
Elizabethtown College Elizabethtown College 

JayScholar JayScholar 

Summer Scholarship, Creative Arts and 
Research Projects (SCARP) Programs and Events 

Summer 2020 

ANTA: Accelerated Network Traffic Analytics. ANTA: Accelerated Network Traffic Analytics. 

Matthew Grohotolski 

Connor DiLeo 

Follow this and additional works at: https://jayscholar.etown.edu/scarp 

 Part of the Computer Sciences Commons 

https://jayscholar.etown.edu/
https://jayscholar.etown.edu/scarp
https://jayscholar.etown.edu/scarp
https://jayscholar.etown.edu/programs-events
https://jayscholar.etown.edu/scarp?utm_source=jayscholar.etown.edu%2Fscarp%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=jayscholar.etown.edu%2Fscarp%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages


ANTA: Accelerated Network Traffic Analytics
Matthew Grohotolski∗, Connor DiLeo∗, Peilong Li∗, Onur Barut†, Yan Luo†, Tong Zhang‡, Weigang Li‡

∗Elizabethtown College
{GrohotolskiM , DiLeoC, LiP}@etown.edu
†University of Massachusetts Lowell

Onur Barut@student.uml.edu, Y an Luo@uml.edu
‡Intel Corporation

{Tong2.Zhang, Weigang.Li}@intel.com

Abstract—Implementing traditional machine learn-
ing models and neural networks has become trivial in
detecting malicious network traffic and has sparked
interest in many researchers investigating this field.
Standard implementations include using the baseline
models in packages such as sklearn, tensorflow, and
keras. In this paper we seek to advance the field of
network detection and produce results which will have
great benefits in terms of speed and performance of
these models. We take advantage of Intel’s DAAL and
OpenVINO packages as they are the two best perfor-
mance enhancing methods which are publicly available
today. Furthermore, comparisons will be made to deter-
mine the impact of these two Intel packages on network
intrusion detection.

Index Terms—Encrypted Traffic Analysis; DAAL;
OpenVINO; Edge Computing; uCPE;

I. Introduction and Motivation

Since the dawn of the Internet, there have been chal-
lenges with malicious users manipulating network traffic
and causing trouble for Internet users and businesses.
These challenges have only gotten worse as the Internet
has progressed, and businesses are constantly evolving
their network infrastructure. With the implementation of
encryption on websites, manipulated data can be very
hard to track accurately. According to Google, 97% of all
websites are encrypted [1] as of July 2020. The number
of daily issued certificates keeps increasing linearly and is
currently sitting at 1.5 million [2]. With this knowledge,
it is more important than ever to prevent further attacks
from occurring on encrypted traffic.

Although this problem seems complex in nature, many
researches have advanced their methods for detection
of malicious network traffic in order to prevent further
attacks. Previous attempts to detect such traffic have
been successful, but oftentimes take too much time for
detection and are impractical for analyzing the large influx
of data which has been made readily available. Alongside
these complications, many researchers tend to use different
datasets when comparing their newly created models.
This confusion leads to different results when training
and testing models. In the past, it has been difficult for
researches to find appropriate, and complete datasets; This

is where the common ground of network traffic analysis
comes in.

Within this project we use the NetML and CICIDS2017
datasets which are publicly available and widely used by
the network detection community to compare the results
of their models. We also work toward improving previous
detection rates by implementing Intel’s DAAL and Open-
Vino to both Machine Learning and Deep Learning mod-
els. Our goals that we wish to accomplish are as follows.
1) We first implemented traditional Machine Learning and
Deep Learning Models in order to get baseline scores
2) We then seek to accelerate the traditional Machine
Learning and Deep Learning models with the use of Intel’s
DAAL and OpenVino. 3) Lastly, we conduct a thorough
evaluation of multiple variables in order to determine
improvement.

The organization of this paper is as follows. Section
§II talks about all the previous works that have been
accomplished by previous researchers. Section §III depicts
the overall design of OpenVino and DAAL. Section §IV
we talk about performance evaluation. Lastly, in Section
§V we conclude the paper.

II. Related Works

Anderson et al. [3], [4] implemented a group of machine
learning algorithms for ETA. They felt that there were
two reasons as to why traditional matching could not be
applied to ETA, those being inaccurate ground truth and a
highly non-stationary data distribution. What the authors
did in order to overcome these problems was that they
developed machine learning models that had a unique and
diverse set of network flow data features. Lastly, there
is the work done with the ACETA research. Their work
consisted of the use of Joy in the extraction stage of
the network traffic data. Joy is an open-sourced software
that was created by the same authors Anderson et al. [3],
[4]. They also implemented accelerated versions of their
models with the use of Intel’s DAAL and OpenVino. Our
research with ANTA continues the work that was previously
done with the ACETA research.



III. Design
In this section, we present the design of our project

by firstly talking about the vanilla implementation of our
models. Then we talk about accelerating those models
with the use of Intel’s DAAL and OpenVino.

Firstly, we have our machine learning models which were
important from the scikit-learn library. In this project we
tested a total of four models that would be classified under
machine learning. Those models are as follows: Logistic
Regression(LR), Recurrent Neural Network(RNN), Sup-
port Vector Machine(SVM), and lastly k-Nearest Neigh-
bors(kNN).The workflow of DAAL’s workflow can be seen
in figure 2 Before the models can be used for testing the
datasets, the data must first be processed. The process can
be seen in the figure 1

Fig. 1. Dataset Process

Data

Decompression 
Filtering 

Normalization

Aggregation 
Dimension 
Reduction

Summary 
Statistics 
Clustering

Classification 
Regression 
Association 

Rules 
Simulation

Hypothesis 
Testing 
Metrics

Prediction

Fig. 2. Intel’s DAAL Workflow

As previously mentioned, the machine learning models
are not the only models that we tested. There were also
a total of four deep learning models that were used.
Those models are as follows: Artificial neural network
(ANN), Convolutional neural network (CNN), Long short-
term memory(LSTM), 1D Convolutional Neural Net-
work(1DCNN), and lastly 2D Convolutional Neural Net-
work(2DCNN). Just like in the machine learning section,
the data is processed the same way in order to prepare it.

Once we tested and competed our vanilla models in
order to get the baseline results, it was time to accelerate
them. For the machine learning models we used Intel’s
Data Analytics Acceleration Library(DAAL). DAAL is
a library that can be used by developers in order to
accelerate data analytics. The advantages that DAAL has

over other libraries is that DAAL optimizes the entire
workflow. What this does is, it ensures that the entire
process is accelerated from data acquisition, to training
and predictions.

Deep learning is a field of machine learning which has
been evolving since its creation. We leverage standard
neural network models found in tensorflow and keras to
implement malware detection with deep learning. Various
forms of these neural networks were implemented which
include: Artificial Neural Network (ANN), 1D Convo-
lutional Neural Network (1D CNN), 2D Convolutional
Neural Network (2D CNN), Long Short Term Memory
Neural Network (LSTM), and lastly Convolutional Long
Short Term Memory Neural Network (CNN+LSTM).

Neural networks are more complex than traditional
machine learning algorithms because they consist of hyper
parameters which can be fine tuned to yield better results.
To obtain the optimal hyper parameters for each model,
we first tested a multitude of values for each variable and
use a combination of the best yielded results to use with
the final implementation of each neural network model. A
list of all optimized variable names is shown in in table I.

TABLE I
Deep Learning Hyper-Parameters

Feature
learning rate
decay rate

dropout rate
n batch
n epoch

filters
kernel size

strides
CNN layers

clf reg

Some of the deep learning models resulted in slower than
expected inference times. In order to solve this we used
Intel’s OpenVINO library to accelerate our baseline neural
networks. OpenVINO is built upon two main components,
its Model Optimizer and Inference Engine. The Model
Optimizer is responsible for taking pre-trained models
from our standard neural network models such as ANN,
CNN, and LSTM; it then transforms these models into a
format which OpenVINO can utilize. After the model is
transformed, we utilize OpenVINO’s Inference Engine to
drastically decrease inference times and are able to see a
huge performance boost when compared to the standard
models which were previously converted. The full process
for OpenVINO can be found below in figure 3

Once all DAAL and OpenVINO models were fully im-
plemented, we put them to the test against their standard
counterparts in the next section and compare statistics
collected from each model.

IV. Evaluation
In this section of the paper we are evaluating the

important aspects that are proposed ANTA. Specifically, we



Preprocessed 
Data

Load Pre-trained 
Neural Network

Transform to 
OpenVINO Format

Run Accelerated 
Validation

Collect Results 
and Statistics

Fig. 3. Intel’s OpenVINO Workflow

will firstly talk about the datasets used throughout this
research. Then we will talk about the specs used to train
and test these models. Lastly, we talk about the general
improvements that were made with the implementation of
Intel’s OpenVino and DAAL.

A. Datasets
All of the testing done throughout ANTA was done with

two datasets NetML and CICIDS2017. These dataseta
were provided to us by the people at the University of
Massachusetts Lowell who took the original versions of
these datasets, and cleaned them up so it would be easier
to test on. The NetML dataset was created with TLS
encrypted malware detection and consists of 114k en-
crypted flow samples. It also consisted of 20 different types
of malware and benign classes. The CICIDS2017 dataset
was also created with TLS encrypted malware detection
and consists of 75k encrypted flow samples consisting of
infiltration malware and benign classes.

B. System Specifications
Throughout this research our data was being collected

with a computer who’s specs can be seen in Table II. We
used built in Python tools in order to collect our data, like
training time, inference time, accuracy, and CPU usage.

TABLE II
Experiment Platform Specification

Item Specification
CPU Intel i7 8700k 6 cores 12 threads @ 3.7GHz
GPU GTX 1080ti with 11Gb DDR5

Memory 16 Gb DDR4 @ 3200MHz
HDD 4Tb HD @ 7200RPM

Software Intel DAAL v2020.1
Intel OpenVINO v2020.3

Anaconda v5.3.0
Host OS Ubuntu 18.04 Desktop

C. Performance Results
The user is given many options towards how they

want to test the models. The way the models are cur-
rently implemented allows customization and automation.
Firstly, the user will need to pick the models that they
will want to test. The current options, as well as their
accelerated version, are as follows: Decision Forest, kNN
Logistic Regression, SVM, 1D CNN, 2D CNN, LSTM, and

a combination of CNN and LSTM. The user can pick to
run as many of these models as they desire in one go.
After the user declared what models he wanted to test he
can then choose between the two datasets that we have
implemented, which are NetML and CICIDS2017. Lastly,
there is the amount of times the user would like to test the
models. After all of these customization features has been
determined, the program is then ran. While the models
are being tested, a handful of data is also being collected.
The data that is being collected is the models accuracy,
max CPU levels, false alarm rate (FAR), true positive
rate (TPR), preprocessing time, and lastly training time.
Since the user has the option to run the models multiple
times, not only will each iteration have its numbers written
down but a mean for all the values will automatically
be calculated. It is encouraged to have the models run
multiple times in order to get a solid average of the data.
After the models have been trained and tested it is then
time to evaluate the data.

D. Training Time
Figure 4 and 5 both represent the average training time

that took place for each machine learning model, as well
as their accelerated version. As we can see, the DAAL
version of of each model generally either stayed roughly
the same. The only major out liar that will consistently
appear throughout our results are the Linear Regression
models, as the vanilla model seems to outperform in both
accuracy percentage and training time.

0.2181

2.7375

0.5198

2.9257

0.3874

0.0804

2.941

1.4321

0

0.5

1

1.5

2

2.5

3

3.5

Decision Forest kNN Logistic Regression SVM

Ti
m

e 
(s

ec
o

n
d

)

Training Time on NetML 

Original DAAL

Fig. 4. DAAL Training Time on NetML

Just like the previous figures, figures 6 and 7 both
represent the average training time but this time for the
deep learning models.

E. Accuracy Percentage
Another key component that we are looking for while we

accelerated our models was the accuracy. It is important
that the accuracy stays close to the original once we



0.8099

2.1822

0.292

1.0804

0.1715
0.0518

1.9812

0.9623

0

0.5

1

1.5

2

2.5

Decision Forest kNN Logistic Regression SVM

Ti
m

e 
(S

ec
o

n
d

s)

Training Time on CICIDS2017

Original DAAL

Fig. 5. DAAL Training Time on CICIDS2017

5.5910

9.0918

27.7384

18.4181

2.4904

6.4530

9.8286

18.4005

11.1113

3.019

0

5

10

15

20

25

30

1D CNN 2D CNN CNN & LSTM LSTM ANN

Ti
m

e 
(S

ec
o

n
d

s)

Training Time on NetML

Original OpenVino

Fig. 6. OpenVino Training Time on NetML

4.2832

6.6393

20.2455

13.8858

2.0801

6.3824

9.5236

17.6674

12.2211

3.2217

0

5

10

15

20

25

1D CNN 2D CNN CNN & LSTM LSTM ANN

Ti
m

e 
(S

ec
o

n
d

s)

Training Time on CICIDS2017

Original OpenVino

Fig. 7. OpenVino Training Time on CICIDS2017

accelerate the models. Figures 8 and 9 both show the
accuracy with all of the machine learning models, as
figures 10 and 11 show the accuracy with the deep learning
models.

0.9999

0.9993 0.9993 0.9993

0.9999
0.9995

0.9966

0.9995

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

Decision Forest kNN Logistic Regression SVM

A
cc

u
ra

cy
 P

er
ce

n
ta

ge

Accuracy Percentage on NetML

Original DAAL

Fig. 8. DAAL Accuracy Percentage on NetML

0.9999
0.9992

0.9999 0.9995

0.9999
0.9995

0.9901

0.9997

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

Decision Forest kNN Logistic Regression SVM

A
cc

u
ra

cy
 P

er
ce

n
ta

ge

Accuracy Percentage on CICIDS2017
Original DAAL

Fig. 9. DAAL Accuracy Percentage on CICIDS2017

Coming back to hyper parameter fine tuning of our
neural networks we saw improvements around the board
on all models from testing and tuning our parameters for
each model. Each model was ran with different variables
for each hyper parameter, which we used to collect the
best parameters for each model. Once all the variables
were collected we plugged them into our neural networks
and ran the models 10 times to obtain average results for
each model. Lastly, a comparison was made to the original
model accuracy values to see how much of a difference
hyper parameter tuning makes with deep learning. The
graph comparing these two modes of testing are shown
in Figure 12. The models which benifited the most from
the hyper parameter implementation were the 1D CNN,



0.9993

0.9991 0.9991

0.9989

0.9994

0.9993

0.9991 0.9991

0.9989

0.9994

0.9986

0.9987

0.9988

0.9989

0.999

0.9991

0.9992

0.9993

0.9994

0.9995

1D CNN 2D CNN CNN & LSTM LSTM ANN

A
cc

u
ra

cy
 P

e
rc

en
ta

ge

Accuracy Percentage on CICID2017

Original OpenVino

Fig. 10. OpenVino Accuracy Percentage on CICIDS2017

0.9985
0.9987

0.9947

0.9966

0.9994
0.9985

0.9986

0.995

0.9966

0.9994

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1D CNN 2D CNN CNN & LSTM LSTM ANN

A
cc

u
ra

cy
 P

er
ce

n
ta

ge

Accuracy Percentage on NetMLOriginal OpenVino

Fig. 11. OpenVino Accuracy Percentage on NetML

LSTM, and CNN+LSTM; each of these models improved
an average of .01%.

V. Conclusion
Within this paper, we strive to accelerate past machine

learning and deep learning models so that they can be
used in real-world scenarios. This is done using publicly
available datasets, namely NetML and CICIDS2017, which
contain over one million network flows of information
regarding malicious and benign network traffic. After per-
forming prepossessing on the data, we accelerate previous
models for detection in order to significantly reduce the
time it takes for inference results to detect malicious
data from future collected network flows. Eventually, this
process could be automated to include live-fed processed
data into these models in order to create live detection
over the network.

We have made the source code for this project
open-source for future research and is available to ac-

0.9983
0.9986

0.9994

0.9966

0.9946

0.9993 0.9986
0.9994

0.9974

0.9954

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1D CNN 2D CNN ANN LSTM CNN+LSTM

A
cc

u
ra

cy
 P

er
ce

n
ta

ge

Hyper Parameter Neural Network Improvements

Base Hyper

Fig. 12. Hyper Parameter Neural Network Improvements

cess through GitHub: https://github.com/BlueJayADAL/
SCARP2020-ML.

Acknowledgment
This work is supported in part by the National Science

Foundation (No. 1547428, No. 1541434, No. 1738965 and
No. 1450996), a grant from Intel Corporation, and a grant
from Summer Scholarship, Creative Arts and Research
Projects (SCARP) Program of Elizabethtown College.

References
[1] Google, LLC, “Https encryption on the web,” 2020.

[Online]. Available: https://transparencyreport.google.com/
https/overview

[2] Let’s Encrypt, “Let’s encrypt stats,” 2019. [Online]. Available:
https://letsencrypt.org/stats/

[3] B. Anderson and D. McGrew, “Identifying encrypted malware
traffic with contextual flow data,” in Proceedings of the 2016
ACM Workshop on Artificial Intelligence and Security, ser. AISec
’16. New York, NY, USA: ACM, 2016, pp. 35–46. [Online].
Available: http://doi.acm.org/10.1145/2996758.2996768

[4] ——, “Machine learning for encrypted malware traffic
classification: Accounting for noisy labels and non-stationarity,”
in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD
’17. New York, NY, USA: ACM, 2017, pp. 1723–1732. [Online].
Available: http://doi.acm.org/10.1145/3097983.3098163


	ANTA: Accelerated Network Traffic Analytics.
	tmp.1599159704.pdf.AvOn5

