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ABSTRACT
An ethyl methanesulfonate mutagenesis of Drosophila melanogaster was undertaken, and .3000 mutage-

nized second chromosomes were generated. More than 800 homozygous viable lines were established,
and adults were screened directly under polarized light for muscle defects. A total of 16 mutant strains
in which the indirect flight muscles were reduced in volume or disorganized or were otherwise abnormal
were identified. These fell into seven recessive and one semidominant complementation groups. Five of
these eight complementation groups, including the semidominant mutation, have been mapped using
chromosomal deficiencies and meiotic recombination. Two complementation groups mapped close to
the Myosin heavy chain gene, but they are shown to be in different loci. Developmental analysis of three
mutations showed that two of these are involved in the early stages of adult myogenesis while the other
showed late defects. This is the first report of results from a systematic and direct screen for recessive
flight muscle defects. This mutant screen identifies genes affecting the flight muscles, which are distinct
from those identified when screening for flightlessness.

THE mechanisms underlying myogenesis have been progenitor (Ruiz Gomez and Bate 1997). In the tho-
investigated intensely in Caenorhabditis elegans (Bren- racic and head segments, the adult progenitor myoblasts

ner 1974), leech (Jellies and Kristan 1988), grasshop- associate with imaginal disc cells and proliferate during
per (Ho et al. 1983), Drosophila (Bate 1993; Bate and larval life (Poodry 1980; Lawrence and Brower 1982;
Baylies 1996; Ruiz Gomez and Bate 1997; Baylies et Fernandes et al. 1991). During pupal development,
al. 1998; Roy and VijayRaghavan 1998), and verte- adult myoblasts move to specific sites of muscle forma-
brates (Buckingham 1992; Cossu et al. 1996; Firulli tion and fuse to form the adult fibers (Bate et al. 1991;
and Olson 1997). In the fruit fly Drosophila melanogaster, Currie and Bate 1991; Fernandes et al. 1991; Fernan-
muscle development takes place twice—in the embryo des and VijayRaghavan 1993; Roy and VijayRagha-
during the formation of the muscles of the larva and van 1997).
during pupal development when adult muscles are Several important features make adult flight muscle
made (Hooper 1986; Bate 1990; Fernandes et al. 1991; development interesting and novel. Unlike other seg-
Reedy and Beall 1993). Muscle development in the ments, the development of muscles in the second tho-
embryo involves the specification of the mesoderm racic segment (T2) occurs in the absence of any autono-
(Thisse et al. 1988; Azpiazu et al. 1996; Riechmann et mous requirement for homeotic gene function (Roy et
al. 1997), the choice of a muscle founder cell (Bate al. 1997). Thus, in T2 of the embryo and in the dorsal
1990; Rushton et al. 1995), and the consequent fusion T2 muscles of the adult, not only is there no expression
of myoblasts. This forms a fiber that attaches to specific of genes of the Antennapedia and Bithorax complex,
sites on the epidermis and is correctly innervated (Bate but ectopic expression aborts muscle development (Roy
1990; Broadie and Bate 1993). During embryonic myo- and VijayRaghavan 1997). Therefore, as in vertebrate
genesis, signals from the ectoderm and the mesoderm somite development, inductive influences play impor-
result in the selection and specification of a muscle tant roles in muscle patterning (Lance-Jones 1988;
progenitor cell (Ruiz Gomez and Bate 1997; Carmena Ordahl and Ledouarin 1992; Fernandes et al. 1994;
et al. 1998). This divides asymmetrically to give rise to two VijayRaghavan et al. 1996; Roy et al. 1997; Roy and
daughter cells, one of which becomes an adult muscle VijayRaghavan 1998). Another difference between

flight muscle myogenesis and that of the embryonic
muscles in Drosophila is that the adult motor neuronsWe dedicate this article to the founder of our Drosophila Stock Centre,
develop by modification of larval neurons. The physio-Professor H. A. Ranganath, on the occasion of his 50th birthday.
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motor neurons. The mechanisms that underlie this1 Present address: Department of Biology, University of York, York
YO1 5DD, United Kingdom. transformation of neuronal physiology remain largely
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phonate (EMS) at 25 mm was administered to 2-day-old Can-unknown. It has been suggested that the developing
ton-S adult male flies following the procedure described inmuscle fibers may play a role in this process (Fernandes
Grigliatti (1986). EMS-treated males were crossed to Tft/

et al. 1994; Roy and VijayRaghavan 1998). The devel- CyO virgin females, and the F1 male offspring, which had either
opment of a male-specific muscle in the adult abdomen curly or tufted phenotypes, were crossed separately to Tft/

CyO virgin females. Progeny from these individual crosses car-is dependent on the sex of the motor neuron, which is
rying the CyO balancer chromosome were sib-mated to obtainthe only dramatic example of neuronal influence on
the mutagenized chromosome in homozygous condition. Themuscle patterning so far reported (Lawrence and
IFMs of the viable homozygotes were screened for possible

Johnston 1986; Currie and Bate 1995). Such similar muscle defects using polarized light. The genetic scheme is
influences between neuron and muscles remain yet to presented in Figure 1. Control mutagenesis experiments were

carried out using X^X/Y stocks following the procedure inbe identified. The IFMs provide an accessible system in
Grigliatti (1986). Furthermore, alleles of ifm(2)RU3, if-which inductive influences, such as epidermis-muscle
m(2)RU4, and ifm(2)RU5 (see results for nomenclature) wereand nerve-muscle interactions, as well as the properties
isolated by crossing flies carrying a mutagenized chromosome

intrinsic to the mesoderm that affect muscle pattern with those carrying an appropriate noncomplementing defi-
and differentiation, can be studied. ciency-bearing chromosome.

Muscle analysis: For analysis of the IFMs in the mutantScreens for adult flight muscle mutants have been few
adults, whole-thorax mounts were prepared following the pro-and far between. Many X-linked flightless mutants were
cedure described by Fyrberg et al. (1994). Briefly, the headisolated during the screening for mutants that showed
and abdomen of each fly were removed, and the thoraces

wing position abnormalities (Deak 1977; Homyk and were dehydrated in alcohol series, cleared in methyl salicylate,
Sheppard 1977; Koana and Hotta 1978; Deak et al. and observed in plane-polarized light using a Leica Wild M3Z

zoom stereomicroscope with polarizing filter attached. For1982). Many of these genes have been analyzed during
photography, hemithoraces were made by freezing in liquiddevelopment, and the molecular analysis of some of
nitrogen, bisecting them with a razor blade, and then pro-them has also been fruitful (Costello and Wyman
cessing as described above. The sections were observed and

1986; Homyk and Emerson 1988; de la Pompa et al. photographed using a Leitz Aristoplan microscope using po-
1989; Fleming et al. 1989; De Couet et al. 1995). The larized light optics.
autosomal screens for muscle mutants have, for obvious Complementation tests: Five-day-old males and virgin fe-

males from each of the newly isolated mutant lines werereasons, concentrated on isolating and studying domi-
crossed reciprocally among each other, and the progeny werenant flightless phenotypes. These studies have identified
analyzed for IFM defects. All the newly isolated mutantsmutations in genes that encode muscle structural com- were crossed reciprocally with four viable Myosin heavy chain

ponents. The ease with which dominant flightless mu- (Mhc) alleles (Mhc7, Mhc12, Mhc13, and Mhc19), and the muscle
tants have been recovered suggests either that the dose phenotypes of the trans-heterozygotes (mutant/Mhc) were ob-

served. The frequency of recombination between the Mhcrequirements of these gene products are stringent or
locus and a specific mutation was estimated by scoring thethat relatively small perturbations in muscle structure
number of recombinants with a wild-type IFM phenotype ascan reduce flight ability (Mogami and Hotta 1981; seen using polarized light microscopy.

Okamoto et al. 1986; Warmke et al. 1989; Cripps et al. Flight test: This was done, with slight modifications, as de-
1994a). scribed by Vigoreaux et al. (1993). Individual flies, 1–2 days

old, were placed in an empty milk bottle and observed forIn this article, we describe the results of a direct screen
wingbeat and flight. Flies were scored on a scale from 0 to 3for second chromosomal recessive mutations that result
as flightless, weak fliers, moderate fliers, and normal fliers,in IFM abnormalities. We have identified eight new com-
respectively. Flies that never beat their wings and fell straight

plementation groups that affect muscle development. to the bottom when the bottle was tapped were termed flight-
Our results demonstrate the advantage of a screen that less and assigned a score of 0. When the bottle was tapped,
directly examines the muscle phenotype. We discuss our flies that landed on a wall or bottom with some wing vibration

but that otherwise did not fly were assigned a score of 1 (weakresults in relation to the possible roles of the identified
fliers). Flies that vibrated their wing when the bottle was notgenes and prospects for further screens.
tapped and flew sporadically were assigned a score of 2 (mod-
erate fliers). Normal fliers with very active wingbeats were
assigned a score of 3.MATERIALS AND METHODS

Fertility and viability: Five-day-old males and virgin females
from each mutant line were crossed reciprocally to Canton-SFly stocks: Canton-S was used as the wild-type strain. The
males and virgin females. Twenty replicate crosses were madebalancer chromosomes used are described in Lindsley and
for each line. Each mating was observed for 3 hr. After 5 days,Zimm (1992), as are the other markers used in the crosses
the parents were transferred to a fresh vial, then each vial wasoutlined below, unless otherwise specified. A total of 84 defi-
examined for viable larvae. Mutant males or females, whichciency- and duplication-bearing strains covering almost 80% of
produced no viable larva, were termed sterile.the second chromosome were obtained from the Drosophila

The viability of the newly isolated mutants was estimated byStock Center (Mysore and Indore, India) and the Blooming-
adopting the following method. Ten males and females agedton Stock Center in the U.S. Details of the rearrangement
at least for 5 days were separately placed in food vials for 2strains where our mutants are mapped and their breakpoints
days to mate. Serial transfers to a new set of fresh food vialsare given in the results of the respective mutants. All the stocks
were made every 2 days for a total of six transfers. The numberwere cultured on standard cream of wheat-agar medium at
of heterozygous and homozygous flies emerging in each of24 6 18 in half-pint bottles.

Mutagenesis and isolation of mutants: Ethyl methanesul- these vials was counted. Five such replicates were set up for
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each mutant line, and the viability of the homozygous flies was
calculated as a fraction of the total number of heterozygotes.
Similar fertility and viability experiments of the mutants with
the noncomplementing deficiency lines were also carried out.

Maceration of thorax: To observe myofibrils of IFM, the
muscles were dissected from the thorax using fine forceps and
needles in a drop of phosphate-buffered saline (PBS; relaxing)
or 0.7% sodium chloride (contracting) solution. The muscle
was then teased with fine needles to separate the myofibrils
and then covered with a coverslip. The specimens were exam-
ined with a phase-contrast microscope (Leica) and photo-
graphed.

Rescue with Mhc transgene: w; P[w1Mhc1]wm3 transgene
flies (Cripps et al. 1994b) carry two extra copies of the wild-
type Mhc gene inserted on chromosome 3. This strain was
crossed to w/w; Ifm(2)RUI/CyO; 1/1 and w/w; ifm(2)RU21/
CyO; 1/1 using standard genetic methods. The resulting
noncurly F1 progeny with orange, i.e., P[w1], eyes of the geno-
types w; Ifm(2)RU1/1; P[w1Mhc1]wm3/1 and w; ifm(2)RU21/
1; P[w1Mhc1]wm3/1, respectively, were tested for flight, and
wing and muscle phenotypes. Virgin females and males of
these were crossed to get an F2 generation, and the resulting
progeny were screened for flight, and wing and muscle pheno-
types.

Developmental analysis: Appropriate crosses were made to
create mutant flies carrying either the MHC-lacZ (Hess et al.
1989) or Act88F-lacZ (Hiromi et al. 1986) transgenic promoter-
lacZ fusions. Developmental analysis of the IFMs of these flies
was done by histological and histochemical methods following Figure 1.—Genetic scheme for screening indirect flight
the protocols of Fernandes et al. (1991). muscle mutations on the second chromosome. EMS-treated

males were crossed to CyO/Tft virgin females. F1 male offspring
were aged for 2 days. Each of these males, which had either

RESULTS a CyO or Tft phenotype, were crossed separately to CyO/Tft
virgin females. Male and virgin female progeny from the aboveMutagenesis and screening of the mutations: The mu-
cross carrying the CyO balancer chromosome were crossed to

tagenesis scheme in Figure 1 was used to generate sec- each other to bring the mutagenized chromosome in homozy-
ond-chromosome IFM mutants. Five independent muta- gous condition. IFMs of the viable homozygotes were screened
genesis experiments were conducted, from which a total for possible defects, and the heterozygotes were maintained

for stocks.of 3283 mutagenized chromosomes were generated.
From these, 897 viable recessive lines were recovered
in F3. Flies homozygous for the mutagenized second

nated as ifm(2)RU31–4 and ifm(2)RU3l5–7 for lethal alleles.chromosome from each line were analyzed for IFM de-
Three alleles of ifm(2)RU4 and two alleles of ifm(2)RU5fects, and 16 lines were identified in which the IFMs
were also recovered.were reduced in volume or otherwise abnormal. Each

Phenotypes of the mutants: Table 1 summarizes themutant originated from a single male from an indepen-
muscle abnormalities of the newly isolated mutants asdent culture. One mutant was found to be semidomi-
moderate or severe. The main features of the mutantsnant, and the remaining 15 were completely recessive.
(in each section, the data of first allele have been de-Furthermore, 1600, 1280, and 900 mutagenized chro-
scribed unless otherwise specified) are as follows:mosomes were screened for new noncomplementing

All animals homozygous for the semidominant mu-alleles of ifm(2)RU3, ifm(3)RU4, and ifm(2)RU5, respec-
tant Ifm(2)RU1 show a drooping wing phenotype, intively. This yielded six alleles for ifm(2)RU3, two alleles
some cases so extreme that it interferes with walking.for ifm(2)RU4, and one allele for ifm(2)RU5.
The IFMs in these flies are totally disorganized, withComplementation analysis and nomenclature: Muscle
the muscle fibers appearing thin, disrupted, and con-phenotypes of progeny from the reciprocal crosses be-
stricted to a small region of the thorax (Figure 2B).tween all the lines revealed that the semidominant muta-
Although the phenotype is completely penetrant, thetion showed a mutant phenotype in trans with all other
expressivity varies. Thinning of the dorsal longitudinalmutations and in trans with wild-type flies. The semidom-
muscles (DLMs) is seen toward either end of the thorax,inant mutation has been named Indirect flight muscle (2)
whereas in some extreme cases, a whole DLM appearsRU1 (Ifm(2)RU1). The other 15 recessive mutant lines
as thin strips. Phase-contrast micrographs show thatfall into seven complementation groups and they have
myofibrils appear to be easily broken with no demarca-been designated as ifm(2)RU2–8. Nine alleles of ifm(2)
tion of the muscle bands (Figure 3C). Ifm(2)RU1/1RU2 have been isolated and designated as ifm(2)RU21–9.

The viable alleles for the ifm(2)RU3 have been desig- heterozygous flies also show a slight drooping of the
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TABLE 1

Wing and muscle abnormalities of the newly isolated IFM mutants

Wing
Defects in IFMsa

DLMs DVMs
Total no. of Raised/drooping

Mutant lines flies scored Normal and extended A B A B

Ifm(2)RU1 118 F 118 (100)b F 118 13 105
Ifm(2)RU1/1 315 110 205 (65) 180 135 216 99
ifm(2)RU21 179 02 177 (98.8) 39 140 120 59
ifm(2)RU31 124 105 19 (15.3) 10 51 16 10
ifm(2)RU41 176 130 46 (26.1) 28 28 F F
ifm(2)RU51 145 100 45 (31) 10 30 02 01
ifm(2)RU6 124 114 10 (8) 55 05 28 04
ifm(2)RU7 144 115 29 (20.1) 05 37 F F
ifm(2)RU8 206 206 F 28 20 F F

A, moderate defect of the specific IFM; B, severe reduction of the specific IFM; F, normal wing muscles.
The numbers in parentheses indicate the percentage of wing position abnormality.
a Number of flies showing reduction in the volume or variation in number or other abnormalities in the

IFMs.
b Drooping wing phenotype only.

wings, and the DLMs are affected to varying extents. In nized and in extreme cases are totally degenerated (Fig-
ure 2D). The fibrils are split, spongy, and loosely packedsome flies (180/315), one or two DLMs are disorga-

nized, and in others (135/315), the posterior regions (Figure 3E). ifm(2)RU21/1 fibrils show normal banding
patterns (Figure 3F), confirming this as a recessive al-have degenerated (Figure 2C and Table 1). The dorso-

ventral muscles (DVMs) are also usually disorganized lele.
The ifm(2)RU31 homozygotes show normal (105/124)or degenerated (Figure 2B, Table 1). The myofibrils of

the heterozygotes appear more or less like those of the to raised/held-out wing phenotypes (19/124). The
number of DLM fibers varies, but usually (51/124) onlyhomozygotes, except that the Z bands are preserved

(Figure 3D). Homozygotes are clearly more severely three are present, the posterior ends of these fibers have
degenerated, and the DVMs are disorganized (Figureaffected than heterozygotes.

ifm(2)RU2 homozygotes (all alleles) have raised wings, 2E). The single myofibril in the phase-contrast micro-
graph (Figure 3G) appears to have a normal bandingbut this phenotype is not completely penetrant (Table

1). The DLMs show thinning in the anterior parts to pattern, except for a few breaks and gaps. Subsequently
isolated lethal alleles of ifm(2)RU31 show late pupal le-various degrees (Figure 2D). The DVMs are also disorga-

Figure 2.—Normal and mutant IFM morphol-
ogy as seen under a polarized light microscope.
(A) Normal IFMs. (B) Ifm(2)RU1/Ifm(2)RU1. (C)
Ifm(2)RU1/1. (D) ifm(2)RU21/ifm(2)RU21. (E) ifm(2)
RU31/ifm(2)RU31. (F) ifm(2)RU41/ifm(2)RU41. (G)
ifm(2)RU51/ifm(2)RU51. (H) ifm(2)RU6/ifm(2)RU6.
(I) ifm(2)RU7/ifm(2)RU7 and ifm(2)RU8/ifm(2)RU8
(both show a similar type of variation in the num-
ber of the DLMs). The green asterisk shows one
of the six DLMs, and red represents the first set of
the DVMs. The red arrows show the disorganized
muscle fibers. The green arrowhead shows one
of the DLMs of the mutants where only three
DLMs are present. In all the figures anterior is
toward the left-hand corner and dorsal is toward
the top. Only one hemisegment is shown in all
the figures. All figures are shown at the same
magnification. Bar, 200 mm.
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mal, but degeneration was seen in a few homozygotes
(Figure 2G). An aberrant splitting occurs along the
length of the myofibrils (Figure 3I), a phenotype also
seen in another allele, ifm(2)RU52.

ifm(2)RU6 homozygotes have a slight drooping of the
wings and IFMs degenerate to various degrees (Figure
2H, Table 1). A splitting and degeneration of myofibrils
occurs in some regions, but in others, the myofibrils
appear completely normal (Figure 3J).

ifm(2)RU7 and ifm(2)RU8 homozygotes exhibit a held-
out wing phenotype, and the DLMs range in number
from three to six (Figure 2I), but the myofibrils appear
normal.

Flight ability: Table 2 summarizes the flight ability
of the mutants. Apart from Ifm(2)RU1 and ifm(2)RU21

homozygotes, which are completely flightless, all other
mutants show some degree of flight ability—from if-
m(2)RU31 and ifm(2)RU6, which are either flightless or
weak fliers, to ifm(2)RU7 and ifm(2)RU8, where most
homozygotes are fliers, though a few show moderate
flight. Except for Ifm(2)RU1 heterozygotes, which are
flightless, heterozygotes of all the other mutants show
normal flight.

Mapping of the mutants: The semidominant If-
m(2)RU1 mutant mapped between black (48.5) and cin-
nabar (56.5) at 52.4, close to the Mhc gene (Table 3).

Figure 3.—Phase-contrast micrographs of normal (A and This was confirmed using chromosomal deficiencies.
B) and mutant myofibrils (C–J). (A) Normal myofibril in the Ifm(2)RU1 was uncovered by the deficiency Df(2L)H20
relaxed condition. (B) Highly contracted state of a normal (36A8-9; 36E3-4) and showed wing and muscle pheno-myofibril. (C) Ifm(2)RU1/Ifm(2)RU1. (D) Ifm(2)RU1/1. (E)

types more severe than those seen in animals homozy-ifm(2)RU21/ifm(2)RU21. (F) ifm(2)RU21/1. (G) ifm(2)RU31/if-
gous for this mutation (Figure 4, A and B). Ifm(2)RU1 inm(2)RU31. (H) ifm(2)RU41/ifm(2)RU41. (I) ifm(2)RU51/if-

m(2)RU51. (J) ifm(2)RU6/ifm(2)RU6. The mutant myofibrils do trans with all other 83 deficiencies, including Df(2L)H68
not show band patterns as shown in A in the relaxing solution; (36B-C1; 37A1-B1), showed a phenotype similar to that
they appear as homogenous rods. The arrows show the defec- of Ifm(2)RU1/1 animals. Df(2L)H20/1 flies, thoughtive Z bands, and the arrowheads show the defective myofila-

haploinsufficient for flight, show normal muscle pat-ments. A, anisotropic band; I, isotropic band; Z, telophragma
terns, except for a reduced birefringence of the IFMs(fine transverse membrane attached to the sarcolemma); M,

mesophragma (a delicate membrane traversing the median compared to those of wild type. These crosses confirm
discs). All the figures are shown at the same magnification. the semidominant nature of this mutation and map to
Bar, 2.5 mm. the 36A8-9; 36B-C1 region.

The recessive mutations could not be readily assigned
a map position by meiotic recombination because ofthality (data not shown). The viable alleles show similar
their incomplete penetrance and expressivity. There-types of muscle defects, but those of ifm(2)RU31 are
fore, mapping these mutations by using chromosomalespecially variable in expressivity and penetrance (28–
deficiencies was attempted. Four of the seven recessive35%).
complementation groups were mapped using 84 defi-ifm(2)RU41 homozygotes show normal (130/176) to
ciencies and duplication strains covering 80% of theslightly extended wings (46/176). The DLMs have de-
second chromosome. The remaining three could notgenerated fibers that are split in the posterior end (Fig-
be mapped with these strains.ure 2F). The DVMs appear normal. Where degenera-

ifm(2)RU2/Df(2L)H20 animals, independently of thetion occurs, no banding pattern of the myofibrils is seen
ifm(2)RU2 allele used, show wing and muscle pheno-(Figure 3H). Two viable alleles, one showing a more
types similar to ifm(2)RU21 homozygotes (Figure 4, Csevere phenotype and the other very similar phenotypi-
and D). Df(2L)H68, however, complements the mutantcally to ifm(2)RU41, were recovered during the allele
phenotype. This suggests that this mutation is alsoscreening.
located in the same region as Ifm(2)RU1; i.e., 36A8-9;ifm(2)RU51 homozygotes have a weak drooping or
36B-C1.held-out wing phenotype, and their DLMs show many

ifm(2)RU31 mutant phenotypes are uncovered by thedefects, including improper splitting, variation in fiber
number, and degeneration. The DVMs are usually nor- deficiency Df(2R)Px (60B8-10; 60D1-2), but they are cov-
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TABLE 2

Flight ability of the newly isolated mutants

Weak Moderate Normal
Genotype Flightless flight flight flight

1/1 (Canton-S) — — 2 48
Ifm(2)RU1/Ifm(2)RU1 50 — — —
Ifm(2)RU1/1 45 5 — —
ifm(2)RU21/ifm(2)RU21

Raised wing 50 — — —
Normal wing 36 14 — —

ifm(2)RU21/1 — — 10 40
ifm(2)RU31/ifm(2)RU31

Expanded/raised wing 44 6 — —
Normal wing 12 38 — —

ifm(2)RU31/1 — — 4 46
ifm(2)RU41/ifm(2)RU41

Expanded wing — 26 24 —
Normal wing — — 6 44

ifm(2)RU41/1 — — 2 48
ifm(2)RU51/ifm(2)RU51

Expanded wing — 14 28 8
Normal wing — 2 46 2

ifm(2)RU51/1 — — 4 46
ifm(2)RU6/ifm(2)RU6

Expanded 1 40 4 5
Normal — 14 28 8

ifm(2)RU6/1 — 5 17 28
ifm(2)RU7/ifm(2)RU7 — — 12 38
ifm(2)RU8/ifm(2)RU8 — — 16 34

The number of flies tested for each genotype was 50.

ered by the deficiencies Df(2R)or-BR6 (59D5-10; 60B3- are less penetrant than mutant homozygotes (Figure
4F). Neither deficiencies show muscle defects in wild-8) and Df(2R)Px2 (60C5-6; 60D9-10). The anterior ends

of the DLM are completely lost in ifm(2)RU31/Df(2R)Px type heterozygous conditions.
The recessive phenotype of ifm(2)RU51 is comple-(Figure 4E), a phenotype that is not seen in Df(2R)

Px/1 flies. This indicates that ifm(2)RU31 maps to the mented by Df(2L)al (21B8-C1; 21C8-D1) and Df(2L)net
K1 (21A1; 21B4-B5), but Df(2L)PMF (21A1; 21B7-8) fails60B8-10; 60C5-6 region.

The recessive phenotype of ifm(2)RU41 is covered by to complement. These deficiencies do not show muscle
defects in heterozygous conditions. These results showthe deficiency Df(2R)bw5 (59D10-E1; 59E4-F1) and un-

covered by Df(2R)bw-S46 (59D8-11; 60A7), which maps that ifm(2)RU5 is located in the 21B4-5; 21B7-8 region.
Fertility: Animals homozygous for ifm(2)RU21, ifm(2)ifm(2)RU4 to the region 59E4-F1; 60A7. The muscle

defects of the ifm(2)RU41/Df(2R)bw-S46 heterozygotes RU51 and ifm(2)RU7 are sterile. While Ifm(2)RU1 homo-

TABLE 3

Muscle defects of the newly isolated IFM mutants over noncomplementing deficiencies

No. of flies No. of flies with
Mutant lines Deficiencies scoreda normal muscleb Defect in IFMsc

Ifm(2)RU1 Df(2L)H20 77 — 77 (100)
ifm(2)RU21 Df(2L)H20 46 4 42 (91)
ifm(2)RU31 Df(2R)Px 250 201 49 (20)
ifm(2)RU41 Df(2R)bw-S46 110 84 26 (24)
ifm(2)RU51 Df(2L)PMF 375 351 24 (6)

a The number of heteroallelic survivors/total progeny obtained by crossing balancer heterozygotes (mutant/
CyO) with the noncomplementing deficiencies.

b No visible muscle defect observed under polarized light.
c The values in parentheses are percentages.
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and ifm(2)RU21 interact with viable Mhc alleles (amorphs
Mhc1 and Mhc7 and a hypomorph Mhc13) in trans to give
muscle phenotypes that are intermediate between the
two or show severe IFM degeneration (Figure 5, B–I).
However, wild-type recombinants were recovered with
such a frequency between Mhc and the Ifm(2)RU1 or
ifm(2)RU2 alleles in the F2 generation (Table 5) that we
do not consider Ifm(2)RU1 and ifm(2)RU2 alleles of Mhc
(see discussion). All other mutations complemented
the Mhc alleles.

Rescue with Mhc transgene: Flies carrying two copies
of the w; P[w1Mhc1]wm3 transgene rescue flight defects
and muscle phenotypes of amorphic Mhc alleles (Cripps
et al. 1994b). To ascertain whether the two mutations
Ifm(2)RU1 and ifm(2)RU2, which map to the Mhc region,
are allelic to Mhc or not, animals of the genotype w;
Ifm(2)RU1/1; P[w1Mhc1]wm3/1 were generated. Such
animals are flightless, and their wing and muscle pheno-
types are similar to those of Ifm(2)RU1/1. This shows
that the presence of the one extra copy of the Mhc1

does not rescue the semidominant mutant phenotype.
Similarly, F2 progeny of the appropriate genotype, i.e.,
heterozygous or homozygous Ifm(2)RU1 mutant ani-
mals, each carrying either one or two copies of theFigure 4.—Muscle phenotypes of the mutations in trans

with the noncomplementing deficiency and duplication transgene, were examined. The transgene in one or two
strains. (A and B) Ifm(2)RU1/Df(2L)H20 showing moderate copies failed to rescue the homozygous wing and muscle
to severe expression of muscle defects, respectively. (C and D) phenotypes of mutants in the F2 progeny. Animals car-
ifm(2)RU21/Df(2L)H20 showing moderate and severe muscle

rying the Mhc1 transgene and one copy of ifm(2)RU21
defects, respectively. (E) ifm(2)RU31/Df(2R)Px showing the de-

show normal flight, and wing and muscle phenotypes,generative muscle phenotype. (F) ifm(2)RU41/Df(2R)bw-S46
showing muscle defect at the posterior ends of the DLM fibers. an expected result since it is completely recessive. How-
Red arrows show the muscle defects. Bar, 200 mm. ever, all the F2 homozygous ifm(2)RU21 progeny with

one or two copies of the transgene are flightless and
show mutant wing and muscle phenotypes.zygous females are fertile, homozygous males are sterile,

Developmental analysis: Table 6 summarizes the devel-as shown by their inability to mate with Canton-S fe-
opmental analysis of three mutant lines, namely If-males. The sterility could result from defects in court-
m(2)RU1, ifm(2)RU21 and ifm(2)RU31. Ifm(2)RU1 homo-ship or other events preceding copulation. All the infer-
zygotes show uneven expression of the Act88F-lacZ andtile lines are maintained as balanced stocks. The other
MHC-lacZ transgenes in the early developing IFMs; theoriginal lines, ifm(2)RU31, ifm(2)RU41, and ifm(2)RU6,
fibers appear spongy with aberrant structures (Figureare fertile.
6B). At z30–32 hr after puparium formation (APF),Viability: Viability data of the mutants are presented
the defect is very prominent in the margins of the mus-in Table 4. The viabilities of ifm(2)RU41, ifm(2)RU51,
cle fibers, where attachment to the epidermis takes placeifm(2)RU7, and ifm(2)RU8 homozygotes are not affected
(Figure 6D). In the later stages, the fibers pull apart tosignificantly. The ifm(2)RU21 gene alleles show allele-
give the adult thinning muscle phenotype (see Figure 2B).specific effects on viability. Alleles ifm(2)RU21–3 and ifm(2)

The early stages of IFM development in the ifm(2)RU28 are fully viable, and the other five alleles show
RU21 take place normally; defects are first seen in thesignificant reductions in homozygous viability. The orig-
form of uneven expression of MHC-lacZ and Act88-lacZinal lines Ifm(2)RU1 and ifm(2)RU6, as well as all viable
around 28 hr APF at the regions that lead to defectivealleles of ifm(2)RU3, show significant reductions in via-
thinning of myofibers in the adults (Table 6, Figurebility. Except for ifm(2)RU41 and ifm(2)RU51, all mutants
2D). Defects in the splitting of the DLMs lead to theshow very low frequency of viability with the noncomple-
development of a variable number of DLMs in ifm(2)menting deficiencies. This indicates that most of the
RU31 homozygotes (Table 6), while the degenerationmutations in trans-combination with a deficiency for the
of the muscles (Figure 2E) takes place a few hours beforeregion show stronger adult muscle and lethal pheno-
the eclosion. The same degeneration process occurs at atypes than homozygotes, except for ifm(2)RU41 (see
similar time in ifm(2)RU41 and ifm(2)RU51 homozygotes.mapping section above).

Interactions with Myosin heavy chain alleles: Ifm(2)RU1 Detailed developmental studies of the mutant alleles of
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TABLE 4

Viability of the new IFM mutants

Homozygotes Upon mapped deficiency
Mutant
lines No. of fliesa % x2 No. of fliesb % x2

Ifm(2)RU1 24/511 4.7 23.7* 77/564 13.7 10.9*
ifm(2)RU21 226/880 25.7 1.51 46/429 10.7 14.7*
ifm(2)RU22 197/635 31 0.09 61/534 11.4 13.8*
ifm(2)RU23 137/506 27 1.01 42/290 14.5 10.1*
ifm(2)RU24 128/568 22.5 13.8* 20/375 5.3 22.7*
ifm(2)RU25 118/570 20.1 4.39* 27/317 8.5 17.7*
ifm(2)RU26 116/792 20.9 4.25* 28/337 8.3 18.0*
ifm(2)RU27 130/772 16.8 7.69* 22/335 6.6 20.6*
ifm(2)RU28 176/726 24.2 2.22 42/517 8.1 18.3*
ifm(2)RU29 158/842 18.7 5.97* 09/281 3.2 26.3*
ifm(2)RU31 48/456 10.5 14.93* 250/425 58.8 18.7*
ifm(2)RU41 180/510 35.3 0.07 110/254 43.3 2.7
ifm(2)RU51 168/528 31.8 0.03 375/863 43.5 2.8
ifm(2)RU6 66/405 16.3 8.17* — — —
ifm(2)RU7 44/216 20.37 4.64* — — —
ifm(2)RU8 145/312 46.47 4.82* — —

*P , 0.05 indicates a significant difference from the expected ratio and all others are insignificant at the
5% level.

a The figures are the number of homozygotes obtained from the cross between balancer heterozygotes
(*/CyO).

b These figures represent the number of heteroallelic survivors/total progeny obtained by crossing balancer
heterozygotes (mutant/CyO) with the noncomplementing deficiencies as in Table 3.

the other three new genes have not yet been conducted et al. 1980; Mogami and Hotta 1981; Deak et al. 1982;
because of their low penetrance and expressivity. Warmke et al. 1989; Cripps et al. 1994a,b; De Couet et

al. 1995; An and Mogami 1996). Autosomal screens for
dominant mutations led to the identification of genes

DISCUSSION encoding structural components of muscles (Fyrberg
et al. 1980; Mogami and Hotta 1981; Okamoto et al.Extant adult Drosophila muscle mutants have been
1986; Cripps et al. 1994a). Very few genes have beenidentified using wing position, thoracic morphology, or
identified that affect the early events in adult flightflight ability as selective phenotypes (Deak 1977; Homyk

and Sheppard 1977; Koana and Hotta 1978; Fyrberg muscle development. Mutations of the erect-wing (ewg)

Figure 5.—Interaction muscle morphology of
Ifm(2)RU1 and ifm(2)RU2 with the Mhc alleles. (A)
Normal IFMs. (B) Ifm(2)RU1/Mhc1. (C) if-
m(2)RU21/Mhc1. (D) Mhc7 homozygote. (E)
Ifm(2)RU1/ Mhc7. (F) ifm(2)RU21/Mhc7. (G) Mhc13

homozygote. (H) Ifm(2)RU1/ Mhc13. (I) if-
m(2)RU21/Mhc13. Red arrows show the disorga-
nized IFMs. Red asterisk indicates one set of
DVMs, while the green asterisk shows one of the
DLMs. In A–I, anterior is to the left and dorsal is
to the top. Only one hemisegment is shown. Bar,
200 mm.
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TABLE 5

Frequencies of wild-type recombinants recovered from mutant Ifm(2)RU1 and ifm(2)RU2 alleles
crossed to four different viable Mhc alleles

Mutant lines Ifm(2)RU1 Mhc1 Mhc7 Mhc12 Mhc13 Mhc19

Ifm(2)RU1 16/679 1/633 1/648 2/655 1/671
ifm(2)RU21 0/306 — 1/328 0/560 2/359 0/383
ifm(2)RU22 0/396 — 0/330 0/680 0/326 0/264
ifm(2)RU23 0/441 — 1/281 0/357 1/516 0/339
ifm(2)RU24 0/502 — 0/310 0/680 0/328 0/264
ifm(2)RU25 0/611 — 2/278 0/388 0/336 0/364
ifm(2)RU26 0/607 — 0/263 0/325 0/316 2/317
ifm(2)RU27 0/248 — 1/297 1/503 0/293 0/341
ifm(2)RU28 0/610 — 0/311 0/435 0/277 0/308
ifm(2)RU29 0/496 — 2/303 0/484 0/282 0/382

Mhc1/ifm(2)RU2 alleles cause sterility.

gene affect early events of differentiation (Deak et al. muscle development itself (Ruiz Gomez and Bate 1997;
Anant et al. 1998). It is clear that we need to decipher1982; De Simone et al. 1996; Roy and VijayRaghavan

1998), whereas those in the stripe (sr) gene affect the the roles of these and other molecules that orchestrate
the process of myogenesis. In close association with mus-attachment of developing muscles to the thoracic epi-

dermis (Costello and Wyman 1986; de la Pompa et cle development, the related events of muscle attach-
ment and innervation take place. For the IFMs, theseal. 1989; Lee et al. 1995; Fernandes et al. 1996).

Studies of the events and mechanisms in adult muscle processes have been described in terms of the expres-
sion patterns of a variety of genes (Fernandes anddevelopment (Crossley 1978; Fernandes et al. 1991,

1994; Fernandes and VijayRaghavan 1993; Roy and VijayRaghavan 1993; Fernandes et al. 1996; Roy and
VijayRaghavan 1998). The sr gene affects muscle at-VijayRaghavan 1997, 1998; Roy et al. 1997) indicate

a role for many regulatory events (Baylies et al. 1998; tachment and is expressed in the epidermis, but we
know little about the mechanisms by which it regulatesCripps et al. 1998). It has been possible recently to

elucidate a regulatory cascade of gene interactions that this process. The molecular and cellular bases for the
nerve-muscle interactions that are thought to occuroperate during flight muscle formation. Twist and D-mef2,

two genes that encode transcription factors, play critical early in IFM development (Fernandes and Keshishian
1998; Roy and VijayRaghavan 1998) also remain elu-roles in IFM formation. Twist is a direct regulator of

D-mef2 expression in myoblasts that will give rise to IFMs. sive.
There are several reasons for the paucity of adultIn turn, D-mef2 is involved in the execution of the proper

differentiation program of these muscles (Cripps et al. flight muscle mutants that affect IFM development. The
first and most straightforward explanation is that there1998; Taylor 1998). Expression patterns of several

other transcription factors and regulatory molecules have been no systematic screens for recessive adult mus-
cle mutants to date, either by using flightlessness as ahave been documented in the IFM myoblasts and during

TABLE 6

Summary of developmental studies of the newly isolated mutants

Ifm(2)RU1 ifm(2)RU21
ifm(2)RU31

No. of individuals
No. of No. of with muscle

Developmental No. of individuals with No. of individuals with No. of defects (%)
stages individuals muscle defects individuals muscle defects individuals
(hours APF) screeneda (%) screeneda (%) screeneda 3F 4F

8–12 42 71 36 — 48 — —
13–20 42 90 48 — 45 11 9
21–28 51 92 50 — 60 13 7
29–72 54 96 50 64 45 18 11
Adult 45 100 40 100 45 19 11

Dashes indicate muscle defects. F, muscle fibers.
a Total number of individuals analyzed using both Act88F-lacZ and MHC-lacZ transformants.
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in the latter two cases it is known that these genes are
not haploinsufficient for flight (Cripps et al. 1994a).

We have reported on the first direct visual screen for
recessive mutations on the autosomes that cause muscle
defects. The flight testing of the new mutant lines re-
vealed that flies with slightly extended wing position and
muscle defects [ifm(2)RU6, ifm(2)RU7, and ifm(2)RU8]
could retain flight, while mutant flies with normal wing
position can show flightlessness, as in the case of ifm(2)
RU31. This indicates that flightlessness and wing position
defects are two often independent phenotypes. Al-
though our direct screen is labor intensive, it has re-
sulted in the identification of several new genes that
affect flight muscle development. Given the increasing
density of the Drosophila physical map, it should be
possible to more precisely map the genes we have identi-
fied and characterize them at the molecular level. An-
other “direct screen,” but for embryonic muscle defects,Figure 6.—Developmental stages of Ifm(2)RU1 showing
has also successfully used polarized light to screen formuscle abnormalities. Pupae of the desired ages carrying the

mutant chromosome with the Act-lacZ transformant were dis- X-chromosome mutants (Drysdale et al. 1993).
sected and stained with X-gal to study the developmental de- Our screen identified 16 mutant strains that fell into
fects. (A) Normal IFMs at 22 hr APF. (B) Ifm(2)RU1 at 22 hr 7 recessive complementation groups together with oneAPF. (C) Normal IFMs at 32 hr APF. (D) Ifm(2)RU1 at 32 hr

semidominant allele. The frequency of occurrence ofAPF. Red arrows show the defective DLMs and DVMs. Yellow
the viable recessive muscle mutations is 0.5% (7/3283).arrowhead indicates DVM-1. Green asterisks mark the dor-

salmost DLM in the entire panel. Black asterisk indicates the Five of the 8 complementation groups, including the
ventralmost DLM set. Anterior is the top, and dorsal midline semidominant mutation, have been mapped using mei-
is toward the left. Bar, 10 mm. otic recombination and/or chromosomal deficiencies.

It is very interesting to note that the muscle phenotype
of Ifm(2)RU1/Df is more extreme than those seen in

screen or by direct examination of muscle. Second, Ifm(2)RU1 homozygotes. One of the possibilities is that
many of the genes that have roles in adult flight muscle this deficiency covers many genes involved in the muscle
development may have earlier essential functions and, formation, namely the Mhc region, together with our
thus, loss-of-function mutations may lead to recessive Ifm(2)RU1 and ifm(2)RU21 mutations. Therefore, these
lethality. Hypomorphic alleles at such loci, for example, mutant flies produce more severe muscle phenotypes. It
as with ewg (Costello and Wyman 1986; Fleming et is also possible that Ifm(2)RU1 produces some functional
al. 1989) or sr (de la Pompa et al. 1989; Lee et al. 1995), gene product (preliminary observation) that is involved
could be isolated but would require systematic screens. in the formation of the Ifm(2)RU1 muscle phenotype.
Interaction screens, i.e., dominant screens for suppres- This gene product is haploinsufficient in Ifm(2)RU1/1
sor or enhancer phenotypes in trans-combination, could flies, therefore showing a less defective muscle pheno-
also identify genes that have roles in flight muscle devel- type than the homozygotes. The characterization of this
opment in addition to other functions with extant flight gene product, however, is in progress.
muscle mutants as has been attempted with ewg (M. S. Though Ifm(2)RU1 and ifm(2)RU21 of the new gene
Sunanda, S. Sane and K. VijayRaghavan, personal map closely to the Mhc region, they appear to be distinct
communication). from the Mhc gene. The Drosophila MHC protein is

Why have the screens for dominant flightless mutants encoded by a single gene that has the potential to gener-
identified genes that encode structural components? ate 480 isoforms through alternative processing of its
The screens that were undertaken demanded a strin- primary messenger RNA (George et al. 1989). Both
gent flight response. Flies with only slightly impaired lethal and viable alleles have been isolated (Mogami
flight ability would not have been identified. Given that and Hotta 1981; Bernstein et al. 1983; O’Donnell et
muscle structural components are required in correct al. 1989; Cripps et al. 1994a). Many of the viable alleles
stoichiometry for complete flight ability (Cripps et al. show a recessive structural muscle disorganization phe-
1994a; An and Mogami 1996), it appears reasonable in notype, but all the alleles are haploinsufficient for flight
hindsight that most structural genes were likely to be (O’Donnell et al. 1989; Cripps et al. 1994a). Haploin-
identified. However, such a screen did not recover sufficiency results from a reduction in the amount of
flightless mutations in the genes for myosin light chain, MHC protein that is sufficient to affect muscle structure
paramyosin, and a second tropomyosin gene 1 (Tm1, pre- and power output for flight (O’Donnell et al. 1989;

Cripps et al. 1994a). This is applicable for most of theviously TmII), which have already been cloned, although
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genes that code for the structural proteins of muscle, from .6000 progeny. The absence of complementation
is complicated, however, as Ifm(2)RU1 is a semidominantsuch as myosin light chain-2 (Warmke et al. 1989),

Act88F actin (Hiromi et al. 1986), and tropomyosin-2 allele, and Ifm(2)RU1/ifm(2)RU21 trans-heterozygotes
show the same phenotype as Ifm(2)RU1/1. In Ifm(2)RU1(Karlik and Fyrberg 1985). All Mhc mutant heterozy-

gotes show some disorganization of muscle fibers, a and ifm(2)RU21 homozygotes, muscle birefringence is
concentrated at particular areas. Among all the newphenotype that may be enhanced when in trans-combi-

nation with mutations in other structural genes (Homyk mutant genes identified in this study, this is a distinct
muscle phenotype that is found only in these two genes.and Emerson 1988). The Mhc7 and Mhc12 alleles produce

no MHC in the IFMs (Fyrberg and Beall 1990). Our Further alleles and analysis are required to determine
whether Ifm(2)RU1 and ifm(2)RU21 represent two genesobservations that the IFMs of Mhc7 and Mhc12 alleles

are nonbirefringent correlate with the absence of thick or alleles of a single muscle gene.
Independent and strong confirmation that Ifm(2)RU1filaments in these muscles (Fyrberg and Beall 1990).

Birefringence in polarized light depends on the pres- and ifm(2)RU21 are not mutations in the Mhc locus
comes from the complementation studies with the Mhc1ence of repeated protein structures in a tissue. In the

absence of MHC thick filaments and sarcomeres, bire- transgene. The Mhc transgene rescue experiments
prove that the two mutations near the Mhc locus arefringence does not form.

Ifm(2)RU1 shows a muscle “thinning” phenotype that not amorphic or hypomorphic alleles of Mhc. However,
Ifm(2)RU1 could show a neomorphic phenotype in theis not seen in any of the Mhc alleles as well as a reduction

in the birefringence of the muscle. The trans-heterozy- presence of the wild-type copy of Mhc because it is a
semidominant mutation. The presence of one or twogous muscle phenotypes of Ifm(2)RU1 with Mhc7 or Mhc12

show birefringence of the fibers. This is only possible copies of the wild-type Mhc1 could not rescue the mu-
tant phenotypes of either Ifm(2)RU1 or ifm(2)RU21.if the Ifm(2)RU1 chromosome contains an Mhc allele,

which expresses an MHC, which can assemble into thick Therefore, in the absence of further information, we
conclude that the Ifm(2)RU1 and ifm(2)RU21 genes (orfilaments and produce normal or near-normal sarco-

meres and myofibrils. An electron microscopy study of gene) map closely to, but are distinct from, Mhc. Homyk
and Emerson (1988) suggest that some structural mus-muscle fibers showed the presence of thick (myosin-

containing) and thin (actin-containing) filaments in cle protein genes can interact with each other to en-
hance muscle disorganization compared to their ownIfm(2)RU1/Ifm(2)RU1 animals (U. Nongthomba and

N. B. Ramachandra, unpublished data). Ifm(2)RU1 ani- heterozygous phenotype (mutant/1). This appears
also, but not necessarily, to be the case between Mhcmals show a very high frequency of recombination with

the Mhc alleles (Table 5). Assuming that 1% of recombi- and the Ifm(2)RU1 and ifm(2)RU21 mutants.
To date, no mutations that affect IFM developmentnation is equal to z275 kb of DNA (Homyk and Emer-

son 1988) and that the Mhc gene is 22 kb long (Bern- other than those in muscle structural genes have been
reported in the deficiencies covering ifm(2)RU31, ifmstein et al. 1983), the recombination frequency between

Ifm(2)RU1 with Mhc, which ranges from 0.15 to 2.4%, (2)RU41, and ifm(2)RU51. The ifm(2)RU31 mutation
mapped to the 60B8-10; 60C5-6 region. Prout et al.adequately separates this mutant from the Mhc locus.

Homyk and Emerson (1988) found much lower recom- (1997) have reported that the piopio (pio) gene was
mapped to 60C6-60D11, which partially overlaps thebination frequencies when performing their intragenic

mapping of Mhc alleles. deficiency region where ifm(2)RU31 mapped. Mutations
of pio affect myo-epidermal junctions or muscle functionThe ifm(2)RU21 complementation group also maps

closely to Mhc and shows defects in both DLMs and in embryos, produce wing blisters in adults, and were
proposed to be involved in integrin-dependent cell-to-DVMs. This mutant in trans with Mhc alleles also shows

more severely disorganized muscles than Mhc heterozy- cell adhesion (Prout et al. 1997). The two mutants
ifm(2)RU31 and pio are unlikely to be alleles becausegotes. Because (1) the ifm(2)RU21 mutant also produces

recombinants with Mhc alleles (Table 5), (2) ifm(2)- their muscle pattern and developmental effects are very
different. They do, however, represent a new regionRU21/1 animals have normal flight, (3) appear to have

normal fibers under phase-contrast optics (Figure 3, on the second chromosome that affects the IFMs. In
addition to this, Ifm(2)RU31/Df flies show more severeE–F), and (4) show normal thin-thick filaments as seen

through electron microscopy (U. Nongthomba and phenotypes than those of ifm(2)RU31 homozygotes, indi-
cating that ifm(2)RU31 is able to produce some amountN. B. Ramachandra, unpublished data), it seems likely

that ifm(2)RU21 is a mutant in a separate locus from of functional gene product and is a hypomorph. The
biochemical analysis of this mutation is in progress.Mhc.

Although Ifm(2)RU1 and ifm(2)RU21 differ phenotypi- A large number of the new mutants are sterile. Out-
crossing and backcrossing suggest that this is a propertycally from each other, they map to the same chromo-

some region and could be alleles. Support for this comes of the muscle mutants themselves. This is surprising,
because most of the existing mutants that affect thefrom the observations that they fail to complement each

other and no wild-type recombinants were recovered structural components or development of the IFMs are
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fertile. We conclude that many of these newly isolated absence of multiple alleles. However, there are many
important regulatory events in the maturation andmutants have pleiotropic effects on fertility. Thus, these

mutants may directly or indirectly affect muscles in- maintenance of muscle about which we know little, and
these newly identified genes may allow an analysis ofvolved in the production and/or release of gametes,

but could also cause indirect effects on courtship and such important and late regulatory events. We isolated
several viable alleles in two complementation groups,mating. All but ifm(2)RU4 and ifm(2)RU5 of the new

genes contain lethal alleles or partially viable alleles. ifm(2)RU4 and ifm(2)RU5, which will be useful in de-
termining the roles of these genes during the develop-This is not a new phenomenon in the sense that muscles

are an integral part in the life cycle of the fly. The IFMs ment of muscles.
This report and continuing analysis of the genes iden-are not required for viability, however, suggesting that

these new genes have effects on the development of tified in our study with an ongoing extensive mutagene-
sis will yield valuable resources for the study of variousother muscles.

What are the developmental functions of the genes aspects of adult muscle development in Drosophila.
identified by our screen? The semidominant mutant We are grateful to H. A. Ranganath and K. VijayRaghavan for their
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