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The Annals of Mathematical Statistics 
1970, Vol. 41, No. 3, 945-955 

THE LAW OF THE ITERATED LOGARITHM FOR A MARKOV 
PROCESS 

R. P. PAKSHIRAJAN AND M. SREEHARI 

University of Mysore 
1. Introduction. The purpose of this paper is to prove the law of the iterated 

logarithm for a sequence {f(xn)}, where f is a real-valued function defined on the 
state space of a discrete Markov Process {xn} satisfying Doeblin's hypothesis [3]. 

Most of the known results concerning the law of the iterated logarithm are 
obtained for a sequence of independent random variables and the proofs mainly 
depend on (i) the rate of convergence in the central limit theorem and (ii) certain 
inequalities due to Kolmogorov/Levy [5]. In Section 3 we obtain the rate of con- 
vergence of n- Y%j=f(xj) to the normal distribution. In Section 5 we obtain 
the rate of convergence of the maximum of the partial sums of the random variables 
f(xj) to the positive normal distribution and use this rate in the place of Kol- 
mogorov/Levy inequalities. 

2. Preliminary assumptions and lemmas. Let X be a space of points 4 and let 
Fx be a Borel field of subsets of X. Let {xn} be a Markov process with state space X 
and stationary transition probabilities: 

(2.1) P(d, A)-P(Xn+ I cA I Xn 

That is, {xnl is a sequence of measurable functions from some probability space 
(Q, -, P) to X such that (2.1) holds where the transition function p(4, A) is a 
measurable function of 4 for fixed A eFx and is a probability measure on Fx for 
fixed d. The initial distribution 7t is defined by 7r(A) = P{x1 eA} and the n-step 
transition probabilities are given by p(n)(4, A) -P {xn+ I EA Ix1d=} . Through- 
out the following discussion Doeblin's condition will be assumed. In fact, we shall 
assume the hypothesis (Do): 

(a) Doeblin's condition is satisfied. 
(b) There is only a single ergodic set and this contains no, cyclically moving 

subsets. 
It is known that if (Do) holds then there exist positive constants y and p, p < 1, 

and a unique stationary absolute distribution p such that lp(n) (, A) -p(A)I < ypn 
for all 4 E X and A E Fx and n ? 1. Throughout the following discussion we shall 
make the assumption: 

(2.2) 7c = p. 

Let C1, C2, be absolute constants. We shall now obtain two lemmas which will 
be used in the later analysis. Let rs m denote the a-field generated by the random 
variables (rv's) xr, *., xm. 
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946 R. P. PAKSHIRAJAN AND M. SREEHARI 

LEMMA 2.1. Iff is measurable with respect to 1'm and g is a bounded function 
measurable with respect to k?mY,FO, lgl < M, then E {g If }-E {g} < 2Myp'. 

PROOF. Since E {g If } =E { E(g |x, x * ' * ) f I} 
|E{g I f }-E{g} ? E{ E{gxI1', xm}-E{g} I | f 

The result follows from Lemma 7.2 page 224 of [3]. 

COROLLARY 2.1. If A E 1 m and B E k + ntYathen |P (B A)-P (B)_ 2 ypk. 

LEMMA 2.2. If A e 1,m and g is a function measurable with respect to k+mF?o and 
if x is a possible value of the rv g then |P(A I g = x)-P(A)| < 2ypk. 

PROOF. Define for each integer m the events 

HJ(X) {[x2m]2-m ? g < ([x2m] + 1)2-'} 

where [a] is the largest integer less than or equal to a. Notice that P( Hm(x)) > 0 
for all m. It is known (page 335 of [5], that P(A I g x) = limm,OOP(A IHm(x)). 
Then we have by Lemma 7.1 page 222 [3] 

|P(A j g = X)-P(A)j limm I| P(A I Hm(x))-P(A) 

(2.3) = limm..o |E(xA XHm) -E(XA)E(XH,)l E -(XHm) 

;$ limm _+ 00 2y IsPk1E Ir E/(%A)E l/s(%H ,)E -1 (X H) 

for r, s > 1, (1/r)+(1/s) = 1. 

Take s = 1 +(l/m)E(XHfm). Then s(m, x) -->1 and EI/S(XH,..)E- '(XHm) -* 1 as m -+ oo. 
We therefore have from (2.3) 

|P(A I g = X)-P(A); 2ypk. 

3. Convergence of partial sums. Let f be a real-valued function measurable with 
respect to Fx such that E {f(x1)} 0 O and E {f2(x )} = a2. In view of (2.2) we 
have for every k, E {f2(xk)} - U2. Without loss of generality a may be taken to be 
1 which we do. Then 

iimn 00 E{(n - _ If (xj) )2} = a2 

exists. If a2 > 0 and if 

(3.1i) El I j(X1)l } 
+ 

< coo 

for some 3 > 0 then it has been proved (Theorem 7.5 page 228 [3]) that 

(3.2) limn ,o P(Sn ?: xa1 n (2)-fJX e-( d)t2dt = cD(x) 

where Sn=y!=jf(xj). Throughout this paper we shall assume that a12 > 0 and 
that (3.1) holds for some 6 < 1. 

The purpose of this section is to obtain an estimate of the difference between the 
distribution of (Sn)/o1n1 and the standard normal distribution. 
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THE LAW OF THE ITERATED LOGARITHM FOR A MARKOV PROCESS 947 

Let aC. = [ni] and 3,, = [n*]. Then u,, = [n(cXn+/n)-1] - 3,,. For notational 
convenience we shall ignore the suffix n and write can = X, /3n = ,B and lun, = . Define 

Ym = -m-( + mf(x 1 2, . 
(3.3) Y4 Ej = (m-1)(+e m - 1 , 2, *, (P 

Ym +1 = =(a + P) + 1f(xj) Write 

(3.4) Tr- => IYm and Vn=, + Ym'. 

Under the assumption (2.2) ym's are identically distributed. Let F(x) denote the 
distribution function of Yi 

THEOREM 3.1. There exists No such that for n > No 

sUPxIP(Sn < xain2)-D(x)(D ? C4max{n-I8, n"'2}. 

PROOF. Let tj = i(n) be an arbitrary positive number. 

P(Sn < xu , n2) = P(T?, + Yn < xu 1 n2, I Yn|-t1f1 n-1) 

+ PT4 + Yn _ XCT n, I Y ni > i1a, n) 

(3.5) < P(TII _ (x + ij)a 1 n2) + P(| Yn I > t1CT 1 n2) 

Also 

(3.6) P(Sn _ xal n-2) _ P(TIl < (x - q)a, n )P(| tn| > I1ai n) 

Now consider 

P(T, _ u) =J- . P(TL-y _ u-xlI I y = xl) dF(xl) 

=J0.0P(T?-yi < u-xl) dF(xl) + 01(n), say. 

By Corollary 2. 1, O01(n)I < 2yp f. Also P(T -y 1 < u-x 1) = f 0P(T -y 1-Y2 ? 
u-x 1 -x2) dF(x2) + 02 *(n) so that 

P(T? _ u) = fO. {fS 00 P(Ts4-Y1-Y2 ? u-x1-x2) dF(x2)} dF(x1) + 01(n) + 02(n) 

where 102(n)| <- Soo 102*(n)I dF(x1) ? 27p0. 

Proceeding as above we get 

(3.7) P(TI, _ u) = P(Z, + +Z -, < u)+ Z -" Oj(n) 

where Z1, , Z, are independent random variables each distributed like Yi and 

10j(n)I < 2ypfl, 1 _ j _ Iu-1. Also E(Z1o, a'2-?1 as n-* oo. It therefore 
follows that 

limn P(Z1 +. +ZH ? x1 n2) = D(x) 

In fact using Esseen's estimate [4] we get 

(3.8) supx I P(Z1 + + Z, < xa1 n))-J(x)j < C2 Wn2 = 

where C2 does not depend on n. 
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948 R. P. PAKSHIRAJAN AND M. SREEHARI 

From relations (3.5) to (3.8) we have 

(3.9) (D(x - )C2 n -'/ + Ej -- I' Oj(n) -P(I Vn > ila, n-1-) 

< P(Sn ? xa1 n') 

< D(x + q) + C2 n -a8+ Ej-1Oj(n) + P(| Vn I > ila n t 

But I F(x)- P(x?+q) _ q. Following the discussion to prove (7.16), page 229 [3] we 
obtain E(Vn2) = O(n4). Applying Tchebyshev's inequality we get 

P(|Vnj > k7U1 n2) < C3 

where C3 depends on a, only. 

We have then from (3.9) 

sup P(Sx <XCT n 2)-F(x)| ? 6+C2n8+ 2yip0 + C3 q2n-. 

Taking q = max {n-18, n-1/12} we get for n large, say, > No 

SUpx I P(Sn _ XCT 1 n )-D(x) I < C4 1. 

4. An approximation theorem for a multidimensional distribution. Set 

9 = 1/(3 +6), 92 = 1 6/4, p1(n) = n >E2/2(log n)(l +1/2)EI and k(n) = [n12(Iog n)1]. 

Define p = [iplk], i = 1, 2, , k. 
In this section we approximate the distribution function of (T,, --, Tpk) with 

an appropriate k-dimensional normal distribution function. We follow the method 
of Chung [2]. 

Consider independent rv's 1, k, k where dj is distributed like Tj -Tj 
I <j < k. (Tmo = 0). 

Denote Ci = , j . Then 

P(Tm ? xl, Tik?< Xk) 

MP _, T,.k - ? min(xk 1, Xk-uk)| T.k-TIk=uk)dP(4k?Uk) 

= i-,, PNTs, t * *, Tk ?< min (Xk-1, Xk- Uk) )dP(4k ? uk) + A l(n) 

where |A1(n)j < 2yp0 by Lemma 2.2. 
Also 

P(T -< x1, , Tk ? min (Xkl , Xk -Uk)) 

= ?P(TI _ X1 ,' Tk.- 2 

< min(Xk-2, Xk-1 Uk-1, Xk-Uk-Uk-1)l TPk I-TPk-2 = Uk-1) 
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THE LAW OF THE ITERATED LOGARITHM FOR A MARKOV PROCESS 949 

so that 

P(T,I < xl,", T,pk < Xk) 

= 5%ofo 0P(TMI <- xI, *, 'Tk -2 _ min(xk-2, Xk-I-Uk-1, Xk Uk-Uk-1)) 

dP(Qkl ? Uk-l)dP( k < Uk)+Al(n)+A2(n) 
where jA2(n)l ? 2yp13. 

Proceeding as above we arrive at 

XI'p ,, ,tzk -< Xk) 

(4.1) f=-, 
. 

.f c-y) ,P(4 1 < min (x , X2- U2, '', Xk Y,j=2 Uj)) 

dP(X2 ? u2* dP(k ? Uk)+Zj 1 Aj(n) 

P(G1 XI, ,k < Xk)+j-1 Aj(n). - 

Denote Fj(x1, , x) = P(41 < x1, .., 4i < xJ) 1 <j ] k. 

Let (JD be thej dimensional normal distribution function with the same first and second 
order moments as Fj. Let qDj* be the one dimensional normal distribution function 
with mean zero and variance = E(dj2). Denote F.(x1, , xj)- Dj(x1, *, xj) = 
Rj(xl, *, xj) and PQ4. < u) - Dj*(u) = Rj(u). 

In view of (3.7) and (3.8) there exists a constant C5 such that 

(4.2) sup jR1| < C5 k2n18 and sup IRj*I < C5 k62n318 I<j < k 

for n large. 
Consider 

Fj+ i(X* * , xj+ 1) 

f SaoFj(xl, * Xi Xj_, min(Xj, xj+ 1-u)) dP(4j+ I _ U) 

=f-? {(Dj(x 1, xj - 1, min (xj, xj + 1-u)) 

+Rj(x1, ,xj11, min(xj, xj+1-u))}dP(4j+1 ? u) 
= 4 {j(xl, *, xj1, min(xj, xj+1-u))d(D* l(u) 

+JIF -Tj dR7J+f+JooRjdP(4j+j < u). 
That is 

(4.3) Rj+ 1(x1, *,xj+ 1) =Jr f DdR7+ I + f1+J Rj dP(1j+ 1 ? u). 

Now 

if- ? R dP(4j+ 1-u)I ? sup |Rjj. 
0 4j(xj,-** ,xj_1, min (xj, xj+ -u) )dRJ* l(u) 

xJ+1-xjDj(xj, , xj)dR*+ 1(u) 

+fxj+l-xj j(Xi,*, Xj_1, Xj+1-u)dRJ+1(u) 

=Dj(xl, * **xj)R*+ 1(xj+1-xj)-Dj(xl, * *xj)R*+ 1(xj+1-xj) 
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950 R. P. PAKSHIRAJAN AND M. SREEHARI 

on integration by parts. Hence itf . dR+1I| < sup [RJ*+1I| From (4.3) we 
therefore have 

sup lRj+ I |I< sup |Rj| + sup JR*+ 1. 

Using the relations at (4.2) we get by induction sup IRkI ? C5 k' +612,-618 for n large. 
From (4.1) and the above result we have 

IP(T < X1, T, Xk-(k(XI, * * * Xk)J < C5 k' +/n-8 I +2ykp0 

<_ C6 k +612n-618 

We thus proved 

LEMMA 4.1. There exist constants C6 and N1 such that for all n ? N, 

SUPxi, I<i<k JFk(Xl, '', Xk)-(Dk(XI,*S Xk)J -< C6 171 

where rlB is defined at the beginning of this section. 

5. Rate of convergence of max,<r<n Sr. Set Sn* =max,<r<nSr and Sn** - 
max1 _ j<S(,+P)j. The limit distribution of Sn* has been obtained by 
Billingsley [1]. 

We shall write oc+,f = ocl. Observe that 

(5.1) P(Sn* < xal ni) ? P(Sn < xa, ni). 

Let for each r, ot1(j(r)- 1) < r ? ot1j(r). Define Dr = {Sr* 1 ? xa1 nu, Sr > xa1l nI} 
so that 

(5.2) nr= 1 P(Dr= (* > xal n0). 

Write Dr = Dr(')uDr(2) where Dr(1) {Drn{ISaij(r)-SrI < il a, n+}} and Dr(2 ) 
{Drn{ISalj(r)-SrI > i1 1 f2}} 

(5.3) Er = 1 P(Dr(l)) -< P(Sn* > (x-1 n) 

In order to analyze P(Dr(2)) we set 5n = [n361(8+46)]. Then if oc1j(r)-r > 6n 

P(Dr (2 )) < P(Dr){ |Sal j(r) -Sr + n | > (I)ql a, n'}) 

+ P(ISr+6n -Sri > (2)il a, n ) 

<P(Dr){(ISajr-+ In > (0X51 1 a,n1)+ 2yp6n} 

+ C7 3n(l +612)ql -(2+6)n- (1 +612) 

by Corollary 2.1 and Tchebyshev's inequality. Therefore 

P(Dr(2)) < P(Dr){C8 C1i(1'+612) 1i (2i+)n (1+612) + 2-p6ni 

+ C7 6n(l +612)11 -(2+6)n-(1 +612) 

n= P(D 2) < C9 'l (2+6)n-(2+6)18 +2yp6n+ C, 3i(1 +6/2)11 -(2+6)n-6/2 

If a1j(r) -r < 3. also this inequality holds. 
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THE LAW OF THE ITERATED LOGARITHM FOR A MARKOV PROCESS 951 

We have from (5.2), (5.3) and the above inequality 

P(S. * > xa , ni-) < P(Sn * > (x - il )a ni ) 
+ C9 ill 

( n (2+6)/8 + 2ypbn+ C7 jn(1 +6/2)1 1-(2 +6)n-,/2 

This together with (5.1) gives 

LEMMA 5.1. For i 1I as defined in Section 4 there exist constants C10 and N2 such 
that for n > N2 

P(Sn* <(x i1l)al n )-Cl0 ll < P(S'* < xalni)_PS o i 

Denote Uj=y1'+ +yj' and the event { |U l 1a1 n+}= M. Then 

P(Sn** < xal n-) = P({Sn** < xal n}n{ fl=t M1}) 

+P({Sn** < xuln }n{fl j1M}') 

(5.4) _ P(max, <<T, < (x + il)a ln1) + P(U -1 Mi ) 

< P(maxl <r<,u Tr < (x +tll)al n+) 1 1 n 

Similarly 

(.) P(Sn** < xal n0) 2 P(max, -<r-pT XN)l i-llN 

From (5.4), (5.5) and Lemma 5.1 we have the following 

LEMMA 5.2. For 'll as defined in Section 4 there exist constants C12 and N3 such 
that for n > N3 

P(max :5,<,ul Tr < (x - 2il)a 1 ni) -C 12 Il 

< P(Sn*< xul ni) 
< P(max 1 _r<5 Tr _!! (X + il )a, ni) + C 12 411 

Set T, *=max1<_r<uTr and T** =maxl< ikT T where pii's are as defined in 
Section 4. 

LEMMA 5.3. We can find constants C16 and N4 such that for n > N4 

P(T,** (x-tll)al ni)-C161i1 P P(T* ? xal n4) < P(T** < xa1 ni). 

PROOF. It is easily seen that 

(5.6) P(T * ?xalni?)P(T** ?xaln). 

Define the events 

Er = {Tr*- 1 _ xOl ni, Tr > xa1 ni.} 

Then 

(5.7) lrl- 1iP(Er) = p(T?,* > XOl ni). 
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952 R. P. PAKSHIRAJAN AND M. SREEHARI 

Suppose 11j(r) < r -<-[j(r)+ 1. Then for any positive number 1l = (n) 

(5.8) Er = {Ern{I Tj(r) + I > Tr a1 2}}U {Er{ITj(r)+ 1 - Trj < tl a1 ln}} 
= ErMuEr(2), say. 

(5.9) 8=lP(Er 2) (T** >(x-t7l)al1 n) 

By Corollary 2.1 

(5.10) P(Er( 1 )) < P(Er){P(7 Tuj(r) + 1-TrI > 11 a1 n2)+2yp }. 
It is easily shown as in Theorem 3.1 that 

(5.11) 2 2tctd+4y~ 1 P(I TAJ(r)+ 1-Tri > 171 171 n2) _ P(1zl + ***+zml' > ll a, n')+4myp, 

where m = Hj(r) + I- 
Let B = B(n) = [n4]. If m < B then by Tchebyshev's inequality and Lemma 7.4, page 
225, [3] we have 

(5.12) P(|ZI + +Zml > ll or, n') < C13 (+)-2)s. 

If m > B using Lemma 7.4 and the Esseen's estimate we get 

(5.13) |P(jZ1 + + Zml > ill a1 n2)-22iC ?J 0 exp(-(4)t2) dtj ? C14 B-12 

where C14 depends only on a1; and v = Il nsm+. Since m _ ,uk, v > i1 k+. Now 

(5.14) 2?r J 'exp(-( )t2)dt < C15 v e 2v ? C15 1j'k -e 

= C15l-lk+-n'. 

F rom the relations (5.7) to (5.14) we get 

P(TL* > xal n) _ P(T,** > (x -1j)al n)+C16 ll 

This together with (5.6) gives the result. 
From Lemmas 4.1, 5.2 and 5.3 we have with some constant C17 

(5.15) s(- 3t1l)al n2,, (x - 3tl)al n') -C17 Ill _ P(Sn*<_ xal n0) 

< (Dk((X+tll)al n', * * , (x+tll)al n1)+Cl l 

for n > max (N1, N3 and N4). 

If {xn4 is a sequence of independent Bernoulli variables defined by P(xn = ?1) 2 
and f(x) = x then it is well known that 

(5.16) jP(Sn* < xal nl)-I*(x)j < C18 n-+ where 

(5.17) I*(x)= 27-J fxexp(-()t2) dt. 

We have a1 = 1 in this case. Applying the inequality (5.15) to the Bernoulli 
variables and using (5.16) we have 

(5.18) Dk((X-331l)alni, n *, (x-331)a1 n2)-C18 I1 
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TBIE LAW OF THE ITERATED LOGARITHM FOR A MARKOV PROCESS 953 

Replacing x by x + 4i and x-4il and using the fact that |I*(x)-I*(x + 41tI ? C1 9 i 
we get from (5.15) and (5.18) the following 

THEOREM 5.1. There exist constants C20 and N5 such that for n > N5 

supx lp(sn* < xa1 n2)- I*(x)j 2 C20(log )ei(l +5/2)f -2/2 

where e1 = 1/(3+6), e2 = e1 6/4 and I*(x) is defined at (5.17). 

6. The law of the iterated logarithm. 

THEOREM 6. 1. 

P{Iim sup {(S0)/(2a1 2n log log n)+} = 1 = 1. 

PROOF. Write X(n) = (2al 2n log logn) . 

From Theorem 3.1 we get for every b 

P(Sn < bx(n))- F(b(2 log log n') I < C21 max (n-18, n-F11 2) 

Using the asymptotic relation for 1- 'D(x) we get from the above inequality 

(6.1) (log n)-(1 +)b2 < P(Sn > bX(n)) < (log n)-b2 

for any positive constants 0 and b. 
Corresponding to every - < 1 and integer k we can find an nk such that nk -s o as 

k Xo and nk1 <-ck$ nk, k = 1, 2, . We assume that nO = 0. Then 

(6.2) nk 
k and nk-k- 1 nk(T-1)/T. 

We have from Theorem 5.1 for any 4 > 0 

P(S* > (1 + x(n) ) < 1 - I*( (1 + 4)(2 log log nk)) + C2(log k) k 2/2 

For k large, say, _ K, the right-hand side 

? C22(2 log log 1k) (log nk) _( 
+ )2 + C20(log nk) +6/2)n -k2/2 

< C23 k(+ )2 +C24 kVI(+6/2)z.-kE2/2 

so that 

(6.3) 0kK0 Sn > (I + 4)X(nk) 

Let s be an arbitrary positive number. Consider 

P(Sn > (I + e)X(n) i. o.) < P {maXnk -, n Ink Sn > (l + e)X(nk - ) i. o} 
? P{max1 <n<nk sn > (I + E)X(nk-l) io} 

By (6.2) {X(flk)}!{X(flk- 1)} ? (2T - 1)i for large k. Let T be chosen such that 
(1 + e)(2z-1)- '> 1 + 4. Then 
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By the Borel-Cantelli lemma we get from (6.3) and (6.4) 

(6.5) P(S" > (1 + e)X(n)i.o.) = 0 

for any e > 0. 

Proof of the theorem will be complete if we show that P(Sn > (1 -e)X(n) i.o.) = 1 
for any e > 0. 

Let us denote I(nk) =[2a, 2(nk-nk-1) log log (n = 2 + T2 [9lok] 

Consider for any positive 4 < I 

P(Wk) = P(Snk Smk > (1 '- )O(nk)) 

(6.6) -P({Sn > (1 -(i) )(fk)} {Sk > (n 

_P(Snk >( 2))(k J) P(Smk 2 (24(k)) 

Now {lIJ(nk)}/{X(mk)} -+ (z- I)+ and {I(nk)}!{X(nk)} r (Qc- 1)/z)2 < 1. Using (6.1) 
we then have from (6.6) for any positive constant 0 

P(Wk) > (log nk)-' +O)(1 (2-(log nk -)I2(t 1)/5 

? C25{k'(1 +0)(1 -(1)g)2 - k-2(T- 1)/5} 

>-(21)C2 5 k- (1 +0)(1-()2 

for sufficiently large k and -. The constant C25 in the above inequality is indepen- 
dent of k. If we choose 0 sufficiently small so that (1 + 0)(1 -(1))2 < 1 we obtain 

(6 . 7) ~Ek=KP(Wk) = oC. 

By Corollary 2.1 

|P(Wk I Wk- 1 
.. 
* ' Wj) -P(Wk) | < 2ypT2lgk 

Since k?-1pT2 logk converges, we get from (6.7) EkKP( Wk I Wk, , W1) = < 
Then by Corollary 2 page 324 [3] we have 

(6.8.) P(Wk i.o.)=1 

for any positive 4 < 1. Now as k -- oo 

(1 - 4)N(nk)- 2X(mk) {(1 - 4)(T- 1)T - 2K 
- 

}X(nk). 

If e is an arbitrary fixed positive constant, we can choose positive numbers 4 and 
T so that (1 - )(T- 1)T 2-2T-C 2> 1-e. Then 

P(Snk > (1 - )X(nk) i O') 

? P(Snk > (1 - 4)O(nk) - 2X(mk) i O-) 

> P(Snk -Sk > (1 - )'(nk) i.o.) 
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because from (6.5) ISnI _ 2X(n) for n > N5(wo) and all woeQ except for a set of 
probability measure zero. It now follows from (6.8) that 

(6.9) P(Snk > (I1-C)X(nk)i'O.) 1. 

The assertion is an immediate consequence of (6.9). 

NOTE. By standard arguments we relax the assumption (2.2) that the initial 
distribution is the stationary absolute probability distribution. 

Acknowledgment. We thank the referee for his comments which led to an 
improvement of the paper. 
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