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Abstract. Some interesting sufficient conditions involving coefficient in-
equalities for functions belonging to the classes S∗(A, B), K(A, B), S∗

λ(A, B)
and Kλ(A, B) are derived. Several known convolution conditions, coefficient
inequalities are special cases and consequences of these coefficient inequalities.
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1. Introduction

Let N denote the class of normalized analytic functions of the form

f(z) = z +

∞∑
n=2

anzn

defined in the unit disc U = {z : |z| < 1}. For any two real numbers A and B,
−1 ≤ B < A ≤ 1, the class P(A, B) [1] consists of functions of the form

p(z) = 1 +

∞∑
n=1

pnzn

which are analytic in the unit disc U such that

p(z) =
1 + Aω(z)

1 + Bω(z)
, z ∈ U

where ω(z) is analytic in U satisfying the conditions ω(0) = 0, |ω(z)| <
1, z ∈ U . The classes S∗(A, B), K(A, B), S∗

λ(A, B) and Kλ(A, B) are defined
as follows:

S∗(A, B) :=

{
f(z) ∈ N :

zf ′(z)

f(z)
∈ P(A, B)

}
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K(A, B) :=

{
f(z) ∈ N : 1 +

zf ′′(z)

f ′(z)
∈ P(A, B)

}

S∗
λ(A, B) :=

⎧⎨
⎩f(z) ∈ N :

eiλ
(

zf ′
f

)
− i sinλ

cosλ
∈ P(A, B)

⎫⎬
⎭

Kλ(A, B) :=

⎧⎪⎨
⎪⎩f(z) ∈ N :

eiλ
(

zf ′
f

)′
− i sin λ

cosλ
∈ P(A, B)

⎫⎪⎬
⎪⎭

For A = 1 and B = −1 we get the well known classes S∗, K, S∗
λ and Kλ .

2. Preliminary Lemmas

In this section we prove the following necessary and sufficient conditions.

Lemma 2.1. A function p(z) ∈ P(A, B) if and only if

p(z) �= 1 + Aζ

1 + Bζ
(z ∈ U , ζ ∈ C, |ζ | = 1).

Proof. The proof is quite obvious. For, consider the linear transformation

ω =
1 + Az

1 + Bz

which maps the unit circle δU onto the imaginary axis �{ω} = 0. Indeed, for
all ζ such that |ζ | = 1 (ζ ∈ C), set

ω =
1 + Aζ

1 + Bζ
(ζ ∈ C, |ζ | = 1)

so that

|ζ | =

∣∣∣∣ ω − 1

A − ωB

∣∣∣∣ = 1

which shows that �{ω} = �
{

1 + Az

1 + Bz

}
= 0 (ζ ∈ C, |ζ | = 1). Since p(0) = 1,

for p(z) ∈ P(A, B) we know that

p(z) �= 1 + Aζ

1 + Bζ
(z ∈ U , ζ ∈ C, |ζ | = 1)

which completes the proof.

Lemma 2.2. A function f(z) ∈ N is in the class S∗(A, B) if and only if

1 +
∞∑

n=2

Anzn−1 �= 0(2.1)

where

An =
(n − 1) + (nB − A)ζ

ζ(B − A)
an.
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Proof. A function f(z) ∈ N is in the class S∗(A, B) if and only if

zf ′(z)

f(z)
�= 1 + Aζ

1 + Bζ

That is,
(1 + Bζ) (zf ′(z)) − (1 + Aζ)f(z) �= 0

which implies

(B − A)ζz +

∞∑
n=2

[n(1 + Bζ) − (1 + Aζ)]anzn �= 0.

This simplifies into

(B − A)ζz

[
1 +

∞∑
n=2

n(1 + Bζ) − (1 + Aζ)

ζ(B − A)
anzn−1

]
�= 0.(2.2)

Dividing both sides of ( 2.2) by (B − A)ζz (z �= 0) we obtain

1 +
∞∑

n=2

(n − 1) + (nB − A)ζ

ζ(B − A)
anzn−1 �= 0 (z ∈ U , ζ ∈ C, |ζ | = 1)

which completes the proof.

Remark 2.3. It follows from the normalization conditions a0 = 0 and a1 = 1
that

A0 = −(1 + Aζ)

B − A
a0 = 0, A1 =

(1 + Bζ) − (1 + Aζ)

(B − A)ζ
a1 = 1.

Remark 2.4. The assertion ( 2.1) of Lemma 2.2 is equivalent to

1

z

(
f(z) ∗ ζz(B − A) + (1 + Aζ)z2

(1 − z)2

)
�= 0 (|z| < R, |ζ | = 1)

which was given earlier by Ganesan [2].

Remark 2.5. Further more, for A = 1 and B = −1 as a special case we get
convolution conditions characterizing starlike functions as in [3] with a suitable
modification.

3. Main Results

In this section, we determine certain conditions for functions in the class N .

Theorem 3.1. If f(z) ∈ N satisfies the following condition
∞∑

n=2

[∣∣∣∣∣
n∑

k=1

(
k∑

j=1

(−1)k−j(j − 1)

(
β

k − j

)
aj

)(
γ

n − k

)∣∣∣∣∣+∣∣∣∣∣
n∑

k=1

(
k∑

j=1

(−1)k−j(jB − A)

(
β

k − j

)
aj

)(
γ

n − k

)∣∣∣∣∣
]
≤ B − A(3.1)

with β, γ ∈ R and −1 ≤ B < A ≤ 1 then f(z) ∈ S∗(A, B).
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Proof. We note that (1 − z)β �= 0 and (1 + z)γ �= 0 for β, γ ∈ R and z ∈ U .
If the inequality(

1 +
∞∑

n=2

Anzn−1

)
(1 − z)β (1 + z)γ �= 0 (z ∈ U β, γ ∈ R)(3.2)

holds true, then we have,

1 +
∞∑

n=2

Anzn−1 �= 0,

which is the relation ( 2.1) of Lemma 2.2. Equation ( 2.1) is equivalent to(
1 +

∞∑
n=2

Anzn−1

)( ∞∑
n=0

(−1)nbnzn

)( ∞∑
n=0

cnzn

)
�= 0(3.3)

where, bn =

(
β
n

)
and cn =

(
γ
n

)
.

Considering the Cauchy product of the first two factors, expression ( 3.3) can
be rewritten as (

1 +

∞∑
n=2

Bnzn−1

)( ∞∑
n=0

cnzn

)
�= 0(3.4)

where

Bn =
n∑

j=1

(−1)n−jAjbn−j .

Further, by applying the Cauchy product again in ( 3.4) we find that

1 +

∞∑
n=2

(
n∑

k=1

Bkcn−k

)
zn−1 �= 0 (z ∈ U).

Equivalently, we have

1 +

∞∑
n=2

[(
n∑

k=1

(−1)k−jAjbk−j

)
cn−k

]
zn−1 �= 0 (z ∈ U).

If f(z) ∈ N satisfies the following inequality

∞∑
n=2

∣∣∣∣∣
n∑

k=1

(
k∑

j=1

(−1)k−jAjbk−j

)
cn−kz

n−1

∣∣∣∣∣ �= 0 (z ∈ U).

That is if
1

ζ(B − A)

∞∑
n=2

∣∣∣∣∣
n∑

k=1

(
k∑

j=1

(−1)k−j [(j − 1) + (jB − A)ζ ] ajbk−j

)
cn−k

∣∣∣∣∣
≤ 1

(B − A)

∞∑
n=2

(∣∣∣∣∣
n∑

k=1

[
k∑

j=1

(−1)k−j(j − 1)ajbk−j

]
cn−k

∣∣∣∣∣+
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n∑

k=1

[
k∑

j=1

(−1)k−j(jB − A)ajbk−j

]
cn−k

∣∣∣∣∣
)

≤ 1

for −1 ≤ B < A ≤ 1, ζ ∈ C, |ζ | = 1 then, f(z) ∈ S∗(A, B) which establishes
the result.

Corollary 3.2. For A = 1− 2α and B = −1 we get coefficient conditions for
functions in the class S∗(α) [2] with suitable modifications.

Moreover, for β = γ = 0, A = 1, B = −1 in Theorem 3.1 we obtain the
following result.

Corollary 3.3. If f(z) ∈ N satisfies the following coefficient inequality

∞∑
n=2

(n − α) |an| ≤ 1 − α (0 ≤ α < 1)(3.5)

then f(z) ∈ S∗(α).

In particular, by putting α = 0 in ( 3.5) we get the following well - known
coefficient condition for the class of starlike functions in U .

Corollary 3.4. If f(z) ∈ N satisfies

∞∑
n=2

n |an| ≤ 1(3.6)

then f(z) ∈ S∗.

The following theorem gives the coefficient condition for functions f(z) to
be in the class K(A, B).

Theorem 3.5. If f(z) ∈ N satisfies the condition

∞∑
n=2

[∣∣∣∣∣
n∑

k=1

(
k∑

j=1

(−1)k−jj(j − 1)

(
β

k − j

)
aj

)(
γ

n − k

)∣∣∣∣∣+(3.7)

∣∣∣∣∣
n∑

k=1

(
k∑

j=1

(−1)k−jj(jB − A)

(
β

k − j

)
aj

)(
γ

n − k

)∣∣∣∣∣
]
≤ B − A

for −1 ≤ B < A ≤ 1, β, γ ∈ R, then f(z) ∈ K(A, B).

Proof. Since f(z) is in the class K(A, B) if and only if zf ′(z) belongs to the
class S∗(A, B), replacing aj in the statement of the Theorem 3.1 by jaj we
get the required result.

Corollary 3.6. For A = 1− 2α and B = −1 we get coefficient conditions for
functions in the class K(α) [2] with suitable modifications.
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Moreover, for β = γ = 0, A = 1, B = −1 in Theorem 3.5 we obtain the
following result.

Corollary 3.7. If f(z) ∈ N satisfies the following coefficient inequality

∞∑
n=2

n(n − α) |an| ≤ 1 − α (0 ≤ α < 1)(3.8)

then f(z) ∈ K(α).

In particular, by putting α = 0 in ( 3.5) we get the following well - known
coefficient condition for the class of convex functions in U .

Corollary 3.8. If f(z) ∈ N satisfies

∞∑
n=2

n2 |an| ≤ 1(3.9)

then f(z) ∈ K.

4. Coefficient conditions for functions in the classes
S∗

λ(A, B) and Kλ(A, B).

In this section, we obtain coefficient conditions for functions belonging to
the classes S∗

λ(A, B) and Kλ(A, B).

Lemma 4.1. A function f(z) ∈ N is in the class S∗
λ(A, B) if and only if

1 +
∞∑

n=2

dnzn−1 �= 0(4.1)

where

dn =
(n − 1) + (nB − γ)ζ

ζ(B − A)
an and γ = (A cosλ + iB sinλ)e−iλ.

Proof. A function f(z) ∈ N is in the class S∗
λ(A, B) if and only if

eiλ

zf ′
f

− i sinλ

cosλ
�= 1 + Aζ

1 + Bζ
.

This simplifies into

(1 + Bζ)(zf ′(z)) − (1 + γζ)f(z) �= 0

where γ = (A cosλ + iB sinλ)e−iλ. The rest of the proof follows as in Lemma
2.2.



Coefficient Inequalities and convolution conditions 1467

Theorem 4.2. If f(z) ∈ N satisfies the following condition:
∞∑

n=2

[∣∣∣∣∣
n∑

k=1

(
k∑

j=1

(−1)k−j(jB − γ)

(
β

k − j

)
aj

)(
γ

n − k

)∣∣∣∣∣+
+

∣∣∣∣∣
n∑

k=1

(
k∑

j=1

(−1)k−j(j − 1)

(
β

k − j

)
aj

)(
γ

n − k

)∣∣∣∣∣
]
≤ B − A

for −1 ≤ B < A ≤ 1 then, f(z) ∈ S∗
λ(A, B) where γ = (A cosλ+ iB sinλ)e−iλ.

Proof. Applying the same methods as in Theorem 3.1 we get the result.

Theorem 4.3. If f(z) ∈ N satisfies the following condition:
∞∑

n=2

[∣∣∣∣∣
n∑

k=1

(
k∑

j=1

(−1)k−jj(jB − γ)

(
β

k − j

)
aj

)(
γ

n − k

)∣∣∣∣∣+
+

∣∣∣∣∣
n∑

k=1

(
k∑

j=1

(−1)k−jj(j − 1)

(
β

k − j

)
aj

)(
γ

n − k

)∣∣∣∣∣
]
≤ B − A

for −1 ≤ B < A ≤ 1 then, f(z) ∈ Kλ(A, B) where γ = (A cosλ+iB sinλ)e−iλ.

Proof. Since f(z) is in the class Kλ(A, B) if and only if zf ′(z) belongs to the
class S∗

λ(A, B), replacing aj in the statement of the Theorem 4.2 by jaj we
get the required result.

Corollary 4.4. For parametric values A = 1 − 2α and B = −1 we get coef-
ficient conditions for functions in the class S∗

λ(α) and Kλ(α) [2] with suitable
modifications.
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