  are  fifth detrition coefficients for category 1,2 and 3  

 (   
  )(         )(     )   (   

  )(         )(     )  ,  (   
  )(         )(     )   are  sixth detrition coefficients for category 1,2 and 3  

73 

    

  
 (   )

( )    [ 

(   
 )( )  (   

  )( )(     )   (   
  )(     )(     )   (   

  )(      )(     )  

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )

 

 ]      

74 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )   (   

  )(     )(     )   (   
  )(      )(     )   

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )

]      

75 

    

  
 (   )

  ( )    [
(   

 )( )  (   
  )( )(     )   (   

  )(     )(     )   (   
  )(      )(     )   

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )

]      

76 

 (   
  )( )(     ) ,  (   

  )( )(     ) ,  (   
  )( )(     )   are  first  augmentation coefficients for category 1, 2 and 3  

 (   
  )(     )(     )    (   

  )(     )(     )  ,  (   
  )(     )(     )  are second augmentation coefficients for category 1, 2 and 3    

77 
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 (   
  )(      )(     )    (   

  )(      )(     )    (   
  )(      )(     )    are third augmentation coefficients for category 1, 2 and 3    

 (   
  )(           )(     )  ,  (   

  )(           )(     )    (   
  )(           )(     )  are fourth augmentation coefficients for category 

1, 2 and 3   

 (   
  )(           )(     )   (   

  )(           )(     )    (   
  )(           )(     )  are fifth augmentation coefficients for category 1, 

2 and 3   

 (   
  )(           )(     )    (   

  )(           )(     )   (   
  )(           )(     )  are sixth augmentation coefficients for category 1, 

2 and 3    

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )  – (   

  )(     )(     )  – (   
  )(      )(   )   

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )

 ]      

78 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )  – (   

  )(     )(     )  – (   
  )(      )(   )   

  (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )

 ]      

79 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )  – (   

  )(     )(     )  – (   
  )(      )(   )   

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )

 ]      

80 

 (   
  )( )(     )    (   

  )( )(     )     (   
  )( )(     )   are first  detrition coefficients  for category 1, 2 and 3   

 (   
  )(     )(     )  ,  (   

  )(     )(     )  ,  (   
  )(     )(     )   are second detrition coefficients for category 1, 2 and 3      

 (   
  )(      )(   )    (   

  )(      )(   )  ,  (   
  )(      )(   )   are third detrition coefficients for category 1,2 and 3  

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )  are fourth  detrition coefficients  for category 1, 2 

and 3  

 (   
  )(           )(     )   (   

  )(           )(     )    (   
  )(           )(     )  are fifth  detrition coefficients  for category 1, 2 

and 3   

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )  are sixth detrition coefficients  for category 1, 2 

and 3   

81 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )   (   

  )(    )(     )   (   
  )(    )(     )   

 (   
  )(       )(     )   (   

  )(       )(     )   (   
  )(       )(     )

 ]      

82 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )   (   

  )(    )(     )   (   
  )(   )(     )   

 (   
  )(       )(     )   (   

  )(       )(     )   (   
  )(       )(     )

 ]      

83 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )   (   

  )(    )(     )   (   
  )(    )(     )  

 (   
  )(       )(     )   (   

  )(       )(     )   (   
  )(       )(     )

  ]      

84 

      (   
  )( )(     )   (   

  )( )(     )   (   
  )( )(     )                                                                

  (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                               

  (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                                

 (   
  )(       )(     )   (   

  )(       )(     )   (   
  )(       )(     )    are fourth augmentation coefficients for category1,2,and 

3  

 (   
  )(       )(     ) ,  (   

  )(       )(     )   (   
  )(       )(     )   are fifth augmentation coefficients for category 1, 2,and  3  

 (   
  )(       )(     ) ,  (   

  )(       )(     ) ,  (   
  )(       )(     )  are sixth augmentation coefficients for category 1,2,and 3  

85 
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 (   )

( )    [
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(    )(     )   

 (   
  )(       )(   )    (   

  )(       )(     )  – (   
  )(       )(     )

]      

86 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(    )(     )   

 (   
  )(       )(   )    (   

  )(       )(     )  – (   
  )(       )(     )

]      

 

 

87 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(    )(     )   

 (   
  )(       )(   )    (   

  )(       )(     )  – (   
  )(       )(     )

]      

88 

      – (   
  )( )(     )    (   

  )( )(     )    (   
  )( )(     )                                                             

 (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                               

 (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                             

 (   
  )(       )(   )   (   

  )(       )(   )  ,  (   
  )(       )(   )                                                               

 (   
  )(       )(     ) ,  (   

  )(       )(     ) ,  (   
  )(       )(     )     are fifth detrition coefficients for category 1,2,3  

   – (   
  )(       )(     )  – (   

  )(       )(     )  – (   
  )(       )(     )  are sixth detrition coefficients for category 1,2,3  

89 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )   (   

  )(    )(     )   (   
  )(     )(     )   

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )

 ]      

90 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )   (   

  )(    )(     )   (   
  )(     )(     )   

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )

 ]      

91 

    

  
 (   )

( )    [ 

(   
 )( )  (   

  )( )(     )   (   
  )(    )(     )   (   

  )(     )(     )   

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )

 

 ]      

92 

       (   
  )( )(     )    (   

  )( )(     )    (   
  )( )(     )                                                        

        

     (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                         

         

 (   
  )(     )(     )    (   

  )(     )(     )    (   
  )(     )(     )                                                        

        

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )   are fourth augmentation coefficients for category 1,2, 

and 3 

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )  are fifth augmentation coefficients for category 1,2,and  

3 

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )   are sixth augmentation coefficients for category 1,2, 3   

93 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(     )(     )   

 (   
  )(         )(   )    (   

  )(         )(     )  – (   
  )(         )(     )

 ]      

94 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(     )(     )   

 (   
  )(         )(   )    (   

  )(         )(     )  – (   
  )(         )(     )

 ]      

95 



Mathematical Theory and Modeling                                                                     www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.2, No.7, 2012 

 

289 
 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(     )(     )   

 (   
  )(          )(   )    (   

  )(         )(     )  – (   
  )(         )(     )  

]      

96 

      – (   
  )( )(     )      (   

  )( )(     )     (   
  )( )(     )                                       

                         

 (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                             

 

 

 (   
  )(     )(     )    (   

  )(     )(     )    (   
  )(     )(     )                                                              

 (   
  )(         )(   )   (   

  )(         )(   )     (   
  )(          )(   )   are fourth detrition coefficients for category 1,2, and 3 

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )  are fifth detrition coefficients for category 1,2, and 3 

– (   
  )(         )(     ) , – (   

  )(         )(     )  – (   
  )(         )(     )  are sixth  detrition coefficients for category 1,2, and 3 

 

97 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )   (   

  )(     )(     )   (   
  )(      )(     )   

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )

]      

98 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )   (   

  )(     )(     )   (   
  )(      )(     )   

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )

]      

99 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )   (   

  )(     )(     )   (   
  )(      )(     )   

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )

]      

100 

 (   
  )( )(     )   (   

  )( )(     )   (   
  )( )(     )                                                                 

 (   
  )(     )(     )    (   

  )(     )(     )    (   
  )(     )(     )                                                           

 (   
  )(      )(     )    (   

  )(      )(     )    (   
  )(      )(     )                                                              

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )   - are fourth augmentation coefficients 

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )    - fifth augmentation coefficients 

 (   
  )(           )(     ) ,  (   

  )(           )(     )   (   
  )(           )(     )   sixth  augmentation coefficients   

101 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )  – (   

  )(     )(     )  – (   
  )(      )(     )   

 (   
  )(           )(   )    (   

  )(           )(     )  – (   
  )(           )(     )

]      

102 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )  – (   

  )(     )(     )  – (   
  )(      )(     )   

 (   
  )(           )(   )    (   

  )(           )(     )  – (   
  )(           )(     )

]      

103 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )  – (   

  )(     )(     )  – (   
  )(      )(     )   

 (   
  )(           )(   )    (   

  )(           )(     )  – (   
  )(           )(     )

]      

104 

 (   
  )( )(     )    (   

  )( )(     )     (   
  )( )(     )                                                               

 (   
  )(     )(     )    (   

  )(     )(     )    (   
  )(     )(     )                                                                 

 (   
  )(      )(     )    (   

  )(      )(     )    (   
  )(      )(     )                                                            

 (   
  )(           )(   )   (   

  )(           )(   )   (   
  )(           )(   )    are fourth detrition  coefficients for category 1, 2, and 

3 

 (   
  )(           )(     ) ,  (   

  )(           )(     )   (   
  )(           )(     )   are fifth detrition  coefficients for category 1, 2, 

105 
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and 3 

– (   
  )(           )(     ) , – (   

  )(           )(     )  – (   
  )(           )(     )   are sixth detrition coefficients for category 1, 2, 

and 3 

Where we suppose  

(A) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )      

                  

(B) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )(   )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

 

106 

(C)        (  
  )( ) (     )  (  )

( ) 

           (  
  )( ) (   )    (  )

( )      

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

            Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants and              

107 

They satisfy  Lipschitz condition: 

   (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )(    )  (  

  )( )(   )  (  ̂   )
( )          (  ̂   )( )   

108 

With the Lipschitz condition, we place a restriction on the behavior of functions 

(  
  )( )(   

   )   and(  
  )( )(     )   (   

   ) and (     ) are points belonging to the interval  

[(  ̂   )
( ) (  ̂   )

( )] . It is to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of 

the fact, that if (  ̂   )
( )    then the function  (  

  )( )(     ) , the first augmentation coefficient  would 

be absolutely continuous.  

109 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(D) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

110 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(E) There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together 

with   (  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )  and  (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             

satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

111 

Where we suppose  

(F) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                        



Mathematical Theory and Modeling                                                                     www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.2, No.7, 2012 

 

291 
 

(G) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded.  

Definition of (  )
( )   (  )

( ): 112 

(  
  )( )(     )  (  )

( )  (  ̂   )
( )

  
113 

(  
  )( )(     )    (  )

( )  (  
 )( )  (  ̂   )

( )  114 

(H)        (  
  )( ) (     )  (  )

( ) 115 

       (  
  )( ) ((   )  )    (  )

( )  116 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( ) are positive constants  and              

117 

They satisfy  Lipschitz condition:  

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

118 

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )   

119 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) and (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is 

to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )  

  then the function  (  
  )( )(     ) , the  SECOND first augmentation coefficient would be absolutely 

continuous.  

120 

Definition of (  ̂   )
( ) (  ̂   )

( ) :  

(I) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

121 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together 

with (  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             

  satisfy the inequalities  

122 

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     123 

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     124 

Where we suppose  

(J)    (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                       

The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )(     )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

125 

       (  
  )( ) (     )  (  )

( )  

      (  
  )( ) (     )    (  )

( )           

 Definition of (  ̂   )
( ) (  ̂   )

( ) : 

126 
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Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants   and              

They satisfy  Lipschitz condition: 

 

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
     (  ̂   )( )   

127 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) And (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is 

to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )  

  then the function  (  
  )( )(     ) , the THIRD augmentation coefficient attributable would be 

absolutely continuous.  

128 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(K) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

129 

There exists two constants There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )                   

satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

130 

Where we suppose  

(L) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                       

(M) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )((   )  )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

131 

        (  
  )( ) (     )  (  )

( ) 

      (  
  )( ) ((   )  )    (  )

( )         

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants and              

132 

   They satisfy  Lipschitz condition: 

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )   

133 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) and (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is 

to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )     

134 
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then the function  (  
  )( )(     ) , the FOURTH augmentation coefficient would be absolutely 

continuous.  

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(N) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

(  )
( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     

135 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(O) There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             

satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

136 

Where we suppose  

(P) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                      

(Q) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )((   )  )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

137 

  

(R)        (  
  )( ) (     )  (  )

( ) 

           (  
  )( ) (     )    (  )

( )           

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants  and              

138 

They satisfy  Lipschitz condition: 

   (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )   

139 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) and (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is 

to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )  

  then the function  (  
  )( )(     ) , the FIFTH augmentation coefficient would be absolutely 

continuous.  

140 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(S) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

141 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 142 
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(T) There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )                   satisfy the inequalities 

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

Where we suppose  

(  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                       

(U) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )((   )  )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

143 

  

(V)        (  
  )( ) (     )  (  )

( ) 

           (  
  )( ) ((   )  )    (  )

( )           

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

            Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants and              

144 

They satisfy  Lipschitz condition: 

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )   

145 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) And (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is 

to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )  

  then the function  (  
  )( )(     ) , the SIXTH augmentation coefficient would be absolutely 

continuous.  

146 

Definition of (  ̂   )
( ) (  ̂   )

( ) :  

(  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

147 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             

satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

 

148 
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Theorem 1: if the conditions (A)-(E) above are fulfilled, there exists a solution satisfying the conditions 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

149 

If the conditions (F)-(J) above are fulfilled, there exists a solution satisfying the conditions 

Definition of     ( )    ( ) 

   ( )   (  ̂   )
( ) (  ̂   )( )    ,        ( )    

    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

150 

If the conditions (K)-(O) above are fulfilled, there exists a solution satisfying the conditions 

   ( )   (  ̂   )
( ) (  ̂   )( )    ,        ( )    

    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

151 

If the conditions (P)-(T) above are fulfilled, there exists a solution satisfying the conditions 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

                                         

152 

If the conditions (U)-(Y) above are fulfilled, there exists a solution satisfying the conditions 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

153 

Theorem 1: if the conditions (Y)-(X4) above are fulfilled, there exists a solution satisfying the conditions 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

154 

Proof: Consider operator   ( )  defined on the space of sextuples of continuous functions            

   which satisfy                                          

155 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )    156 

    ( )    
  (  ̂   )

( ) (  ̂   )( )     157 

    ( )    
  (  ̂   )

( ) (  ̂   )( )   
158 

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

159 

  ̅  ( )     
   ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  

160 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
  

161 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

162 
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 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

163 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

164 

Proof:  

Consider operator   ( )  defined on the space of sextuples of continuous functions               

which satisfy             

 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )    165 

    ( )    
  (  ̂   )

( ) (  ̂   )( )     166 

    ( )    
  (  ̂   )

( ) (  ̂   )( )   
167 

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

168 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  

169 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  

170 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

171 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

172 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

173 

Proof:  

Consider operator   ( )  defined on the space of sextuples of continuous functions               

which satisfy         

 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )    174 

    ( )    
  (  ̂   )

( ) (  ̂   )( )     175 

    ( )    
  (  ̂   )

( ) (  ̂   )( )   
176 

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

177 

  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  

178 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
  

179 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

180 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

181 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

 

182 
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Proof: Consider operator   ( )  defined on the space of sextuples of continuous functions            

   which satisfy                               

 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )    183 

    ( )    
  (  ̂   )

( ) (  ̂   )( )     184 

    ( )    
  (  ̂   )

( ) (  ̂   )( )   
185 

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

186 

  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  

187 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  

188 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

189 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

190 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

191 

Proof: Consider operator   ( )  defined on the space of sextuples of continuous functions            

   which satisfy               

 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )    192 

    ( )    
  (  ̂   )

( ) (  ̂   )( )     193 

    ( )    
  (  ̂   )

( ) (  ̂   )( )   
194 

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

195 

  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
  

196 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  

197 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

198 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

199 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
 

Where  (  )  is the integrand that is integrated over an interval (   ) 

200 

Proof:  

Consider operator   ( )  defined on the space of sextuples of continuous functions               

which satisfy      

 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )     201 

    ( )    
  (  ̂   )

( ) (  ̂   )( )     202 

    ( )    
  (  ̂   )

( ) (  ̂   )( )   
203 
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 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

204 

  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  

205 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  

206 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

207 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

208 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
 

Where  (  )  is the integrand that is integrated over an interval (   ) 

209 

(a) The operator  ( ) maps the space of functions satisfying 3into  itself .Indeed it is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem 1 

210 

Analogous inequalities hold also for                        

(b) The operator  ( ) maps the space of functions satisfying into itself .Indeed it is obvious that  

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )  (  (   )

( ) )   
  

(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

 

Analogous inequalities hold also for                        

(a) The operator  ( ) maps the space of functions satisfying  into itself .Indeed it is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

211 

Analogous inequalities hold also for                        

(b) The operator  ( ) maps the space of functions satisfying  into itself .Indeed it is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  
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 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem NUMBERED ONE  

 

(c) The operator  ( ) maps the space of functions satisfying  into itself .Indeed it is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem 1 

 

(d) The operator  ( ) maps the space of functions satisfying  into itself .Indeed it is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

212 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem ONE 

Analogous inequalities hold also for                       

 

It is now sufficient to take 
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In order that the operator  ( ) transforms the space of sextuples of functions        satisfying 34,35,36 

into itself 

 

The operator  ( ) is a contraction with respect to the metric  

 (( ( )  ( )) ( ( )  ( )))    
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 Indeed if we denote   

Definition of  ̃  ̃ :     (  ̃  ̃ )   ( )(   ) 

It results 

213 



Mathematical Theory and Modeling                                                                     www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.2, No.7, 2012 

 

300 
 

| ̃  
( )

  ̃ 
( )

|  ∫ (   )
( ) 

 
|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )    

∫  (   
 )( )|   

( )
    

( )
|  (  ̂  )( ) (  )  (  ̂  )( ) (  )

 

 
   

(   
  )( )(   

( )
  (  ))|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   

   
( )

 (   
  )( )(   

( )
  (  ))  (   

  )( )(   
( )

  (  ))    
 (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )  

Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 

| ( )   ( )|  (  ̂  )( )  

 

(  ̂  )( ) ((   )
( )   (   

 )( )  (  ̂  )
( )  (  ̂  )

( )(  ̂  )
( )) (( ( )  ( )   ( )  ( )))  

And analogous inequalities for          . Taking into account the hypothesis the result follows 

 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

 (             ) and hypothesis can replaced by a usual Lipschitz condition. 

 

Remark 2: There does not exist any    where    ( )           ( )      

From 19 to 24 it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )
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   ( )    
  ( (  

 )( ) )      for     
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Definition of  ((  ̂  )
( ))

 
  ((  ̂  )

( ))
 
     ((  ̂  )

( ))
 
 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 

 

Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

 

 Remark 5: If       is bounded from below and       ((  
  )( ) ( ( )  ))  (   

 )( ) then         

Definition of  ( )( )        : 

Indeed let     be so that for        

(   )
( )  (  

  )( )( ( )  )         ( )  ( )( )  

 

 

Then  
     

  
 (   )

( )( )( )        which leads to  
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     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  

     (
(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that      is unbounded. 

The same property holds for      if       (   
  )( ) ( ( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  

It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 

(  ̂   )
( )     (  ̂   )

( ) large to have 
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In order that the operator  ( ) transforms the space of sextuples of functions        satisfying 34,35,36 

into itself 

 

The operator  ( ) is a contraction with respect to the metric  

 (((   )
( ) (   )

( )) ((   )
( ) (   )

( )))    

   
 

    
    

 

 |  
( )( )    

( )( )|  ( ̂  )( )     
    

 |  
( )( )    

( )( )|  ( ̂  )( )    

 

Indeed if we denote   
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Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 

 

|(   )
( )  (   )

( )|  (  ̂  )( )  

 

(  ̂  )( ) ((   )
( )   (   

 )( )  (  ̂  )
( )  (  ̂  )

( )(  ̂  )
( )) (((   )

( ) (   )
( )  (   )

( ) (   )
( )))  

 

And analogous inequalities for          . Taking into account the hypothesis (34,35,36) the result follows  

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not  

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 
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suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

Remark 2: There does not exist any    where    ( )           ( )      

From  global equations it results  

   ( )    
  [ ∫ {(  

 )( ) (   ( (  ))  (  ))}  (  )
 
 ]     

   ( )    
  ( (  

 )( ) )      for     

 

Definition of  ((  ̂  )
( ))

 
  ((  ̂  )

( ))
 
     ((  ̂  )

( ))
 
 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 

 

Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

 

 Remark 5: If       is bounded from below and       ((  
  )( ) ((   )( )  ))  (   

 )( ) then         

Definition of  ( )( )        : 

Indeed let     be so that for        

(   )
( )  (  

  )( )((   )( )  )         ( )  ( )( )  

 

Then  
     

  
 (   )

( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  

 

    (
(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that     is unbounded. 

The same property holds for      if       (   
  )( ) ((   )( )  )  (   

 )( )  

We now state a more precise theorem about the behaviors at infinity of the solutions of  equations 37 to 

42 

 

It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 

(  ̂   )
( )     (  ̂   )

( ) large to have 
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( ̂  )( ) [((  ̂   )
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 ) 
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 (  ̂   )
( )]  (  ̂   )
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In order that the operator  ( ) transforms the space of sextuples of functions        satisfying 34,35,36 

into itself 
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The operator  ( ) is a contraction with respect to the metric  
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Indeed if we denote   

Definition of    ̃    ̃ :( (   )̃ (   )̃ )   ( )((   ) (   )) 
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Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 
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And analogous inequalities for          . Taking into account the hypothesis (34,35,36) the result 

follows 
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Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on  

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

 

Remark 2: There does not exist any    where    ( )           ( )      

From 19 to 24 it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )
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   ( )    
  ( (  

 )( ) )      for     

 

Definition of  ((  ̂  )
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  ((  ̂  )
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     ((  ̂  )

( ))
 
 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )
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 (   

 )( )    and by integrating  

    ((  ̂  )
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   (   )
( )((  ̂  )
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 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
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( )((  ̂  )
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 If             is bounded, the same property follows for           and            respectively. 

Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

 

 Remark 5: If       is bounded from below and       ((  
  )( ) ((   )( )  ))  (   

 )( ) then         

Definition of  ( )( )        : 

Indeed let     be so that for        

(   )
( )  (  

  )( )((   )( )  )         ( )  ( )( )  

 

Then  
     

  
 (   )

( )( )( )        which leads to  
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(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  
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(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that      is unbounded. 

The same property holds for      if       (   
  )( ) ((   )( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  

 

It is now sufficient to take 
(  )

( )

(  ̂   )( )    
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( )     (  ̂   )

( ) large to have 
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In order that the operator  ( ) transforms the space of sextuples of functions         into itself  

The operator  ( ) is a contraction with respect to the metric  
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Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 
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( ) (   )
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And analogous inequalities for          . Taking into account the hypothesis the result follows 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

 

Remark 2: There does not exist any    where    ( )           ( )      

From 19 to 24 it results  
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Remark 3: if     is bounded, the same property have also              . indeed if  
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 )( )    and by integrating  

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  
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 If             is bounded, the same property follows for           and            respectively. 

 

Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

 

Remark 5: If       is bounded from below and       ((  
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Definition of  ( )( )        : 

Indeed let     be so that for        
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  By taking now      sufficiently small one sees that      is unbounded. 

The same property holds for      if       (   
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We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS 

inequalities hold also for                       
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In order that the operator  ( ) transforms the space of sextuples of functions         into itself  

The operator  ( ) is a contraction with respect to the metric  

 (((   )
( ) (   )

( )) ((   )
( ) (   )

( )))    

   
 

    
    

 

 |  
( )( )    

( )( )|  ( ̂  )( )     
    

 |  
( )( )    

( )( )|  ( ̂  )( )    

 Indeed if we denote   

Definition of (   )̃ (   )̃ :    ( (   )̃ (   )̃ )   ( )((   ) (   )) 

It results 

| ̃  
( )

  ̃ 
( )

|  ∫ (   )
( ) 

 
|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )    

∫  (   
 )( )|   

( )
    

( )
|  (  ̂  )( ) (  )  (  ̂  )( ) (  )

 

 
   

(   
  )( )(   

( )
  (  ))|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   

   
( )

 (   
  )( )(   

( )
  (  ))  (   

  )( )(   
( )

  (  ))    
 (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )  
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And analogous inequalities for          . Taking into account the hypothesis  the result follows 
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Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on  

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

 

Remark 2: There does not exist any    where    ( )           ( )      
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Remark 3: if     is bounded, the same property have also              . indeed if  
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 If             is bounded, the same property follows for           and            respectively. 

Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 
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  )( ) ((   )( )  ))  (   

 )( ) then         

Definition of  ( )( )        : 

Indeed let     be so that for        

(   )
( )  (  

  )( )((   )( )  )         ( )  ( )( ) 

 

Then  
     

  
 (   )

( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  

     (
(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that      is unbounded. 

The same property holds for      if       (   
  )( ) ((   )( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS 

inequalities hold also for                       
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It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 

(  ̂   )
( )     (  ̂   )

( ) large to have 
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( ̂  )( ) [((  ̂   )
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 ) 
 (  

(  ̂   )( )   
 

  
 )

 (  ̂   )
( )]  (  ̂   )

( )  

 

In order that the operator  ( ) transforms the space of sextuples of functions         into itself  

The operator  ( ) is a contraction with respect to the metric  

 (((   )
( ) (   )

( )) ((   )
( ) (   )

( )))    

 

   
 

    
    

 

 |  
( )( )    

( )( )|  ( ̂  )( )     
    

 |  
( )( )    

( )( )|  ( ̂  )( )    

 Indeed if we denote   

Definition of (   )̃ (   )̃ :    ( (   )̃ (   )̃ )   ( )((   ) (   )) 

It results 

| ̃  
( )

  ̃ 
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|  ∫ (   )
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|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )    
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  (  ))|   
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|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   

   
( )

 (   
  )( )(   

( )
  (  ))  (   

  )( )(   
( )

  (  ))    
 (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )  

Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses it follows 

|(   )
( )  (   )

( )|  (  ̂  )( )    

 

(  ̂  )( ) ((   )
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 )( )  (  ̂  )
( )  (  ̂  )

( )(  ̂  )
( )) (((   )

( ) (   )
( )  (   )

( ) (   )
( )))  

And analogous inequalities for          . Taking into account the hypothesis  the result follows 

 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

 

Remark 2: There does not exist any    where    ( )           ( )      

From 69 to 32 it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )

 
 ]     

   ( )    
  ( (  

 )( ) )      for     
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     ((  ̂  )
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Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  

    ((  ̂  )
( ))
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( )((  ̂  )
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 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 

 

Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

 

Remark 5: If       is bounded from below and       ((  
  )( ) ((   )( )  ))  (   

 )( ) then         

Definition of  ( )( )        : 

Indeed let     be so that for        
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  )( )((   )( )  )         ( )  ( )( ) 

 

Then  
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( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
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  By taking now      sufficiently small one sees that      is unbounded. 
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The same property holds for      if       (   
  )( ) ((   )( )  ( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  

Behavior of the solutions  

Theorem 2: If we denote and define 

 Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

(a)   )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )   

  (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(   )  (   
  )( )(   )   (  )

( )  
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Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( )  ( )  ( ) : 

(b) By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots of    the equations  

(   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and  (   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )     

 

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) : 

  By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the  roots of the equations 

(   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     and  (   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )     

 

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) (  )
( ) :- 

(c) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 

      (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )    

      and  (  )
( )  

   
 

   
   

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )   

 

and analogously 

  (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

(  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )   

and (  )
( )  

   
 

   
   

(   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  where (  )
( ) ( ̅ )

( ) 

are defined by 59 and 61 respectively 

 

Then the solution  satisfies the inequalities 

    
  ((  )( ) (   )( ))     ( )     

  (  )( )   

where (  )
( ) is defined by equation 25 

 

      (  )( )    
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )   

 

( 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     
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(   )( )   
 

(  )( )((  )( ) (   
 )( ))

  (  )( )    (   
 )( )       

   (   
 )( ) )  

 

   
  (  )( )     ( )     
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(  )( )    
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(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     
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Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   )

( )  (   )
( )  

              (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   

 )( )  (   )
( )  

 

Behavior of the solutions 

 If we denote and define 

 

Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

(d)   )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 
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 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )    

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )((   )  )  (   
  )( )((   )  )   (  )

( )   

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( ) :  

By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots  

(e) of    the equations  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

 

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and 

 

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) :  

By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the  

roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    

 

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

 

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) :-  

(f) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by  

(  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( )   

(  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )   

and   (  )
( )  

   
 

   
   

 

 (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )   

and analogously 

(  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( )  

 (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

and (  )
( )  

   
 

   
   

 

(   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )    
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Then the solution of 19,20,21,22,23 and 24 satisfies the inequalities 

     
  ((  )( ) (   )( ))     ( )     

  (  )( )  

 

(  )
( ) is defined by equation  IN THE FOREGOING  
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( ) (  )
( ) (  )

( ):-  

Where (  )
( )  (   )

( )(  )
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             (  )
( )  (   )

( )  (   )
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( )  (   )

( )(  )
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Behavior of the solutions 

Theorem 2: If we denote and define 

 Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

(a)   )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )  

  (  )
( )   (   
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 )( )  (   

  )( )(   )  (   
  )( )((   )  )   (  )

( )  
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Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( ) : 

(b) By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots of    the equations  

(   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and 

By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the 

      roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

     and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

 

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) :- 

(c) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 

      (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 
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( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

 



Mathematical Theory and Modeling                                                                     www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.2, No.7, 2012 

 

312 
 

      and  (  )
( )  

   
 

   
   

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )   

and analogously 

  (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 
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( )  (  )

( ) (  )
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( )  ( ̅ )
( )      and (  )
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( )  (  )

( )    ( ̅ )
( )  (  )
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Then the solution of 19,20,21,22,23 and 24 satisfies the inequalities 
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Behavior of the solutions 

Theorem 2: If we denote and define 
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( )  (  )
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( ) : 

(d) (  )
( )  (  )
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       By ( ̅ )
( )     ( ̅ )
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( )     ( ̅ )
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 Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

(g) (  )
( )  (  )

( )  (  )
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  )( )((   )  )  (   
  )( )((   )  )   (  )

( )  

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( )  ( )  ( ) : 

(h) By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots of    the 

equations  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and 

 

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) : 

       By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the 

      roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

     and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) (  )
( ) :- 

(i) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 

      (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )       and  (  )

( )  
   

 

   
   

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  

 

and analogously 

       (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )      and (  )

( )  
   

 

   
   

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  where (  )
( ) ( ̅ )

( )are defined by 

respectively 

 

Then the solution  satisfies the inequalities 

    
  ((  )( ) (   )( ))     ( )     

  (  )( )   

where (  )
( ) is defined by equation IN THE FOREGOING 

 

 

      (  )( )    
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )    

(

(   )( )   
 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     

   (  )( )     ( )  

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]      

   (   
 )( ) 

)  

 

   
  (  )( )     ( )     

  ((  )( ) (   )( ))    
 

 

(  )( )    
  (  )( )     ( )  

 

(  )( )    
  ((  )( ) (   )( ))    

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]     

   (   
 )( )     ( )    

(   )( )   
 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     

   (  )( )   

 



Mathematical Theory and Modeling                                                                     www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.2, No.7, 2012 

 

315 
 

Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   )

( )  (   )
( )  

                 (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   

 )( )  (   )
( )  

 

Behavior of the solutions   

Theorem 2: If we denote and define 

 Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

(j) (  )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )   

  (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )((   )  )  (   
  )( )((   )  )   (  )

( )  

230 

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( )  ( )  ( ) : 

(k) By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots of    the 

equations  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and 

 

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) : 

       By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the 

      roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

     and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) (  )
( ) :- 

(l) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 

      (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )       and  (  )

( )  
   

 

   
   

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  

 

and analogously 

       (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )      and (  )

( )  
   

 

   
   

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  where (  )
( ) ( ̅ )

( )are defined  

respectively 

 

Then the solution satisfies the inequalities 

      
  ((  )( ) (   )( ))     ( )     

  (  )( )  

where (  )
( ) is defined by equation IN THE FOREGOING 

 

 

      (  )( )    
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )    

(
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     

   (  )( )     ( )  
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(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]      

   (   
 )( ) )  

   
  (  )( )     ( )     

  ((  )( ) (   )( ))    
 

 

(  )( )    
  (  )( )     ( )  

 

(  )( )    
  ((  )( ) (   )( ))    

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]     

   (   
 )( )     ( )    

(   )( )   
 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     

   (  )( )   

 

Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   )

( )  (   )
( )  

             (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   

 )( )  (   )
( )  

 

Proof : From  GLOBAL EQUATIONS we obtain  

  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))   (   

  )( )(     ) 
( )  (   )

( ) ( )  

Definition of  ( ) :-          ( )  
   

   
 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 From which one obtains  

Definition of ( ̅ )
( ) (  )

( ) :- 

(a) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

            (  )
( )   ( )( )  (  )

( ) 

231 

 In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

 

(b) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

(c) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 
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  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
   

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

Particular case :If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in  

addition (  )
( )  (  )

( ) then   ( )( )  (  )
( ) and as a consequence    ( )  (  )

( )   ( ) this also 

defines (  )
( ) for the special case  

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )  

Proof : From  GLOBAL EQUATIONS we obtain  

  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

232 

Definition of  ( ) :-          ( )  
   

   
 

 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 

From which one obtains  

Definition of ( ̅ )
( ) (  )

( ) :- 

(d) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

    ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

            (  )
( )   ( )( )  (  )

( )  

 

In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

 

From which we deduce (  )
( )   ( )( )  ( ̅ )

( )  

(e) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

(  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )    
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( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

(f) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

 

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

 

 Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( ) 

 

Proof : From GLOBAL EQUATIONS we obtain  

  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

233 

Definition of  ( ) :-          ( )  
   

   
 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 

 From which one obtains  

(a) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

            (  )
( )   ( )( )  (  )

( )  

 

 In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

Definition of ( ̅ )
( ) :- 

From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 
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(b) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

 
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

(c) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

(  )
( )  ( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( )  

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

Now, using this result and replacing it in  GLOBAL EQUATIONMS we get easily the result stated in the 

theorem. 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( ) 

 

Proof : From  GLOBAL EQUATIONS we obtain  

  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

Definition of  ( ) :-          ( )  
   

   
 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 From which one obtains  

Definition of ( ̅ )
( ) (  )

( ) :- 

(d) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

   ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

            (  )
( )   ( )( )  (  )

( )  

234 

In the same manner , we get  
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  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

(e) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

(f) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

  Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) this also defines (  )

( )  

for the special case. 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )   

 

      Proof : From GLOBAL EQUATIONS we obtain  

  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

Definition of  ( ) :-          ( )  
   

   
 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 From which one obtains  

Definition of ( ̅ )
( ) (  )

( ) :- 
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(g) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

            (  )
( )   ( )( )  (  )

( )  

In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

 

(h) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

(i) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

  Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) this also defines (  )

( ) for 

the special case . 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )  

 

   Proof : From GLOBAL EQUATIONS we obtain  

  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

Definition of  ( ) :-          ( )  
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It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 From which one obtains  

Definition of ( ̅ )
( ) (  )

( ) :- 

(j) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

            (  )
( )   ( )( )  (  )

( )  

In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

 

(k) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

(l) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
   

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) this also defines (  )

( ) for 

the special case. 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )  
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We can prove the following 

Theorem 3: If (  
  )( )    (  

  )( ) are independent on   , and the conditions  

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined by equation IN THE FOREGOING are satisfied , then the system 

237 

 If (  
  )( )    (  

  )( ) are independent on   , and the conditions (SECOND MODULE)  

(   
 )( )(   

 )( )  (   )
( )(   )

( )       

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,   

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined by equation IN THE FOREGING are satisfied , then the 

system(THIRD MODULE) 

 

Theorem 3: If (  
  )( )    (  

  )( ) are independent on   , and the conditions 

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined by equation IN THE FOREGOING are satisfied , then the system 

238 

We can prove the following(FOURTH MODEULE CONSEQUENCES) 

Theorem 3: If (  
  )( )    (  

  )( ) are independent on   , and the conditions 

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined by equation IN THE FOREGOING are satisfied , then the system 

 

Theorem 3: If (  
  )( )    (  

  )( ) are independent on   , and the conditions (FIFTH MODULE 

CONSEQUENCES) 

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined by equation IN THE EQUATION STATED IN THE FOREGOING are 

satisfied , then the system 

239 

Theorem 3: If (  
  )( )    (  

  )( ) are independent on   , and the conditions 

(   
 )( )(   

 )( )  (   )
( )(   )

( )      
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(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined by equation IN THE FOREGOING  are satisfied , then the system 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        241 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        242 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        243 

(   )
( )     (   

 )( )  (   
  )( )( )          244 

(   )
( )     (   

 )( )  (   
  )( )( )          245 

(   )
( )     (   

 )( )  (   
  )( )( )          246 

has a unique positive solution , which is an equilibrium solution for the system   

(   )
( )    [(   

 )( )  (   
  )( )(   )]        247 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        248 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        249 

(   )
( )     (   

 )( )  (   
  )( )(   )          250 

(   )
( )     (   

 )( )  (   
  )( )(   )          251 

(   )
( )     (   

 )( )  (   
  )( )(   )          252 

has a unique positive solution , which is an equilibrium solution    

(   )
( )    [(   

 )( )  (   
  )( )(   )]        253 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        254 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        255 

(   )
( )     (   

 )( )  (   
  )( )(   )          256 

(   )
( )     (   

 )( )  (   
  )( )(   )          257 

(   )
( )     (   

 )( )  (   
  )( )(   )          258 

has a unique positive solution , which is an equilibrium solution   

(   )
( )    [(   

 )( )  (   
  )( )(   )]        259 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        260 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        261 

(   )
( )     (   

 )( )  (   
  )( )((   ))          262 

(   )
( )     (   

 )( )  (   
  )( )((   ))          263 

(   )
( )     (   

 )( )  (   
  )( )((   ))          264 

has a unique positive solution , which is an equilibrium solution   

(   )
( )    [(   

 )( )  (   
  )( )(   )]        265 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        266 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        267 
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(   )
( )     (   

 )( )  (   
  )( )(   )          268 

(   )
( )     (   

 )( )  (   
  )( )(   )          269 

(   )
( )     (   

 )( )  (   
  )( )(   )          270 

has a unique positive solution , which is an equilibrium solution  

(   )
( )    [(   

 )( )  (   
  )( )(   )]        271 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        272 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        273 

(   )
( )     (   

 )( )  (   
  )( )(   )          274 

(   )
( )     (   

 )( )  (   
  )( )(   )          275 

(   )
( )     (   

 )( )  (   
  )( )(   )          276 

has a unique positive solution , which is an equilibrium solution  

Proof:  

(a) Indeed the first two equations have a nontrivial solution          if  

 ( )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

277 

Proof:  

(a) Indeed the first two equations have a nontrivial solution          if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

278 

 (a) Indeed the first two equations have a nontrivial solution          if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

279 

 (a) Indeed the first two equations have a nontrivial solution          if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

280 

 (a) Indeed the first two equations have a nontrivial solution          if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

281 

Proof:  

(a) Indeed the first two equations have a nontrivial solution          if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

282 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that 

there exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first 

equations  
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(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that  

there exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first 

equations  

 

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 
 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that 

there exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first 

equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that 

there exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first 

equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that 

there exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first 

equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that 

there exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first 

equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

 

(e) By the same argument, THE SOLUTIONAL EQUATIONS OF THE GLOBAL EQUATIONS 

ADMIT  solutions         if  

 ( )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )( )  (   
 )( )(   

  )( )( )] (   
  )( )( )(   

  )( )( )     

 Where in  (           )         must be replaced by their values . It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  (  )    

284 

(f) By the same argument, the GLOBAL EQUATIONS  admit solutions         if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    
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[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

Where in (   )(           )         must be replaced by their values from 96. It is easy to see that    

is a decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that 

there exists a unique    
  such that  ((   )

 )    

 

(g) By the same argument, SOLUTIONAL EQUATIONS  admit solutions         if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

Where in    (           )         must be replaced by their values from 96. It is easy to see that   is 

a decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that 

there exists a unique    
  such that  ((   )

 )    

 

(h) By the same argument, the GLOBAL EQUATIONS  admit solutions         if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

Where in (   )(           )         must be replaced by their values from 96. It is easy to see that   

is a decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that 

there exists a unique    
  such that  ((   )

 )    

 

(i) By the same argument, the GLOBAL EQATIONS AND CONCOMITANT DERIVED 

EQUATIONS admit solutions         if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

Where in (   )(           )         must be replaced by their values from 96. It is easy to see that   

is a decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that 

there exists a unique    
  such that  ((   )

 )    

285 

(j) By the same argument, the GLOBAL EQUATIONS  admit solutions         if  

 (   )  (   
 )( )(   

 )( )  (   )
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Obviously, these values represent an equilibrium solution  THE SYSTEM  
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Finally we obtain the unique solution of THE DERIVED EQUATIONS OF THE GLOBAL 

EQUATIONS  
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Obviously, these values represent an equilibrium solution of  THE SYSTEM 

 

Asymptotic Stability Analysis Of The System Space –Time –Mass –Energy- Quantum Gravity-

Perception-Strong Nuclear Force-Weak Nuclear Force-Gravity-Electromagnetism-Vacuum Energy 

and Quantum Field 

========================================================================= 

Theorem 4:   If the conditions of the previous theorem are satisfied and if the functions 

(  
  )( )     (  

  )( )  Belong to  ( )(   ) then the above equilibrium point is asymptotically stable. 

Proof:  Denote 

Definition of       :- 

                           
             ,      
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Then taking into account DERIVED EQUATIONS OF THE GLOBAL EQUATIONS neglecting the 

terms of power 2, we obtain 
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ASYMPTOTIC STABILITY ANALYSIS(FIFTH MODULE) 
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And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and 

this proves the theorem. 
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