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The contribution of the pineal gland on daily rhythms and 
masking in diurnal grass rats, Arvicanthis niloticus

Dorela D. Shubonia,1, Amna A. Aghaa, Thomas K. H. Grovesb, and Andrew J. Gallc

a Department of Psychology, Michigan State University, East Lansing, MI, USA

b Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA

c Department of Psychology, Hope College, Holland, MI, USA

Abstract

Melatonin is a hormone rhythmically secreted at night by the pineal gland in vertebrates. In 

diurnal mammals, melatonin is present during the inactive phase of the rest/activity cycle, and in 

primates it directly facilitates sleep and decreases body temperature. However, the role of the 

pineal gland for the promotion of sleep at night has not yet been studied in non-primate diurnal 

mammalian species. Here, the authors directly examined the hypothesis that the pineal gland 

contributes to diurnality in Nile grass rats by decreasing activity and increasing sleep at night, and 

that this could occur via effects on circadian mechanisms or masking, or both. Removing the 

pineal gland had no effect on the hourly distribution of activity across a 12:12 light-dark (LD) 

cycle or on the patterns of sleep-like behavior at night. Masking effects of light at night on activity 

were also not significantly different in pinealectomized and control grass rats, as 1 hr pulses of 

light stimulated increases in activity of sham and pinealectomized animals to a similar extent. In 

addition, the circadian regulation of activity was unaffected by the surgical condition of the 

animals. Our results suggest that the pineal gland does not contribute to diurnality in the grass rat, 

thus highlighting the complexity of temporal niche transitions. The current data raise interesting 

questions about how and why genetic and neural mechanisms linking melatonin to sleep 

regulatory systems might vary among mammals that reached a diurnal niche via parallel and 

independent pathways.
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1. Introduction

Adaptations, such as the ability to occupy temporal niches, allow a species to better survive 

within an environment. For example, animals that are active during the day (i.e., diurnal), 

have developed more sophisticated visual systems than those that operate at night (i.e., 

nocturnal) (Hall et al., 2012; Tan et al., 2005). Diurnal and nocturnal animals represent the 

two extremes of the temporal niche spectrum. Studying these two niches provides the 

opportunity to understand how species alter their activity patterns when they must switch 

from one temporal niche to another, and what impact these changes have on deeply 

engrained physiological processes such as circadian rhythms. The changes in the circadian 

system needed to facilitate a temporal switch from nocturnal to diurnal patterns are believed 

to occur downstream of the central pacemaker, called the suprachiasmatic nucleus (SCN) 

(Smale at al., 2003). However, the neural circuitry responsible for this switch has not yet 

been concretely established. One possibility for the downstream action of the clock is via a 

variation in hormone sensitivity. In particular, melatonin is a hormone that appears to play a 

distinctly different role between nocturnal and diurnal species.

Melatonin is rhythmically produced by the pineal gland and is elevated in both nocturnal and 

diurnal species during the dark phase of the daily light:dark (LD) cycle and during the 

subjective night when animals are maintained in constant darkness (DD; Reiter, 1993). 

Melatonin is believed to play a very different role with respect to activity in diurnal and 

nocturnal species. In nocturnal owls and tench (Tinca tinca), activity is not altered by 

exposure to melatonin, whereas in diurnal sparrows, quail and goldfish, activity is decreased 

following melatonin exposure (Lopez-Olmeda et al., 2006; Murakami et al., 2001). It is 

important to note here that these nocturnal birds and fish evolved from a diurnal lineage; 

therefore, animals that adopted a nocturnal behavioral pattern exhibited a loss of function 

with respect to melatonin on activity (Gerkema et al., 2013; Hunt et al., 2009). Mammals, 

however, have had a very different evolutionary past. Mammals experienced a “nocturnal 

bottle neck” during their evolutionary history, in which they went through major adaptive 

changes to avoid competition with other diurnal reptiles (Gerkema et al., 2013). However, 

this view has been recently challenged with the recent finding that some dinosaurs were 

nocturnal as well (Schmitz & Motani, 2011). Nonetheless, diurnal mammalian species have 

switched from nocturnal to diurnal behavioral patterns under many different parallel 

pathways.
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The sleep-promoting effects of exogenously administered melatonin have been extensively 

studied in humans (e.g. Dollins et al., 1993, 1994; Nave et al., 1996; Zhdanova et al., 1995, 
1996). When melatonin is administered at times of day during which it is not already 

elevated via endogenous mechanisms, melatonin has a sleep-promoting effect, suggesting 

that its endogenous role is to inhibit wakefulness-generating mechanisms during the night 

(Lavie, 1997). These findings were also replicated in several species of non-human primates 

(Hao and Rivkees, 2000; Hughes and Badia, 1997; Inui and Hazeki, 2010; Zhdanova, 2005; 
Zhdanova et al., 2002). Further data on the role of the pineal gland in the regulation of daily 

sleep patterns in humans has come from studies of individuals who experience injuries that 

interfere with signals to the pineal gland (Biering-Sorensen and Biering-Sorensen, 2001; 
Scheer et al., 2006) or have the organ surgically removed (Kocher et al., 2006; Petterborg et 

al., 1991). These studies revealed that such individuals have an increase in sleep dysfunction, 

though it is impossible to rule out the possibility that other aspects of their conditions are the 

source of the problem. However, in some such cases, administration of melatonin improved 

sleep-related symptoms (Etzioni et al., 1996; Jan et al., 2001; Lehmann et al., 1996). 

Therefore, one could hypothesize that melatonin is integral in promoting diurnal behavior in 

animals. This, however, would be a gross generalization, as little is known about direct 

effects that the pineal gland may have on sleep and activity in diurnal mammals other than 

primates.

Another way in which the pineal gland could promote sleep in diurnal species is via an 

influence on mechanisms mediating the masking response of animals to light. Masking 

refers to a process whereby light directly affects behavior, such as the induction of sleep in 

nocturnal species and enhanced wakefulness in diurnal ones. Two studies have revealed 

heightened masking responses to light in pinealectomized vs. control nocturnal rats (Quay, 

1970; Vilaplana et al., 1994). Comparable studies with diurnal species have not been 

reported. However, treatment with melatonin has been found to alter the masking of body 

temperature and sleep by light at night in humans. Young men given an infusion of 

melatonin and then exposed to bright lights showed a reduction in the light-induced increase 

of body temperature (BT; Strassman et al., 1991) and had shortened latencies to sleep onset 

(Burgess et al., 2001) when compared to controls. Melatonin may, therefore, work through 

multiple avenues to promote diurnal behavior.

There are many examples of laboratory rodent models of diurnality (Challet et al., 2002; 
Garcia-Alleque et al., 1999; Hut et al., 1999; Katona et al., 1998; Schumann et al., 2005; 
Weinert et al., 2007). However, the influence of melatonin on the expression of sleep or 

masking to light in these models has not yet been examined. Additionally, only one group 

has examined the influence of pinealectomy on the circadian system of a diurnal rodent 

(Martinet and Zucker, 1985). They found no difference between pinealectomized and control 

groups, but only a few circadian characteristics were measured: phase angle of entrainment 

in 10:14LD, rate of reentrainment for a 6h phase advance, and tau in constant light. In the 

present study, we examined the effects of pinealectomy on several factors that impact the 

expression of diurnal activity patterns in Nile grass rats (Arvicanthis niloticus), including 

circadian rhythms of activity, masking to light, and sleep. The present work tests the 

hypothesis that the pineal gland contributes to diurnality in Nile grass rats by decreasing 
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activity and increasing sleep at night, and that this could occur via effects on circadian 

mechanisms or masking, or both.

2. Methods

2.1 General Procedures

Eighteen adult female Arvicanthis niloticus (grass rats) from the breeding colony at 

Michigan State University were singly housed in Plexiglas cages (34×28×17 cm) for the 

duration of these experiments. The facilities were maintained at a temperature ranging 

between 20-25°C with a 12:12 light:dark (LD) schedule. Animals were given food (PMI 

Nutrition Prolab RMH 2000, Brentwood, MO) and water ad libitum. All experimental 

procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of 

Michigan State University and were treated in accordance with the guidelines of the 

National Institutes of Health on the care and use of animals.

Animals were randomly assigned to either the pinealectomy (n=10, Pinx) or control (n=8, 

Sham) group. All animals were anesthetized using isoflurane (2-5%). The surface of the 

head was then shaved and sanitized with betadine. Animals were secured in a stereotaxic 

apparatus (Stoelting Co.; Wood Dale, IL) and then injected subcutaneously (s.c.) with 

Buprenex (0.05mg/kg) and lidocaine (6 mg/kg) prior to the surgery. A 2 cm incision was 

made on the scalp to expose the surface of the skull. Above Lambda, a circular hole was 

made with a 5 mm trephine and, using fine forceps, the pineal gland was quickly extracted. 

Two researchers examined the extracted gland to confirm that it had the distinct texture and 

shape of the pineal; samples were also stored in PBS and later examined by D.D.S. under a 

dissecting scope to further confirm that the pineal gland had been removed. The hole in the 

skull was packed with gel foam and the incision was closed with autoclips. At the 

conclusion of the surgery, animals were injected with sterile saline (2 cc, 0.9% NaCl) and 

Ketoprofen (5mg/kg of body weight). Animals then received the analgesic Meloxicam (0.1 

mg/kg of body weight) orally in apple every 24 hrs for the next 2 days. Sham animals 

followed the same surgical protocol without the removal of the pineal gland. After a 

recovery period of at least two weeks, animals were exposed to a series of different lighting 

conditions during which activity was recorded via infrared motion detectors (IRs, Visonic 

Tel Aviv, Israel) that sent signals to a computer in an adjacent room equipped with the 

VitalView Program (Minimitter, Bend, OR, USA).

2.2 Rhythms

Grass rats were monitored in a 12:12 LD cycle for 1 week, then placed into constant 

darkness (DD) for 2 weeks and then transferred into constant light (LL) for 2 weeks. 

Animals were then placed in a 12:12 LD cycle until all animals were entrained, at which 

point a masking protocol was applied (see below). Finally, the LD cycle was phase shifted to 

determine the rate of reentrainment after a 6 hr phase delay followed by a 6 hr phase 

advance.

Actograms were produced via ClockLab (Actimetrics, Wilmette, IL, USA) which also 

automatically determined onset and offset of activity and calculated the period of the 
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rhythm, tau (τ). The experimenter visually inspected these points prior to analysis, as the 

program occasionally improperly designated onset/offset; in such cases errors were 

corrected manually (as in Schrader et al, 2009). Based upon the onsets and offsets, we also 

calculated the duration of the active period of the daily/circadian rhythms, alpha (α). Using 

Microsoft Excel we examined the raw activity data and determined the total activity per 

cycle, based on the circadian period in DD, LL, and LD. Additionally, for 5 days in LD, we 

calculated the activity profile in 1 hr-bins across 24 hrs by totaling the activity during the 

one hour period and dividing by the total activity during the day. Finally, two individuals 

(DDS & AAA) independently examined the actograms to determine when rhythms had 

reentrained after phase shifts of the LD cycle; this point was defined as the first day of a 

period of at least three days during which the time of activity onsets were consistent (e.g., 
Jechura et al., 2006). During these analyses and corrections, experimenters were blind to the 

experimental groups of the individual animals.

Effects of lighting and surgical condition on alpha and total activity were assessed with a 

mixed 2-way ANOVA in which lighting condition (DD, LL, and LD) was treated as a 

within-subjects variable and surgical condition (Pinx and Sham) as a between-subjects 

variable. To assess effects of lighting and surgical condition on tau we also performed a 

mixed 2-way ANOVA; in this case there were two lighting conditions (DD and LL, as the 

within subjects variable), and surgical condition (Pinx and Sham) was again the between 

subjects variable. For the ANOVAs, Eta-squared values (η2) were calculated to determine 

effect size. Finally, we used independent-sample t-tests to determine the differences between 

Pinx and Sham animals in their days to reentrain and Cohen's d to determine effect size, 

following both phase delays and phase advances of the LD cycle.

2.3 Masking

To determine if the pineal gland plays a role in masking, animals maintained on a 12:12 LD 

cycle were cycled through a three-day protocol, so that every third day the animals were 

exposed to a 1 hr light pulse (LP) during the dark phase or a one hour dark pulse (DP) 

during the light phase (Shuboni et al., 2012). DPs were administered first in a random order 

at ZT2, 10, and 6, and LPs were administered second also in a random order at ZT14, 22, 

and 18. Microsoft Excel was used to sum the total amount of activity during the 1 hr of each 

of the 6 pulses, and the same 1 h on the preceding day. For dark and light pulses we used a 

three-way ANOVA to assess effects of the time of the pulse (3 times), lighting (dark/light 

pulse and control) and the surgical conditions (Pinx and Sham). Effect size was reported as 

Eta-squared values (η2).

2.4 Sleep

Here, we examined the patterning of sleep across the dark phase of a 12:12 LD cycle to test 

the hypothesis that pineal melatonin contributes to the consolidation of sleep at night in 

diurnal grass rats. Two low-light lens CCTV cameras connected to a time-lapse video 

recorder that condensed a 12 hr period onto a 2 hr tape were used to record behavior across 

the dark phase of the LD cycle. The tapes were transferred to DVD media that could be seen 

on a computer screen and the behavior was scored with a custom-made data acquisition 

program (S & K Computer Products, Toronto, Ontario, Canada; Lonstein and Stern, 1997). 
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“Sleep-like behavior” (referred to here as “sleep”) was scored when the animal adopted a 

distinct posture, lying down in a slumped position with the head on the floor of the cage 

(Figure 5A). An observer (T.K.H.G.) blind to the condition of the animal recorded onsets 

and offsets of each sleep bout across the night. From these data we calculated the total 

amount of sleep, the number of sleep bouts, and the duration of those bouts during the 12 hr 

recording period. For analysis of the total sleep bout number and average bout duration, we 

used independent sample t-tests to compare Pinx and Sham groups and Cohen's d values to 

report effect size. To analyze the effect of surgery on the amount of sleep per hour across the 

12 hr period of darkness, we used a mixed two-way ANOVA with time as the within-

subjects variable and surgical condition (Pinx and Sham) as the between subjects variable 

and reported the Eta-squared (η2) to demonstrate effect size.

3. Results

3.1 Rhythms

In LD conditions (Figure 1), there was a main effect of time on hourly rates of activity 

(F[23, 345] = 17.95, p < 0.001, η2 = 0.54), but there was no significant effect of surgical 

condition (F[1, 15] = 0.19, p = 0.666, η2 = 0.01), and there was no interaction between these 

two variables (F[23, 345] = 2.07, p = 0.085, η2 = 0.12). In both groups of animals, the 

highest levels of activity occurred during the 12 hr light period and at the transitions between 

light and dark phases of the LD cycle (Figure 1).

Animals were placed in constant conditions (i.e., DD and LL; see Figure 2A for 

representative actograms); when comparing the period of activity in the three lighting 

conditions, alpha was affected by lighting condition (F[2, 26] = 30.32, p < 0.001, η2 = 0.70) 

but not by surgery (F[1, 13] = 0.00, p = 0.993, η2 < 0.01) or by an interaction between 

lighting and surgery (F[2, 26] = 0.38, p = 0.636, η2 = 0.03). Alpha was significantly longer 

in LL than both LD and DD (Figure 2B). Tau did not differ in Pinx and Sham groups (F[1, 

14] = 1.81, p = 0.200, η2 = 0.01), and there was no interaction between lighting condition 

and surgery (F[1, 14] = 0.11, p = 0.740, η2 = 0.01). There was a main effect of lighting 

condition (F[1, 14] = 90.79, p < 0.001, η2 = 0.87) such that the period of the rhythm was 

significantly longer in LL than in DD (Figure 2C).

Animals were then phase shifted, both via a 6hr phase advance and a 6hr phase delay; see 

Figure 3A and 3B for representative actograms. The rate of reentrainment from the phase 

delay was significantly faster than phase advances (Figure 3C; F[1, 11] = 5.54, p = 0.038, η2 

= 0.34), but, again there was no effect of surgery (F[1, 11] = 0.19, p = 0.673, η2 = 0.02) nor 

was there an interaction (F[1, 11] = 0.01, p = 0.927, η2 = 0.01).

3.2 Masking

The masking responses to light did not differ significantly as a function of surgical condition 

(i.e., there was no main effect of surgery); this was the case for both dark pulses (F[1, 15] = 

0.66, p = 0.43, η2 = 0.04) and light pulses(F[1, 15] = 0.71, p = 0.41, η2 = 0.05). Activity 

significantly increased in response to light (i.e., there was a significant main effect of light) 

at all three times sampled during the dark period (Figure 4) among both Pinx and Sham 
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grass rats (F[1, 15] = 61.25, p < 0.00, η2 = 0.80); there was no significant effect of dark 

pulses during the day (F[1, 15] = 0.12, p = 0.73, η2 < 0.01). There was a significant main 

effect of time at night (F[2, 30] = 14.99, p < 0.01, η2 = 0.50) but not during the day(F[2, 30] 

= 0.61, p = 0.55, η2 = 0.04). There were no significant interactions for any pair of conditions 

for dark pulses (data not shown) and only a significant interaction between time and lighting 

for the light pulses (F[2, 30] = 5.05, p = 0.01, η2 = 0.25). The duration of the active phase in 

different lighting periods can also be an indicator of masking, and this, too, was unaffected 

by removal of the pineal gland (Figure 2B).

3.3 Sleep

Representative photographs of an awake animal and an asleep animal are provided in Figure 

5A. Sleep bout numbers (Figure 5B) and durations (Figure 5C) did not differ in Pinx and 

Sham groups (t[12] = 1.42, p = 0.182, d = 0.75 and t[12] = 3.5, p = 0.086, d = 0.15 

respectively). Hourly rates of sleep across the dark phase of the LD cycle (Figure 5D) were 

affected by time (F[11, 132] = 16.36, p < 0.001, η2 = 0.58), but not by surgical condition 

(F[1, 12] = 0.04, p = 0.845, η2 < 0.01), nor were they affected by an interaction between 

these two variables (F[11, 132] = 0.59, p = 0.713, η2 = 0.05).

4. Discussion

Our results suggest that melatonin does not contribute to diurnality in grass rats, as it does in 

some primates and non-mammalian vertebrates. This conclusion stems from data on activity 

rhythms, masking, and analysis of the distribution of sleep across the night in animals in 

which the pineal gland has been removed.

4.1 Rhythms

Temporal patterns of general activity in a 12:12 LD cycle did not differ between 

pinealectomized and control groups. This was the case for the overall amount of activity 

during the light vs. dark phases of the cycle, as well as the pattern of changes in hourly 

activity across the 24 hr LD cycle (Figure 1). We also found no evidence that the pineal 

gland plays a role in modulation of the endogenous circadian timekeeping system, as 

revealed by placing animals in constant conditions (Figure 2A) and during phase shifts of 

the LD cycle (Figure 3A). In some other mammals, melatonin influences tau and how tau 

responds to changes in lighting intensity, but in others it does not (Aguilar-Roblero and 

Vega-Gonzalez, 1993; Aschoff et al., 1982; Cassone, 1992; Cheung and McCormack, 1982; 
Morin, 1993; Morin and Cummings, 1981; Yanovski et al., 1990). In addition, 

administration of exogenous melatonin in LD conditions does not significantly impact the 

expression of circadian rhythms in Octodon degus (Vivanco et al., 2007). Based upon the 

removal of the pineal gland, our results suggest that melatonin does not influence circadian 

rhythms in grass rats (Figure 2C). In another diurnal rodent, the golden mantled ground 

squirrel, the responses of tau to changes in light intensity were similarly unaffected by 

removal of the pineal gland (Martinet and Zucker, 1985). Rates of reentrainment in grass rats 

were also unaffected by Pinx (Figure 3C), which was also the case in ground squirrels 

(Martinet and Zucker, 1985), but rates of reentrainment are affected in some nocturnal 

rodents under certain conditions (Finkelstein et al., 1978; Quay, 1970, 1971). Taken together, 
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data from ground squirrels, degus, and grass rats raise the possibility that the influence of 

light on the circadian clock of diurnal rodents is not modulated by melatonin, as it appears to 

be in some other rodents.

4.2 Masking

In intact diurnal mammals, light pulses at night directly suppress melatonin and stimulate an 

increase in activity (Redlin, 2001), raising the possibility that the light-induced decrease in 

melatonin could contribute to positive masking. If that were the case, then pinealectomy 

should decrease the masking responses to photic stimuli. However, this did not appear to be 

the case in grass rats, as 1 hr light pulses during the dark phase of a 12:12 LD cycle 

increased activity in both groups and the magnitude of the response did not differ between 

them (Figure 4). The stimulatory effect of light at night on activity is thus unlikely to be 

facilitated by a decrease in melatonin, providing further evidence that melatonin does not 

influence activity/rest state in these animals.

Data from grass rats maintained in constant conditions also suggest that masking was 

unaffected by pinealectomy. Specifically, the duration of the active period increased when 

conditions changed from DD to LL (Figure 2B), and the increase was identical in intact and 

Pinx animals. The effect of light intensity on alpha is likely to reflect masking, with light 

expanding the active period and darkness reducing it in a diurnal mammal. These results are 

similar to what we have seen previously in intact grass rats (Gall et al., 2013).

4.3 Sleep

Finally, there was no indication that removal of the pineal gland affected sleep. Video 

analysis revealed no difference between pinealectomized animals and control animals in the 

overall temporal distribution of sleep across the dark phase or the duration or number of 

sleep bouts during that time (Figure 5). It should be noted that studies of sleep in 

pinealectomized nocturnal rodents have yielded contradictory results (Fisher and Sugden, 

2010; Mendelson and Bergmann, 2001; Mouret et al., 1974; Wang et al., 2003). However, 

there is some evidence that humans may be different in this regard. There are data 

suggesting that humans without a functional pineal gland have sleep that is less consolidated 

and that extends into the day considerably more than it does in humans with normal patterns 

of melatonin secretion (Macchi and Bruce, 2004; Slawik et al., 2012). Though most of this 

data comes from case studies (Macchi and Bruce, 2004), it does suggest that the pineal 

contributes to the consolidation of human sleep at night, presumably through secretion of 

melatonin, which has clear soporific effects in other diurnal primates, birds and fish (Hao 

and Rivkees, 2000; Hughes and Badia, 1997; Inui and Hazeki, 2010; Lopez-Omeda et al., 

2006; Murakami et al., 2001; Zhdanova et al., 2001, 2002, 2005). Although the pineal gland 

may contribute to diurnality in those animals, the current data suggest that this is not the 

case in grass rats.

4.4 Conclusions and Implications

As noted above, there are numerous reports of soporific effects of melatonin in diurnal 

vertebrates (for review, Tzischinsky et al., 2001) including human and non-human primates 

(Hao and Rivkees, 2000; Hughes and Badia, 1997; Inui and Hazeki, 2010; Matsumoto, 
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1999; Zhdanova et al., 2002, 2005; Zhdanova and Wurtman, 1997). There are no data that 

we are aware of addressing the question of whether the pineal gland might play a direct role 

in the regulation of activity or sleep in non-primate mammals that have independently 

evolved a diurnal pattern of adaptation to the day-night cycle. Katz (2011) and others have 

argued at a general level that when common behaviors evolve independently, evolution is 

likely to occur via similar changes in neural organization, because the potential mechanisms 

that could produce a given behavioral pattern are limited. In the current study, we aimed to 

examine whether this might be the case when it comes to potential changes in the role 

played by the pineal gland at two independent evolutionary transitions from nocturnality to 

diurnality by comparing previous reports of the role of the pineal gland in primates to our 

data within a murid clade. The current data suggest that the pineal gland does not play a role 

in rhythms, masking, or sleep in diurnal grass rats. However, one limitation of our study 

includes the lack of radioimmunoassay of melatonin for our pinealectomized animals. In 

addition, we did not administer supraphysiological levels of melatonin in this study. Further 

investigation into the distribution of melatonin receptors within diurnal grass rats and 

primates may provide insight into why melatonin has such a different role in the two species. 

Testing other diurnal species would also, allow for more complex comparisons to be made 

about the role of melatonin. Other basic mechanisms that promote sleep at night and activity 

during the day may be the same, but the role that the pineal gland plays in primates appears 

to be absent in diurnal grass rats.
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Highlights

1) The pineal gland does not contribute to diurnality in Arvicanthis 
niloticus.

2) Lack of melatonin does not influence circadian rhythms, sleep, 

or masking.

3) Melatonin's role may vary among mammals that independently 

evolved diurnality.
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Figure 1. 
24 hr activity profiles of pinealectomized (Pinx) and control (Sham) animals in a 12:12 

light-dark (LD) cycle. Grey shading indicates darkness (ZT12-ZT24).
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Figure 2. 
Activity rhythms of grass rats maintained in a 12:12 LD cycle, followed by constant 

darkness (DD), and constant light (LL). Panel A depicts actograms of representative Sham 

(left) and Pinx (right) animals. The two groups did not differ with respect to alpha (B) or tau 

(C).
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Figure 3. 
Activity rhythms of sham-operated and pinealectomized animals following 6h phase shifts 

of the LD cycle. Representative Sham and Pinx animals are shown in response to phase 

advances (A) and delays (B). No significant differences were observed between the two 

groups with respect to their rates of reentrainment following these shifts of the LD cycle (C).
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Figure 4. 
Effects of light on general activity of Pinx and Sham animals. Light induced a similar 

increase in activity in the two groups at each of the three time points (ZT14, ZT18 and 

ZT22). Differing letters within a graph indicates significance p < .05.
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Figure 5. 
Sleep patterns in pinealectomized and sham-operated animals. Panel A illustrates wakeful 

rest (left) and “sleep-like” behavior (right). The animals were considered to be asleep when 

they adopted a distinct posture, lying down in a slumped position with the head on the floor 

of the cage. The total number of sleep bouts (B) and the average sleep bout length (C) were 

not significantly different in Pinx and Sham animals. The hourly distribution of sleep across 

the 12h dark phase was not significantly different in Pinx and Sham animals (D).
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