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Abstract

The purpose of this paper is to develop a retailer's pro"t-maximizing myopic inventory policy for an item
recognized as subject to gradual obsolescence. Demand is assumed to be a decreasing function of both the
retailer's sale price and of time, up to a certain stochastic time point when obsolescence occurs and, as
a result, the demand suddenly drops to zero. For each ordering cycle, the decision variables are the retailer's
selling price and the order size. A stop-ordering rule is developed on the basis of "nding the time point
beyond which it is pro"table to stop ordering, even if there is still some demand for the item. In addition, the
sudden obsolescence problem is shown to be a limiting and non-trivial case of its gradual counterpart. The
numerical example illustrates the main features of the model, including the importance of the vendor
dropping the price charged to retailers, so as to provide the needed incentives for the retailers to drop the
price charged to their own customers and thereby palliate as much as possible to negative e!ects of
obsolescence.

Scope and purpose

This paper develops a myopic policy to evaluate a retailer's decision process, when an item is recognized as
subject to gradual obsolescence. The model considers demand to be a decreasing function of both the
retailer's sale price and of time, up to a certain stochastic time point when obsolescence occurs and, as
a result, the demand suddenly drops to zero. The retailer's pro"t-maximizing policy consists of an optimal
selling price and an order size for each ordering cycle, as well as the time point beyond which it is pro"table to
stop ordering, even if there is still some demand for the item. This is in contrast to alternate formulations,
where the stopping rule is based upon minimizing the cost of obsolescence, rather than evaluating the
pro"tability of the item in question. Finally, the numerical example illustrates the need for vendor/retailer
collaboration in the development of the pricing policies. Otherwise, the retailer has no incentive to keep
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prices low and thus counteract the normal decreases in demand that occur as time passes by and the
probability of obsolescence increases. Crown Copyright � 2002 Published by Elsevier Science Ltd. All
rights reserved.
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1. Introduction

This paper evaluates a retailer's inventory policy for an item subject to gradual obsolescence. In
contrast to perishability or deterioration, which are a function of product quality and involve items
with a "xed or stochastic lifetime, respectively, obsolescence is related to cases where changes in
technology, fashion, style, environment and the like render the item useless for its intended use at
some point in time and hence, its utility and therefore its demand drops to zero at that point. This
discontinuity in demand is what di!erentiates obsolescence from deterioration/perishability. Such
loss of utility may be relatively swift, which characterizes items subject to sudden obsolescence,
where demand for the item collapses overnight [1}7]. Alternatively, the utility loss may occur
gradually, through a period of declining demand, before the sudden collapse takes place [7].
Modelling the later case is the subject of this paper.
The gradual obsolescence problem exhibits several features, which are germane to the model of

this paper. First, for a random period of time, it features a declining-demand market. Hence, the
demand for the item may be modelled as a decreasing function of time. Barbosa and Friedman [8]
and Chakravarty andMartin [9] are prototypes of declining-demand models. Second, the gradual
obsolescence problem di!ers from its declining-demand counterpart in that the demand for the
item does not reach the zero point gradually, according to the tenets of the demand function,
usually exponential in nature. Rather, as a typical obsolescence problem, the demand for the item
stops suddenly at a random point in time. Hence, the declining demandmodel must be truncated at
some stochastic point, at which demand is suddenly zero. Such situations occur normally as
a result of the introduction of a superior substitute, as it often happens with, for example, the
release of the new version of a competitor's software. In fact, the rising rate of technological
progress is the main reason advanced in the literature cited earlier for the saliency of the
obsolescence problem. In addition, Hill et al. [10] present an excellent example of a DSS for
handling gradual obsolescence, within a spare-parts inventory system.
A third feature of the obsolescence problem is the usual retailer's practice of altering demand

(and hence the order quantities) through the price mechanism, before obsolescence renders the
inventoried items useless. For this purpose, the model considers a pro"t-maximizing rather than
a cost minimizing retailer, using the selling price as a decision variable to alter demand. This is
intended to palliate to the extent possible the negative e!ects of obsolescence. However, as shall be
discussed latter on, these palliative e!orts may not necessarily lead to price reductions in order to
stimulate demand. Rather, the paper shows that it may be rational for a pro"t-maximizing retailer
to increase the price of the item and thereby decrease its demand, if the vendor's price for the item is
not su$ciently reduced, in light of the increasing probability of obsolescence. Instances of this
practice often occurs in the case of spare parts for obsolete and/or discontinued products (e.g. ink
cartridges for discontinued printers). This third characteristic represents the main contribution of
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this paper vis-à-vis the existing literature on gradual obsolescence [10,11,7], where demand is only
a function of time, but not of price. At issue here is the treatment of the items subject to gradual
obsolescence as assets and thus subject to evaluation for their pro"t-making potential [12]. Two
important but mostly neglected manifestations of this behaviour includes (i) using the retailer's
ability to in#uence demand through adroit manipulation of the selling price in order to develop
pro"t-maximizing rather than cost-minimizing ordering policies; and (ii) allowing the retailer the
choice of setting an ordering stopping rule on the basis of the pro"tability or lack thereof of the
next order, rather than on the basis of demand shortage due to complete obsolescence.
To that e!ect, the paper is organized as follows. The next section develops the basic methodology

for the gradual obsolescence problem subject of the current study. Modelling occurs at the point
where occurrence of future obsolescence is "nally recognized. A key issue is the realization that
a full theoretical development requires the use of dynamic programming models, along the lines of
the well-knownWagner and Whitin formulation [13]. These are di$cult if not impossible at times
to solve and sometimes impose rather taxing data requirements on the user. As a result, this section
follows in the spirit of Silver andMeal [14] and develops a myopic pro"t-maximizing policy for the
retailer, with the selling price and the order quantity being determined endogenously at the start of
every inventory cycle. The last part of this section demonstrates the generality of the gradual
obsolescence model by characterizing its sudden obsolescence counterpart as a limiting case. The
analysis shows that, even though the pro"t di!erence between the two obsolescence cases decreases
along with the declining demand rate, there exists a point of discontinuity when the rate is zero.
Hence, the problem of "nding the sudden obsolescence optimal policy is not trivial. Section
3 presents a numerical example designed to explore the nature of certain observations arising out of
empirical regularities derived from our extensive computational experience, but not proven
analytically due to the complexity of the algebraic expressions. A conclusions section completes the
paper.

2. Modelling the gradual obsolescence problem

This section starts by describing the main features of the model, followed by the derivation of the
objective function and of the optimality conditions. Included in the latter are the determination of
the optimal retailer's policy and the optimal determination of when ordering should stop.

2.1. Elements of the model

For each cycle, i, let t
�
be the length of time to deplete order i. Then, the retailer's decision model

may be characterized by several features, which re#ect the declining nature of the demand and its
obsolescence features. With respect to the obsolescence features of the model, the following
elements need to be identi"ed:

(i) As in Arcelus et al. [1], a random variable,X, measuring the duration of time between the point
of evaluation and the point of obsolescence, with g(.) and G(.) denoting its density and its
cumulative probability distribution functions, respectively.
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(ii) The time,¹
�
, at which the order i is depleted and the probability, p

�
, that the obsolescence point

occurs while the ith order is depleted, i.e.
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With respect to demand considerations, the following elements are of importance.
(iii) A yearly pre-obsolescence demand rate, R

�
, and a yearly demand rate during the obsolescence

period, R
�
, which decreases with time, y, at a constant rate of � and with the retailer's selling

price, P
�
, at a rate of �:
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(iv) A purchasing quantity, q
�
, of which s

�
(y) are sold at P

�
per unit, before obsolescence occurs at

y and I
�
(y) must be discarded as obsolete. Before y, the decrease in inventory over time equals

the demand rate, since the sale function represents the only rationale for the change in the
number of units on hand. Hence, the di!erential equation representing the dynamics of the
inventory and the resulting functional form for the inventory level may be expressed as follows:
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(v) Using (3), a cumulative inventory held up to time y, S
�
(y), of

S
�
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. (4)
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2.2. The retailer+s decision

LetC, F,K and d be respectively the retailer's purchase price per item, the holding cost per dollar
per year, the "xed cost component of each order placed and the salvage value, if any, of the obsolete
unit. Further, de"ne the following terms:

�
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Then, using (1)}(5), the expected pro"t, �
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), per unit time over the ith cycle may be expressed

as follows:
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Note that the "rst expression for the expected pro"t over the ith cycle, 	
�
(P

�
, t

�
) in (6), consists of

two parts. The "rst gives the pro"t over the cycle (term in brackets), weighted by the probability,
(1!p

�
), that obsolescence does not occur during the period. The second considers the expected

pro"t up to the point of obsolescence which may occur with probability p
�
within the cycle. This

includes the revenue from the regular units sold plus the salvage value of those left unsold, minus
the purchasing (variable and "xed) and holding costs of the order. Further, observe that both
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q
�
and t

�
appear in (6). For analytical convenience, t

�
rather than q

�
is used in this paper as decision

variable. The relationship between the two is given in (3). Then the retailer's myopic policy consists
of two parts: (i) "nd the sales price, PH

�
, and the cycle length, tH

�
, that maximize the expected pro"t

per unit time per cycle; and (ii) determine when ordering should stop.
As to the "rst part, PH

�
and tH

�
may be obtained from the "rst-order conditions as given in the

following lemma.

Lemma 1. Optimal values of the decision variables:
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]�.

�
�
and p

�
are de"ned in (5) and (1), respectively. The "rst-order conditions in (7) exhibit a very

intuitively appealing economic interpretation. The "rst expression indicates that the optimal cycle
length is that for which the expected pro"t per unit time equals its marginal total pro"t. The second
sets the price at the point where the revenue of an extra unit equals its marginal cost. Further,
�
�
denotes the average time before obsolescence occurs, if at all, in the ith cycle, conditional on

having survived the previous i!1 cycles. For computational purposes, the system of equations in
(7) can be reduced to a sequential solution procedure since, in the second expression, PH

�
appears as

a direct function of tH
�
. More details will be given in the next section.

We know examine when the retailer should stop ordering. From (7), it is clear that ordering
should be done in the ith cycle, if its optimal expected pro"t is positive, i.e. if

�(tH
�
,PH

�
)'0P(PH
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!C)!pH

�
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�
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�
)tH
�
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�
] (8)

or, as shown by the second inequality of (8), if the expected unit pro"t exceeds the additional
expected unit costs. Let m be the maximum number of orders for which the inequalities in (8) hold.
Then the retailer should place m orders, that will be depleted by ¹

�
, after which the item in

question is no longer sold. This is one of the key contributions of this paper. Stopping on the basis
of (8) is done for pro"tability reasons, rather than as a cost trade-o!, even if there may still be some
demand for the item.
The preceding discussion assumes that m is "nite and thus the ordering will stop in a "nite

number of steps. The veracity of this assertion is parameter-speci"c, since it depends upon the
probability distribution being used. Nevertheless, the following property gives a su$cient condi-
tion for m to be "nite. This result is likely to hold for the increasing-failure-rate (IFR) distributions
applicable to this type of problems (i.e. gamma, Weibull and the like).

Property 1. A suzcient condition for m to be xnite is that

p
�

'(PH
�

!C)/(PH
�

!d). (9)
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The expression in (9) is obtained from (8), on the simplifying assumption of zero holding costs.
Thus, when F"0, (8) results in (9). Its economic interpretation is clear. Ordering should stop, when
the expected bene"ts of not buying an extra unit exceeds the actual per-unit pro"t if the purchase
takes place. However, it is not clear whether, as the number of orders increases, the ratio of the
RHS of (9) will decrease far enough for the inequality to hold. The resolution of such an issue is
parameter speci"c. That this ratio will decrease can be seen by observing that both the declining
demand and the threat of obsolescence encourage the retailer to continue lowering the selling price
to counteract to the largest extent possible the negative e!ect of these two factors on the demand
and hence on pro"ts. This together with the fact that C'd renders the RHS of (9) a decreasing
function of time. Further, the conditional probability of obsolescence, p

�
, also increases with time,

since IFR distributions are applicable for the gradual obsolescence problem.
Once the value of m has been determined, the expression for the total pro"t for the m cycles, �

�
,

can be derived as follows:
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, x)g(x) dx�, (10)

where B
�
(*) represents the pro"t per cycle if obsolescence does not occur in cycle i, and B

�
(*)

represents the pro"t per cycle if obsolescence does occur in cycle i. The values for B
�
(*) and B

�
(*)

are given by the two terms in brackets on the "rst RHS of (6). Note that in (10) ordering occurs as
long as is pro"table to do so, in accordance with the condition in (8). This implies that B

�
(*) does

not necessarily have to be zero for the mth order.

2.3. The sudden obsolescence problem as a limiting case

To illustrate the generality of the formulation in (6), the myopic policy's pro"t function (Eq. (17))
of Arcelus et al. [1] for the sudden obsolescence problem is derived as a limiting case of that in (6).
For simplicity, the same notation is used for both models (except for the use of A

�
instead of R

�
to

denote the price-induced demand).
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Proof. Using L'Hospital's rule, it can be readily shown that the following limits hold as �P0:
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Observe that only the �
��

case requires more than one use of L'Hospital's rule to reach the
desired limit. In any case, combining (6) and (12) yields (11). �

2.4. Modelling the pre-obsolescence case

The analysis of the next section requires numerical comparisons between the optimal policies
developed in Lemma 1 and those related to the case when future obsolescence is not yet recognized.
For the later and following Arcelus and Srinivasan (1987), the retailer's pro"t and the resulting
optimality conditions may be written as

Max�(P
�
, t

�
)"(P

�
!C)R

�
!K/t

�
!CFR

�
t
�
/2

with R
�
de"ned in (2) and the optimality conditions given by

PH
�
"�K/[RH

�
tH
�
(�!1)] (13)

and

tH
�
"[2K/(CFRH

�
)]���.

The objective function in (13) re#ects the standard expression for the yearly pro"t for the
deterministic case, where pro"ts are de"ned as the yearly revenues minus the costs of purchasing, of
placing the order and of holding inventory. However, it should be noted from its de"nition in (2)
that the demand rate, R

�
, used in (13), is neither constant nor subject to obsolescence, but

a function of price only.

3. A numerical example

This section is designed to illustrate some economic regularities of the model that are not
amenable to rigorous theoretical analysis, due to the complexity of the pro"t function. To that
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e!ect, it summarizes the results of one of the numerical examples studied for this purpose. The
starting point is a base-case example, using a two-parameter (a, b) Weibull distribution as the
prototype of IFR distributions that can be used to model X, the duration of the gradual
obsolescence. Then, the density function for X, with a mean, �, shape parameter a and scale
parameter, b, may be written as follows:

g(x)"ba x
��exp(!bx
) for x'0; a'0 and b'0

with

�"[�(1/a#1)]/b��
,

EX�"[�(2/a#1)]/b��
, (14)

and

E(NX)"�
	
�
���
�

	

�
���

[b��
�x��
exp(!bx)/�(1/a#1)] dx.

The last two expressions are used when deriving the optimal policies and are included here for
expository convenience, even though proofs are omitted. The base-case parameter values, which
remain constant throughout the simulation, unless otherwise stated explicitly, are

[C,F,K, d, r
�
, �, a, �, �]"[20, 0.1, 350, 1, 312500, 0.5, 5, 1.75, 1.5]. (15)

Note that for comparability purposes, the values of � and of the scale parameter, a, are "xed at 0.5
and at 5, respectively, with the shape parameter, b, obtained from the second expression in (14). All
computations were performed through the use of Matlab's [15] Optimization Toolbox.
Table 1 summarizes the "rst and most important economic regularity of this section. It arises out

of studying the e!ect on the retailer's ordering and pricing policies of changes in C, the retailer's
unit purchasing cost, ranging from the base case of 20 (100% of C) of down to $4 or 20% of the
original value. For each value of C and with the values for the other parameters as given in (15), the
table provides (i) the orders to be placed, all of which with a non-negative pro"t, as given in (8);
(ii) for each order, the optimal values of the decision variables, as given in (7) of Lemma 1, along
with the demand from (2) and the order quantity as the product of the order's demand and
depletion time; (iii) the combined values for each of the variables described in (ii), computed as
described in footnote (a) of Table 1; and (iv) the optimal annual policy for the situation before
future obsolescence is suspected, computed from (13).
The data from Table 1 suggests the following "ndings. First, for each value of C, it is clear that as

time passes by (i.e. as the value of i increases) and the probability of obsolescence increases, the
retailer (i) purchases fewer units from the vendor (lower values for Q

�
); (ii) places orders more

frequently as the inventory depletion rate decreases (lower values for t
�
); (iii) charges higher prices

to its own customers (higher values for P
�
); and consequently (iv) services a lower demand base

(lower values for R
�
). Hence, the pro"t-maximizing retailer "nds the strategy of encouraging

a lowering of the demand for the product to avoid being left with valueless merchandise on hand
more pro"table than the strategy of attempting to continuously increase the demand through price
decreases.
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Table 1
E!ect of changes in the retailer's unit purchasing price, C

Order i 100% of C 80% of C 60% of C

�
�

t
�

P
�

Q
�

R
�

�
�

t
�

P
�

Q
�

R
�

�
�

t
�

P
�

Q
�

R
�

1 5614 0.165 47.1 48 288 7039 0.152 37.63 66 435 9318 0.136 28.19 101 739
2 3255 0.141 49.4 30 215 4568 0.134 38.93 45 335 6676 0.125 28.8 74 590
3 599 0.116 58.17 16 135 1742 0.11 43.77 25 232 3642 0.103 31.13 46 441
4 780 0.091 36.31 27 294
Total� 1602 0.422 50.25 94 223 2002 0.396 39.19 136 343 2759 0.455 29.8 248 545
Before� 9292 1.009 49.02 347 344 11051 0.924 39.06 473 512 13808 0.827 29.16 706 854

40% of C 20% of C
1 1362 0.116 18.77 180 1551 25236 0.09 9.37 481 54541
2 1066 0.113 18.97 145 1286 21485 0.09 9.4 428 47409
3 733 0.1 19.81 99 1032 17560 0.08 9.53 341 40839
4 403 0.08 21.53 65 789 13507 0.07 9.81 253 34733
5 109 0.08 24.62 42 558 9651 0.06 10.27 186 29146
6 6158 0.06 10.92 138 24032
7 3054 0.05 11.85 103 19224
8 324 0.05 13.34 75 14462
Total� 4144 0.482 19.82 531 1102 8059 0.562 9.93 2005 3568
Before� 18878 0.706 19.33 1239 1754 32132 0.541 9.59 3236 5984

�The Total values for t
�
and Q

�
are the sum of the corresponding values for each order. The total pro"t is �

�
from (10).

TotalR
�
is the average yearly demand, computed as the ratio of the total quantity to the total inventory depletion length.

Total price is the average price per order, weighted by the various order quantities.
�The data in the Before row corresponds to that in (13) for the period before obsolescence.

Second, if the vendor wishes to encourage higher sales, lowering the unit cost to the retailer
appears to be a pro"table strategy. As Table 1 indicates, lowering the value of C may not reverse
the retailer's policy outlined in the previous paragraph, but its negative consequences are lessened.
The average yearly demand for the product increases from 223 units, for the 100% of C case, to
3568 units for its 20% of C counterpart. Total pro"ts increase from $1602 to $8059. Both are
a consequence of lower prices per unit, larger number of orders and higher quantities per order.
Third, a direct consequence of this last result is the increasing percentage of yearly sales

recuperated as the vendor's selling price is decreased, hence lessening the negative impact of
obsolescence. Since the average depletion time has been "xed for this example at a constant �"0.5,
the ratio of the Total Pro"t to the Before Pro"t yields the desired percentage. For the example of
Table 1, these values are (0.172, 0.181, 0.200, 0.220, 0.251) for (100% of C, 80% of C, 60% of C, 40%
of C, 20% of C), respectively.
Fourth, the "rst two "ndings do not imply that price decreases do not form part of the retailer's

pro"t maximising strategy. Retail prices always decrease, when obsolescence becomes a problem.
This can be readily seen by comparing the retail prices of at least the "rst order to the retail price
before obsolescence becomes an issue. For example, prices decrease from $49.02 to $47.10 for the
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Table 2
E!ect of changes in �, � and a on the number of orders (NO), on the total depletion time (¹

�
) and on the total pro"t (�

�
)

Parameters 100% of C 80% of C 60% of C 40% of C 20% of C

� � a NO ¹
�

�
�

NO ¹
�

�
�

NO ¹
�

�
�

NO ¹
�

�
�

NO ¹
�

�
�

2.25 3 3 0 0 0 0 0 0 0 0 0 1 0.177 151 3 0.362 971
2.25 3 7 0 0 0 0 0 0 1 0.281 3 1 0.208 194 3 0.39 1116
2.25 3 9 0 0 0 0 0 0 1 0.296 6 1 0.211 197 3 0.397 1142

1.75 4 5 2 0.266 533 2 0.237 710 3 0.336 1078 4 0.391 1764 5 0.365 3719
2 4 5 0 0 0 1 0.192 80 1 0.157 191 2 0.269 505 4 0.394 1704
2.25 4 5 0 0 0 0 0 0 0 0 0 1 0.19 84 2 0.237 699

2.25 2 5 0 0 0 0 0 0 0 0 0 1 0.212 327 2 0.269 1599
2.25 4 5 0 0 0 0 0 0 0 0 0 1 0.19 84 2 0.237 699
2.25 6 5 0 0 0 0 0 0 0 0 0 0 0 0 2 0.229 323

100% ofC case and from, say, $19.33 to $18.77 for its 40% ofC counterpart. However, if the vendor
wishes to encourage a consistent policy of lower retail prices, a strategy of continuous decreases in
C is required.
From the discussion about Table 1, it is clear that the tendency of the retailer is to operate at the

lowest demand rate possible and thereby decreasing as much as possible the average inventory and
thus the expected obsolescence costs. However, the impact of obsolescence on the retailer's
ordering and pricing policies is also a!ected by #uctuations in the values of the other parameters of
the model. The magnitude and direction of these marginal e!ects, with the values of all other
parameters "xed at those given in (15), follow the tenets of microeconomic theory. Hence, a direct
positive impact on pro"ts is obtained from decreases in F and K or increases in d. Similarly,
indirect pro"tability increases result from any parametric change which yields increases in the
demand rate (higher values for r

�
or lower price, !�, or time, �, demand elasticities) or decreases

in the right skewness of the duration-of-the-gradual-obsolescence distribution, as measured by a,
with � "xed at 0.5. As an example, Table 2 summarizes the e!ects of three important parameters,
namely a, � and �.

4. Some concluding comments

This paper has contributed to the literature in several signi"cant ways. First, it has developed
a myopic policy to evaluate a retailer's decision process when confronted with an item subject to
gradual obsolescence, a problem largely left relatively unattended so far. Second, the modelling of
the demand combines three streams of thought, by considering it to be a decreasing function of
both the retailer's sale price and of time, up to a certain stochastic time point when obsolescence
occurs and, as a result, the demand suddenly drops to zero. Third, the retailer's pro"t-maximizing
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policy consists of an optimal selling price and an order size for each ordering cycle, as well as the
time point beyond which it is pro"table to stop ordering, even if there is still some demand for the
item. This is in contrast to alternate formulations, where the stopping rule is based upon
minimizing the cost of obsolescence, rather than evaluating the pro"tability of the item in question.
Fourth, consideration of the gradual obsolescence problem for any probability distribution brings
up the important notion of a stopping rule, which does not arise in the exponential case [5],
because the assumption of constant obsolescence rate leads to a constant pro"t per period . Finally,
the sudden obsolescence problem is shown to be a limiting case of its gradual counterpart.
In addition, the numerical example has served to illustrate several features of economic signi"-

cance. With the model allowing the retailer the opportunity to alter demand through the price
mechanism, the ordering process ends earlier, since it stops whenever the next order is expected to
be pro"table, rather than having to wait until there is no longer any demand for the product.
Further an important supply chain property is illustrated, namely the need for vendor/retailer
collaboration in the development of the pricing policies. Otherwise, the retailer has no incentive to
keep prices low and thus counteract the normal decreases in demand that occur as time passes by
and the probability of obsolescence increases.
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