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Abstract

We revisit the problem of the Lorentz transformation of time-separations between events in

the Minkowski spacetime to show that there exist a whole class of “time-stretching formulas”

which “look” exactly like the well known time-dilation formula (TDF) in special relativity.

We highlight the essential differences between the TDF and the similar looking time-stretching

formulas in view of the fact that occasionally a time-stretching formula has been mistaken for

the TDF in the literature. As a by-product of our discussion, we are able to present some new

gedanken experiments in which from among the three formulas for time-dilation, length contraction

and velocity addition, one can assume any two and derive the third. The novel feature of these

gedanken experiments is that they use material particles instead of light rays.

a Formerly Professor of Physics
b Formerly Professor of Physics
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I. NOTATION AND CONVENTION

M denotes the Minkowski spacetime. We work in signature + − −−. Events in M are

denoted by Euler-Script characters such as P and Q. The 4-vector joining the event P to the

event Q is denoted by
 
PQ. Latin suffixes are used for the spacetime range 0,1,2,3 and Greek

suffixes for the space range 1,2,3. S : {ct, x, y, z} and S ′ : {ct′, x′, y′, z′} are two inertial

coordinate systems in M. The standard symbols β and γ denote v/c and 1/
√

1− v2/c2.

II. INTRODUCTION

This paper takes a fresh look at the Lorentz transformation of time in special relativity.

This exercise has been carried out to identify such features of the time-dilation formula

(TDF) over the other similar-looking formulas that exist in special relativity which we

may call the time-stretching formulas. This identification appears to be of some impor-

tance because at least on one occasion, one of the time-stretching formulas has been mis-

takenly identified as the TDF in the literature [Griffiths, Ref. 1, pp. 485-486]. To motivate

our discussion, we first analyze two typical examples, both taken from the book by Griffiths

[Ref. 1] and then pass on to a general discussion of the class of Lorentz time-transformation

formulas.

First, we give a brief description of the Griffiths’ method to “obtain” the TDF and the

Lorentz length-contraction formula. Our description follows faithfully the method of

Griffith although we do differ in some minor (unimportant) details.

A. Griffiths’ gedanken experiment 1

In an inertial reference frame (IRF), say S : OXY Z (Figure 1), a light ray leaves the

spatial point ~r1 : (x1, y1, 0) at time t1 and arrives at the spatial point ~r2 : (x2 = x1, y2 = 0, 0)

at time t2 thus defining the two spacetime events P1 : (ct1, ~r1) and P2 : (ct2, ~r2) . Then,

∆t
P1P2

≡ (t2 − t1) is the time-separation between the events P1 and P2 in the IRF S and

we calculate the corresponding time-separation ∆t′
P1P2

≡ (t′
2
− t′

1
) in the IRF S ′ : O′X ′Y ′Z ′

which is related to IRF S by the standard x-boost

ct′ = γ(ct− βx), x′ = γ(x− βct), y′ = y, z′ = z. (1)
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P1 : (ct1, y1)

P2 : (ct2, 0)

y

ct

ct1

ct2

y1

FIG. 1. The world-line of the light-ray in Griffiths’ gedanken experiment 1 for obtaining the TDF.

The events P1 and P2 lie in the ct− y plane.

Then, as (x2 − x1) = 0, Eq.(1) gives,

(t′
2
− t′

1
) = γ[(t2 − t1)− β(x2 − x1)] = γ(t2 − t1),

so that

∆t′
P1P2

= γ∆t
P1P2

. (2)

Griffiths [Ref. 1, p.486] “identifies” the above relation Eq.(2) as the TDF.

B. Griffiths’ gedanken experiment 2

Next, we describe how Griffiths derives the length-contraction formula using the TDF. We

consider a rigid rod at rest on the X ′-axis of the lRF S ′ with a point-lamp fixed at one

end and a mirror at the other. A light ray leaves the point-lamp at the end ~r ′
1 = (x′

1
, 0, 0)

of the rod at the time t′
1
, reaches the mirror at the other end ~r ′

2 = (x′
2
> x′

1
, 0, 0) at time t′

2
,

gets reflected there and returns to ~r ′
1 at the time t′

3
. The lRF S ′ is assumed to be related

to another lRF S by the x-boost Eq.(1). Evidently L′ ≡ |~r ′
2 −~r ′

1| = x′
2
− x′

1
is the proper

length of the rod. Let P1, P2 and P3, respectively, be the events associated with the light

ray leaving the lamp, arriving at the mirror and returning to the the lamp after reflection

at the mirror.

Note that the rigid rod is assumed to move with the velocity ı̂β/c = ı̂v relative to S.

Therefore, if ∆t
P1P2

= (t2 − t1) is the time-separation between the events P1 and P2 in S,
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P : (ct1, x1)

R : (ct2, x2)

Q : (ct3, x1)

FIG. 2. World-line of the light-ray in Griffiths’ gedanken experiment 2 for obtaining the length-

contraction formula. The event-pairs P,R and R,Q are separated by null-intervals, but the event-

pair P,Q is separated by a time-like interval.

in the time-interval ∆t
P1P2

, the mirror-end of the rod moves through the distance v∆t
P1P2

while the light ray would travel the distance c∆t
P1P2

. Thus, c∆t
P1P2

= L+ v∆t
P1P2

where

L is the length of the (moving) rod in the frame S and we get ∆t
P1P2

= L/(c − v).

Similarly, by noting that the reflected ray travels in a direction opposite to the direction of

motion of the rod in S, with the same speed c, we find that the time-separation between the

events P2 and P3 is ∆t
P2P3

= L/(c+v). Adding the two trip times, we get ∆t
P1P2

+∆t
P2P3

=

∆t
P1P3

= L/(c + v) + L/(c− v) = 2γ2L/c which is the time-separation between the events

P1 and P3 in S. Similarly, since the rod is at rest and has a length L′ in the lRF S, the

events P1 and P3 are evidently separated in time in S by ∆t′
P1P3

= 2L′/c. Now, following

Griffith, we use the TDF and write ∆t
P1P3

= γ∆t′
P1P3

. This gives γL = L′ which is the

length-contraction formula relating the proper-length L′ of a rod to its relative length L.

C. Gedanken experiment 3

Prompted by the gedanken experiment 2 of Griffiths, we consider the following modified

experiment. Looking at Figure 2, we wish to derive the length-contraction formula using

only the world-line joining the events P and R. Observing that S ′ is the rest-frame of the
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rigid-rod, we use the TDF to relate ∆t
PR

with ∆t′
PR
, and obtain L/(c − v) = γL′/c which

may be rearranged as

L =
√

(1− β)/(1 + β)L′. (3)

But, this is not the length-contraction formula! This indicates that the TDF is,

perhaps, not the correct relation between ∆t
PR

and ∆t′
PR

= L′/c. If the TDF does not relate

∆t
PR

and ∆t′
PR

= L′/c, it would mean that, while the round-trip travel-times ∆t
PQ

and

∆t′
PQ

of the light ray appear to be related by the TDF, as evidenced by the fact that we

get the length-contraction formula by using this relation (gedanken experiment 2), the one-

way travel-times ∆t
PR

and ∆t′
PR

are (perhaps) not related by it (TDF). In the following

section, we get back to the basics, use the Lorentz transformation of time to check whether

this conclusion is right.

III. LORENTZ TRANSFORMATION OF TIME-SEPARATIONS

We recall that two events P and Q in M are said to be timelike-separated (TLS),

null-separated (NS), or spacelike-separated (SLS) according as

∆s2
PQ

≡ c2∆t2
PQ

− |∆~r
PQ
|2 = c2∆t2

PQ
−∆x2

PQ
−∆y2

PQ
−∆z2

PQ
T 0.

Further, we recall the following easily proved well known results concerning pairs of events

of M:

Lemma 1 A pair of TLS events is contiguous (i.e., they occur at the same spatial point) in

an appropriate canonical inertial frame called the proper frame of the TLS event-pair.

Lemma 2 A pair of SLS events is simultaneous (i.e., they occur at the same time) in an

appropriate canonical inertial frame.

Lemma 3 A pair of NS events has space and time separations which are related by c∆t =

|∆~r| in every inertial frame S.

Next, we recall that a given (invariant) the space-time displacement between two events

P and Q is split relative to an inertial frame uniquely into a time-separation ∆t and a

space-separation 3-vector ∆~r ( Figure 3). To proceed further, we need to use the rule of
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P

Q

c∆t
PQ

∆~r
PQ

Observer’s x0-axis

Observer’s space-section

FIG. 3. The splitting of a spacetime displacement
 
PQ into space and time displacements relative

to an IRF.

transforming the time-separation between an (arbitrary) event-pair in one IRF S : {xi} to

that in another IRF say, S ′ : {x′i}. Since we do not want to restrict to any particular

configuration between the frames S and S ′, we consider the frames to be connected by the

general Lorentz boost [see for example, Weinberg, Ref 2]

x′i = Li
jx

j , (4)

where the Lorentz-matrix L has the elements

L0

0
= γ, L0

µ = Lµ
0
= −γβµ, Lµ

ν = δµν + (γ − 1)βµβν/β
2, (5)

in which c~β = c(β1ı̂+β2̂+β3k̂) is the constant 3-velocity of the Cartesian frame S ′ relative

to S, ~β = β β̂ and γ = (1 − β2)−1/2. Then, the zeroth component of Eq.(3) is the required

time-transformation rule between a given pair of events P and Q:

∆t′ = γ
[

∆t− (~β/c) ... ∆~r
]

, (6)

Here (Figure 3), we may recall that the spacetime-displacement (4-vector)
 
PQ joining P and

Q has components (c∆t,∆~r) in S and (c∆t′,∆~r ′) in S ′. Equation (6) is our key formula.

We note that it involves the chosen pair of events (as specified by the three parameters ∆~r)

as well as the Lorentz transformation used (which is specified by the three parameters ~β).
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A. Time-transformation formula in the transverse configuration

First, we consider the special case of Eq.(6) when the lRF S ′ is in what we may call the

transverse configuration relative to S. This means that the frame S ′ moves in a direction

perpendicular to the space-separation 3-vector ∆~r of the event-pair {P,Q} in the frame S.

In the transverse configuration, for an arbitrary (i.e., TLS, NS or SLS) pair of events {P,Q}

which have a space-separation 3-vector ∆~r 6= 0 satisfying ∆~r ... ~β = 0 in S, Eq.(6) reduces to

∆t′ = γ∆t. (7)

This formula looks exactly like the TDF (8) that we discuss separately in the following

subsection III-B. In the case P and Q are TLS, neither ∆t in S because of the condition

∆~r 6= 0, nor ∆t′ = γ∆t in S ′ which is greater than ∆t, and hence is not the minimal

time-separation between the events, can be the proper-time separation between the events.

On the other hand, when the event-pair {P,Q} is NS or SLS, by definition, no lRF exists

in which P and Q are separated by a pure (and hence proper) time-separation. Thus, in

all the three cases TLS/NS/SLS, both the time-separations ∆t′ and ∆t in Eq.(7)

are non-proper time intervals unlike in the TDF (8).

B. Time-separation between TLS events

If neither of the frames S and S ′ is the proper frame of the TLS events, i.e., if neither

of the time-intervals ∆t′ and ∆t is a proper-time interval, then one has to use the general

formula Eq.(6) for the time-separation transformation transformation. However, if one of

the time-intervals, say ∆t, is proper, which requires ∆~r = 0 in S, Eq.(6) reduces to

∆t′ = γ∆τ, (8)

where we have denoted the proper time-separation ∆t between P and Q by ∆τ . This

is the well known time-dilation formula (TDF) [Refs.2-5]. We have discussed the other

interesting special case of Eq.(6), namely, ~β ... ∆~r = 0 when ∆~r 6= 0, in the subsection III-A.
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C. Time-separation between NS events

For a pair of null-separated events {P,Q} for which |∆~r| = c∆t in S, Eq.(6) may be

rewritten as

∆t′ = γ∆t (1− β cos θ) , (9)

where θ is the angle between the 3-vectors ∆~r and ~β in S. The special case θ = π/2 is

incidentally the Eq.(2) which Griffiths identifies as the TDF in his book [Ref.1]

which we have already discussed in the subsection III-A.

In particular, if we take the time-interval ∆t ≡ T as the period of a monochromatic

light wave of frequency ν = 1/T emitted by a light-source at rest in the IRF S, then the

time-interval ∆t′ ≡ T ′ given by Eq.(9) would be the period of the monochromatic light wave

IRF S ′ in which the light-source has a uniform velocity c~β. Thus, Eq.(9) gives

ν ′

ν
=

√

1− v2/c2

(1− β cos θ)
, (10)

which is the relativistic Doppler formula [see for example Landau and Lifshitz, Ref. 3,

pp.116-17]. Here, in Eq.(10), θ is the angle between the direction of propagation (the wave

vector) of the plane electromagnetic wave and the direction of motion (~β) of its source. When

θ = π/2, Eq.(10) gives the transverse Doppler effect. The transverse Doppler effect given

by Eq.(10) with θ = π/2 has been described sometimes as simply a manifestation of time-

dilation. In this context, we quote a relevant remark from Weinberg’s book [Ref. 2, p.30.]

: “...time-dilation [given by the TDF] is not to be confused with the apparent time-dilation

or contraction known as the Doppler effect [given by Eq.(10)] ”. (The paranthetic remarks

here are our own.)

D. Time-separation between SLS events

One has to use Eq.(6) in the general case when neither of the two frames is canonical for

the SLS events. Apart from the special case ~β ... ∆~r = 0 with ∆~r 6= 0 already discussed in

subsection III-A, we have one other case in which the formula (6) takes on a reduced form:

If one of the frames, say S, is the canonical frame of the two SLS events so that ∆t = 0 in

S, Eq.(6) becomes

∆t′ = −γ(~β ... ∆~r)/c = −(γβ∆L0/c) cos θ, (11)
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where ∆L0 = |∆~r| is the proper distance (length) between the SLS events P and Q and

θ is the angle betwen ∆~r and ~β in S.

E. The gedanken experiment 3 also gives length-contraction

The time-transformation formula Eq.(6) solves the riddle posed while discussing the

gedanken experiment 3: In fact, in that experiment, we incorrectly used the TDF and

arrived at the (erroneous) Eq.(3). Now, we know, from Eq.(6), that the correct formula to

be used in experiment 3 is Eq.(9) with θ = 0. Using Eq.(9), we get

∆t′
PR

= γ(1− β)∆tPR. (12)

Then, if we substitute (see gedanken experiiment 2) ∆tPR = ∆L/(c−v) and ∆t′
PR

= ∆L0/c

in Eq.(12), we get ∆L0/c = γ(1− β)∆L/(c− v) so that ∆L0 = γ∆L which is precisely the

desired length-contraction formula.

F. A different gedanken experiment

This experiment is a modification of the gedanken experiment 3. It is designed to derive

the length-contraction formula specifically using a material particle (such as a bullet shot

from a gun), instead of a light ray as in experiment 3, in order to demonstrate to the student

that it is not always necessary to use light rays in such gedanken experiments. However,

now, our calculations become a little clumsy in view of the fact that the speed of a material

particle, unlike c, changes from frame to frame.

In its rest-frame S ′ : O′X ′Y ′Z ′, let the two ends of the rod be (x′
1
, 0, 0) and (x′

2
, 0, 0).

Then, L′ = x′
2
−x′

1
is the proper-length of the rod. Let a bullet shot from a gun at (x′

1
, 0, 0),

at time t′
1
, travel with the uniform velocity ı̂′ u′ and reach (x′

2
, 0, 0) at time t′

2
. This trip

of the bullet defines the two events A and B, which have coordinates (ct′
1
, x′

1
, 0, 0) and

(ct′
2
, x′

2
, 0, 0) in the IRF S ′. In the IRF S : OXY Z which is related to S ′ by the standard

x-boost (obtained by setting ~β = ı̂′ β, β > 0 in Eq.(4) and Eq.(6)), let these events have

the coordinates A : (ct1, x1, 0, 0) and B : (ct2, x2, 0, 0). Then, using the inverse of the time

transformation Eq.(6), we get

∆t
AB

= γ[∆t′
AB

+ (β/c)∆x′

AB
], (13)
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where ∆x′
AB

= x′
2
−x′

1
= L′ and ∆t′

AB
= L′/u′. Also, we note that ∆t

AB
= L/(u− v). Thus,

∆t
AB

= L/(u− v) = L′γ[1/u′ + (v/c2)]. (14)

Now, using the Einstein velocity addition formula u′ = (u− v)/(1− vu/c2), we may rewrite

the above equation as L/L′γ = [(1 − vu/c2)/(u − v) + (v/c2)](u − v), which simplifies to

L/L′γ = 1 − vu/c2 + (u − v)v/c2 = 1 − v2/c2 = 1/γ2, so that L = L′γ which is the

length-contraction formula.

G. Other gedanken experiments

Two variants of the above gedanken experiment can be tried out for fun. In the first,

we may use a material particle doing a round trip along the x-axis of the IRF S ′ instead of

doing a one-way trip as in the above gedanken experiment. Alternatively, one may consider

a material particle doing a one-way trip in the transverse configuration (for example, along

the y-axis of the IRF S ′) along the x-axis of the IRF S ′. We leave the details to the interested

reader.

IV. ON THE TDF AND THE OTHER TIME-STRETCHING FORMULAS

The general time transformation equation (6) gives a large number of relations connecting

the time-separation between the various possible event-pairs in two inertial frames. Let us

call the special case of Eq.(6) corresponding to ~β ... ∆~r = 0 as a time-stretching formula.

Note that the TDF is also a time-stretching formula. However, while the TDF satisfies the

condition ~β ... ∆~r = 0 because ∆~r = 0, all other time-stretching formulas satisfy ~β ... ∆~r = 0

with a non-zero ∆~r which is perpendicular to ~β. Therefore, the TDF arises in a completely

different situation when compared to the other time-stretching formulas. Hence, none of

the time-stretching formulas, in particular the one in Eq.(2), qualifies to be called the TDF.

In support of this conclusion, we may also recall some known features of the TDF which

distinguish it from other time-stretching formulas. The TDF which is summarized by the

statement that a moving clock goes slow [Refs. 1-5], is a relation connecting the

proper-time-separation of a TLS event-pair with its corresponding non-proper-

time interval in some other lRF. In general, a given pair of TLS events is separated by
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different time-intervals in different lRF’s. Of these, the time-interval measured in the proper-

frame of the TLS events, called the proper-time interval, is the minimal time-separation

between the two TLS events. As such, a proper-time interval is always dilated in any

other inertial frame (and is never shortened). On the other hand, both the time-separations

that occur on either side of the time-stretching formula Eq.(7) are non-proper separations

as already observed towards the end of the subsection III-A. Although the non-proper time

interval ∆t in S is shorter than ∆t′ in the transverse configuration for S ′, in some other

appropriate non-transverse configuration for S ′, also given by Eq.(6), the same non-proper

time interval ∆t in S can become greater than ∆t′ also. Thus, a non-proper time interval

(specified in some inertial frame) can get dilated in some inertial frame and as well get

contracted in some other (appropriate) inertial frame. Hence it is not proper to call its

transformation rule as a “time-dilation formula”.

‡ garakali@gmail.com
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