brought to you by 🗓 CORE

CrossMark

organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(4-Carboxybenzyl)-1-methylpiperazin-1-ium picrate

Hongqi Li,^a* Q. N. M. Hakim Al-arique,^b H. S. Yathirajan,^b B. Narayana^c and A. R. Ramesha^d

^aKey Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^dRL Fine Chem, Bangalore 560 064, India Correspondence e-mail: hongqili@dhu.edu.cn

Received 27 December 2008; accepted 7 February 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.104; data-to-parameter ratio = 11.7.

The title compound, $C_{13}H_{19}N_2O_2^+ \cdot C_6H_2N_3O_7^-$, is a salt obtained by cocrystallization of 4-[(4-methylpiperazin-1-yl)methyl]benzoic acid and picric acid. The cations adopt an 'L-shaped' conformation and are linked into chains along [010] by $O-H\cdots N$ hydrogen bonds. The NH group of each piperazinium ring forms a hydrogen bond to the phenolate O atom of a picrate anion, and the picrate anions form face-to-face contacts with an interplanar separation of 3.023 (1) Å.

Related literature

For general background, see: Druker *et al.* (2001). For related structures, see: Swamy *et al.* (2007); Bindya *et al.* (2007); Sarojini *et al.* (2007); Wang & Jia (2008).

b = 9.5993 (16) Å

c = 15.131 (3) Å $\alpha = 86.448$ (2)°

 $\beta = 79.145 \ (2)^{\circ}$

Experimental

Crystal data	
$C_{13}H_{19}N_2O_2^+ \cdot C_6H_2N_3O_7^-$	
$M_r = 463.41$	
Triclinic, P1	
a = 7.3020 (12) Å	

 $\gamma = 79.950 (2)^{\circ}$ $V = 1025.2 (3) Å^{3}$ Z = 2Mo K α radiation

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{\rm min} = 0.965, T_{\rm max} = 0.976$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.040 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.104 & \text{independent and constrained} \\ S &= 1.06 & \text{refinement} \\ 3565 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.18 \text{ e } \text{ Å}^{-3} \\ 305 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.17 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	Н∙∙∙А	$D \cdots A$	$D - H \cdots A$
$08 - H8 \cdots N4^{i}$ N5 - H5A \cdots O1^{ii}	0.82 0.89 (2)	1.79 1.89 (2)	2.6006 (19) 2.734 (2)	172 156.9 (18)

provided by University of Mysore - Digital Repository of Research, Innovat

 $\mu = 0.12 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.20$ mm

5373 measured reflections

3565 independent reflections

2745 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.016$

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

QNMHA thanks R. L. Fine Chem, Bangalore, for a gift sample of 4-[(4-methylpiperazin-1-yl)methyl]benzoic acid. HSY thanks the University of Mysore for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2341).

References

- Bindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, 0546–0548.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Druker, B. J., Sawyers, C. L., Kantarjian, H., Resta, D. J., Reese, S. F., Ford, J. M., Capdeville, R. & Talpaz, M. N. (2001). N. Engl. J. Med. 344, 1038– 1042.
- Sarojini, B. K., Yathirajan, H. S., Mustafa, K., Sarfraz, H. & Bolte, M. (2007). Acta Cryst. E63, 04477.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Swamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, 04919.
- Wang, Z.-L. & Jia, L.-H. (2008). Acta Cryst. E64, 0665-0666.

supporting information

Acta Cryst. (2009). E65, o518 [doi:10.1107/S1600536809004474]

4-(4-Carboxybenzyl)-1-methylpiperazin-1-ium picrate

Hongqi Li, Q. N. M. Hakim Al-arique, H. S. Yathirajan, B. Narayana and A. R. Ramesha

S1. Comment

4-[(4-Methylpiperazin-1-yl)methyl]benzoic acid is an intermediate in the synthesis of Imatinib, a drug used to treat certain types of cancer. Its mesylate salt is currently marketed by Novartis as Gleevec (Druker *et al.*, 2001). Picric acid forms salts or charge-transfer complexes with many organic compounds. Crystal structures of picrate complexes with organic compounds of pharmaceutical importance *viz.*, desipraminium picrate (Swamy *et al.*, 2007) and amitriptylinium picrate (Bindya *et al.*, 2007) have been reported. A three-dimensional network in piperazine-1,4-diium-picrate-piperazine (1/2/1) is reported recently (Wang & Jia, 2008).

S2. Experimental

The title compound was prepared by taking equimolar quantities of picric acid (0.92 g, 2 mmol) and 4-[(4-methyl-piperazin-1-yl)methyl]benzoic acid (0.47 g, 2 mmol) and dissolving them in water. The solution was stirred well at room temperature and slow evaporation of the solution resulted in the formation of the yellow coloured salt (yield 95%). Crystals suitable for single-crystal X-ray diffraction were grown from dimethyl formamide solvent.

S3. Refinement

H atoms bound to C atoms were placed at calculated positions and refined using a riding model, with C—H = 0.93–0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H atoms. The H atom of the OH group was also placed geometrically and allowed to ride with $U_{iso}(H) = 1.5U_{eq}(O)$. The H atom of the NH group was located in a difference Fourier map and refined isotropically without restraint.

Figure 1

Molecular structure with displacement ellipsoids drawn at the 30% probability level for non-H atoms.

4-(4-Carboxybenzyl)-1-methylpiperazin-1-ium picrate

Crystal data

C₁₃H₁₉N₂O₂+·C₆H₂N₃O₇- $M_r = 463.41$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.3020 (12) Å b = 9.5993 (16) Å c = 15.131 (3) Å $a = 86.448 (2)^{\circ}$ $\beta = 79.145 (2)^{\circ}$ $\gamma = 79.950 (2)^{\circ}$ $V = 1025.2 (3) \text{ Å}^{3}$

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{\min} = 0.965, T_{\max} = 0.976$ Z = 2 F(000) = 484 $D_x = 1.501 \text{ Mg m}^{-3}$ Melting point = 510–504 K Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 1962 reflections $\theta = 2.5-26.9^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.30 \times 0.20 \times 0.20 \text{ mm}$

5373 measured reflections 3565 independent reflections 2745 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -8 \rightarrow 6$ $k = -11 \rightarrow 9$ $l = -18 \rightarrow 18$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of independent
$wR(F^2) = 0.104$	and constrained refinement
S = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0447P)^2 + 0.2218P]$
3565 reflections	where $P = (F_o^2 + 2F_c^2)/3$
305 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{ m min} = -0.17 \ m e \ m \AA^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.023 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.5333 (3)	1.0778 (2)	0.14228 (14)	0.0426 (5)
C2	0.6431 (3)	1.0691 (2)	0.05175 (13)	0.0438 (5)
C3	0.7751 (3)	0.9547 (2)	0.02127 (13)	0.0430 (5)
Н3	0.8395	0.9546	-0.0379	0.052*
C4	0.8126 (3)	0.8398 (2)	0.07793 (12)	0.0379 (4)
C5	0.7175 (2)	0.83776 (19)	0.16598 (12)	0.0359 (4)
Н5	0.7422	0.7595	0.2039	0.043*
C6	0.5870 (3)	0.9521 (2)	0.19627 (12)	0.0372 (4)
C7	0.1636 (3)	1.33630 (19)	0.60024 (12)	0.0366 (4)
C8	0.1280 (2)	1.18702 (18)	0.60753 (11)	0.0320 (4)
C9	0.2178 (3)	1.09572 (19)	0.53938 (12)	0.0380 (4)
Н9	0.2943	1.1292	0.4892	0.046*
C10	0.1949 (3)	0.95535 (19)	0.54527 (12)	0.0391 (4)
H10	0.2557	0.8954	0.4989	0.047*
C11	0.0818 (2)	0.90303 (18)	0.61993 (12)	0.0349 (4)
C12	-0.0108 (2)	0.99528 (18)	0.68722 (12)	0.0361 (4)
H12	-0.0897	0.9622	0.7367	0.043*
C13	0.0123 (2)	1.13606 (18)	0.68187 (12)	0.0348 (4)
H13	-0.0494	1.1964	0.7279	0.042*
C14	0.0608 (3)	0.74891 (19)	0.62770 (13)	0.0413 (5)
H14A	-0.0640	0.7413	0.6616	0.050*
H14B	0.0677	0.7156	0.5677	0.050*
C15	0.3984 (3)	0.6541 (2)	0.62183 (12)	0.0399 (5)

H15A	0.4281	0.7488	0.6208	0.048*
H15B	0.4063	0.6282	0.5601	0.048*
C16	0.5410 (3)	0.5522 (2)	0.66450 (12)	0.0415 (5)
H16A	0.5196	0.4562	0.6598	0.050*
H16B	0.6674	0.5591	0.6324	0.050*
C17	0.3292 (3)	0.5816 (2)	0.80965 (12)	0.0402 (5)
H17A	0.3189	0.6046	0.8721	0.048*
H17B	0.2985	0.4875	0.8083	0.048*
C18	0.1914 (3)	0.68674 (19)	0.76667 (12)	0.0375 (4)
H18A	0.0639	0.6846	0.7991	0.045*
H18B	0.2190	0.7813	0.7701	0.045*
C19	0.6653 (3)	0.4834 (2)	0.80485 (15)	0.0598 (6)
H19A	0.6595	0.5121	0.8651	0.090*
H19B	0.7903	0.4841	0.7710	0.090*
H19C	0.6355	0.3896	0.8065	0.090*
N1	0.6141 (3)	1.1856 (2)	-0.01420 (15)	0.0587 (5)
N2	0.9524 (2)	0.71935 (19)	0.04516 (11)	0.0471 (4)
N3	0.4925 (2)	0.9427 (2)	0.28970 (11)	0.0469 (4)
N4	0.2038 (2)	0.65332 (14)	0.67160 (9)	0.0340 (4)
N5	0.5264 (2)	0.58329 (17)	0.76126 (10)	0.0375 (4)
01	0.4059 (2)	1.17657 (15)	0.17135 (11)	0.0614 (4)
O2	0.5114 (3)	1.2956 (2)	0.00975 (14)	0.0921 (6)
O3	0.6952 (3)	1.16659 (19)	-0.09220 (12)	0.0799 (6)
O4	1.0379 (2)	0.72647 (18)	-0.03240 (10)	0.0680 (5)
O5	0.9804 (2)	0.61680 (16)	0.09632 (11)	0.0649 (5)
O6	0.4639 (2)	0.82634 (18)	0.32167 (10)	0.0633 (4)
O7	0.4470 (2)	1.05126 (19)	0.33248 (10)	0.0707 (5)
O8	0.1067 (2)	1.40458 (13)	0.67570 (8)	0.0445 (4)
H8	0.1397	1.4825	0.6691	0.067*
O9	0.2400 (2)	1.38891 (15)	0.53152 (9)	0.0605 (4)
H5A	0.551 (3)	0.669 (2)	0.7674 (13)	0.045 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0386 (11)	0.0359 (11)	0.0586 (13)	-0.0106 (8)	-0.0166 (9)	-0.0054 (9)
C2	0.0462 (12)	0.0407 (11)	0.0508 (12)	-0.0163 (9)	-0.0195 (10)	0.0092 (9)
C3	0.0449 (11)	0.0537 (13)	0.0350 (10)	-0.0208 (10)	-0.0079 (9)	0.0021 (9)
C4	0.0359 (10)	0.0421 (11)	0.0355 (10)	-0.0087 (8)	-0.0032 (8)	-0.0036 (8)
C5	0.0377 (10)	0.0382 (10)	0.0345 (10)	-0.0097 (8)	-0.0102 (8)	-0.0007(8)
C6	0.0368 (10)	0.0426 (11)	0.0348 (10)	-0.0100 (8)	-0.0079 (8)	-0.0059 (8)
C7	0.0393 (10)	0.0345 (10)	0.0353 (10)	-0.0079 (8)	-0.0036 (8)	-0.0002 (8)
C8	0.0339 (9)	0.0298 (9)	0.0334 (9)	-0.0060 (7)	-0.0086 (8)	-0.0001 (7)
C9	0.0457 (11)	0.0366 (10)	0.0307 (9)	-0.0071 (8)	-0.0045 (8)	0.0000 (8)
C10	0.0491 (11)	0.0327 (10)	0.0349 (10)	-0.0028 (8)	-0.0081 (9)	-0.0067 (8)
C11	0.0360 (10)	0.0296 (10)	0.0423 (10)	-0.0070 (7)	-0.0141 (8)	0.0004 (8)
C12	0.0311 (10)	0.0339 (10)	0.0415 (10)	-0.0064 (7)	-0.0026 (8)	0.0042 (8)
C13	0.0327 (9)	0.0311 (10)	0.0378 (10)	-0.0029 (7)	-0.0008 (8)	-0.0027 (8)

C14	0.0461 (11)	0.0317 (10)	0.0503 (11)	-0.0104 (8)	-0.0157 (9)	-0.0015 (8)
C15	0.0448 (11)	0.0371 (10)	0.0347 (10)	-0.0087 (8)	0.0013 (8)	0.0020 (8)
C16	0.0423 (11)	0.0371 (11)	0.0385 (10)	-0.0016 (8)	0.0047 (8)	-0.0018 (8)
C17	0.0392 (10)	0.0418 (11)	0.0348 (10)	-0.0040 (8)	0.0030 (8)	-0.0016 (8)
C18	0.0349 (10)	0.0371 (10)	0.0380 (10)	-0.0026 (8)	-0.0013 (8)	-0.0070 (8)
C19	0.0513 (13)	0.0579 (14)	0.0596 (14)	0.0144 (11)	-0.0087 (11)	0.0092 (11)
N1	0.0678 (13)	0.0507 (12)	0.0688 (14)	-0.0265 (10)	-0.0316 (11)	0.0184 (10)
N2	0.0420 (10)	0.0529 (11)	0.0439 (10)	-0.0091 (8)	0.0012 (8)	-0.0076 (8)
N3	0.0368 (9)	0.0614 (12)	0.0420 (9)	-0.0061 (8)	-0.0046 (7)	-0.0111 (9)
N4	0.0385 (8)	0.0289 (8)	0.0338 (8)	-0.0064 (6)	-0.0031 (6)	-0.0028 (6)
N5	0.0363 (9)	0.0317 (9)	0.0407 (9)	-0.0006 (7)	-0.0023 (7)	-0.0001 (7)
01	0.0513 (9)	0.0413 (9)	0.0904 (12)	-0.0006 (7)	-0.0138 (8)	-0.0095 (8)
O2	0.1085 (16)	0.0526 (11)	0.1104 (16)	0.0045 (11)	-0.0328 (12)	0.0230 (11)
03	0.1177 (16)	0.0729 (12)	0.0587 (11)	-0.0338 (11)	-0.0321 (11)	0.0242 (9)
O4	0.0656 (10)	0.0825 (12)	0.0461 (9)	-0.0069 (9)	0.0138 (8)	-0.0138 (8)
05	0.0638 (10)	0.0524 (10)	0.0677 (10)	0.0059 (8)	-0.0006 (8)	0.0038 (8)
O6	0.0623 (10)	0.0701 (11)	0.0503 (9)	-0.0117 (8)	0.0055 (7)	0.0075 (8)
07	0.0693 (11)	0.0822 (12)	0.0591 (10)	-0.0126 (9)	0.0035 (8)	-0.0371 (9)
08	0.0599 (9)	0.0308 (7)	0.0409 (7)	-0.0161 (6)	0.0051 (6)	-0.0049 (6)
09	0.0948 (12)	0.0441 (9)	0.0388 (8)	-0.0271 (8)	0.0105 (8)	0.0014 (6)

Geometric parameters (Å, °)

C1—01	1.244 (2)	C14—H14B	0.970
C1—C2	1.450 (3)	C15—N4	1.479 (2)
C1—C6	1.453 (3)	C15—C16	1.509 (3)
C2—C3	1.369 (3)	C15—H15A	0.970
C2—N1	1.466 (3)	C15—H15B	0.970
C3—C4	1.375 (3)	C16—N5	1.493 (2)
С3—Н3	0.930	C16—H16A	0.970
C4—C5	1.382 (2)	C16—H16B	0.970
C4—N2	1.447 (2)	C17—N5	1.490 (2)
C5—C6	1.362 (2)	C17—C18	1.505 (2)
С5—Н5	0.930	C17—H17A	0.970
C6—N3	1.456 (2)	C17—H17B	0.970
С7—О9	1.209 (2)	C18—N4	1.476 (2)
C7—O8	1.313 (2)	C18—H18A	0.970
C7—C8	1.494 (2)	C18—H18B	0.970
C8—C9	1.385 (2)	C19—N5	1.489 (2)
C8—C13	1.391 (2)	C19—H19A	0.960
C9—C10	1.382 (3)	C19—H19B	0.960
С9—Н9	0.930	C19—H19C	0.960
C10-C11	1.390 (3)	N1—O2	1.215 (3)
C10—H10	0.930	N1—O3	1.226 (3)
C11—C12	1.386 (2)	N2—O4	1.225 (2)
C11—C14	1.509 (2)	N2—O5	1.227 (2)
C12—C13	1.386 (2)	N3—O7	1.223 (2)
C12—H12	0.930	N3—O6	1.226 (2)

C13—H13	0.930	N5—H5A	0.89 (2)
C14—N4	1.491 (2)	O8—H8	0.820
C14—H14A	0.970		
O1—C1—C2	125.88 (19)	C16—C15—H15A	109.3
O1—C1—C6	122.99 (19)	N4—C15—H15B	109.3
C2—C1—C6	111.10 (16)	C16—C15—H15B	109.3
C3—C2—C1	123.83 (18)	H15A—C15—H15B	108.0
C3—C2—N1	115.70 (19)	N5-C16-C15	111.14 (14)
C1—C2—N1	120.46 (19)	N5—C16—H16A	109.4
C2—C3—C4	120.19 (18)	C15—C16—H16A	109.4
С2—С3—Н3	119.9	N5—C16—H16B	109.4
С4—С3—Н3	119.9	C15—C16—H16B	109.4
C3—C4—C5	120.72 (17)	H16A—C16—H16B	108.0
C3—C4—N2	119.81 (17)	N5—C17—C18	110.62 (15)
C5—C4—N2	119.47 (17)	N5—C17—H17A	109.5
C6—C5—C4	118.97 (17)	С18—С17—Н17А	109.5
С6—С5—Н5	120.5	N5—C17—H17B	109.5
C4—C5—H5	120.5	C18—C17—H17B	109.5
C5—C6—C1	125.15 (17)	H17A—C17—H17B	108.1
C5—C6—N3	115.99 (17)	N4—C18—C17	110.48 (14)
C1—C6—N3	118.84 (16)	N4—C18—H18A	109.6
09-07-08	123.05 (17)	C17—C18—H18A	109.6
09-07-08	123.12 (16)	N4—C18—H18B	109.6
08-07-08	113.82 (15)	C17—C18—H18B	109.6
C9-C8-C13	119.15 (16)	H18A—C18—H18B	108.1
C9—C8—C7	118.80 (16)	N5-C19-H19A	109.5
C13 - C8 - C7	122.01 (15)	N5-C19-H19B	109.5
C10-C9-C8	120.65(17)	H19A—C19—H19B	109.5
C10-C9-H9	119.7	N5-C19-H19C	109.5
С8—С9—Н9	119.7	H19A - C19 - H19C	109.5
C9-C10-C11	120 59 (16)	H19B-C19-H19C	109.5
C9-C10-H10	119 7	02-N1-03	107.5 122.7(2)
$C_{11} - C_{10} - H_{10}$	119.7	02 - N1 - C2	122.7(2) 119.6(2)
C_{12} C_{11} C_{10} C_{10}	118 64 (16)	03 - N1 - C2	117.0(2)
C12 - C11 - C14	120.67 (16)	04—N2—05	123 64 (17)
C10-C11-C14	120.69 (16)	04 - N2 - C4	123.01(17) 117.71(17)
C_{13} C_{12} C_{11}	120.09(10) 121.00(17)	05—N2—C4	118 64 (16)
C_{13} C_{12} H_{12}	110 5	07—N3—06	123 34 (18)
C11 - C12 - H12	119.5	07—N3—C6	118 32 (18)
C12 - C13 - C8	119.95 (16)	06-N3-C6	118.32(10) 118.34(17)
C12 - C13 - C0	120.0	C_{18} N4 C_{15}	110.07(17)
$C_{12} = C_{13} = H_{13}$	120.0	C18 - N4 - C14	110.02(14) 112.50(13)
N4-C14-C11	115 44 (15)	C15 N4 C14	112.30(13) 111.92(14)
N4 - C14 - H14A	108 <i>A</i>	C17 - N5 - C19	111.92(17) 111.33(15)
C11 - C14 - H14A	108.4	C17 - N5 - C17	100 50 (15)
$\mathbf{N} = \mathbf{C} 1 4 + 1 1 4 \mathbf{A}$	100.4	C10 N5 C16	107.37(13) 112.03(15)
$C_{11} = C_{14} = H_{14} = D$	100.4	C17 N5 H54	112.03(13) 106.5(12)
Сп—С14—П14В	100.4	$UI / - NJ - \Pi JA$	100.5 (15)

H14A—C14—H14B N4—C15—C16 N4—C15—H15A	107.5 111.45 (14) 109.3	C19—N5—H5A C16—N5—H5A C7—O8—H8	105.9 (13) 111.3 (13) 109.5
$\begin{array}{c} 01 - C1 - C2 - C3 \\ C6 - C1 - C2 - C3 \\ 01 - C1 - C2 - N1 \\ C6 - C1 - C2 - N1 \\ C1 - C2 - C3 - C4 \\ N1 - C2 - C3 - C4 \\ C2 - C3 - C4 - C5 \\ C2 - C3 - C4 - N2 \\ C3 - C4 - C5 - C6 \\ N2 - C4 - C5 - C6 \\ N2 - C4 - C5 - C6 \\ C4 - C5 - C6 - C1 \\ C4 - C5 - C6 - N2 \\ \end{array}$	-176.28 (19) 2.0 (3) 2.5 (3) -179.22 (16) -1.1 (3) -179.94 (17) 0.3 (3) -179.94 (17) -0.7 (3) 179.59 (16) 1.9 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4 (3) -177.54 (16) -90.9 (2) 88.9 (2) -55.9 (2) 59.5 (2) -173.7 (2) 7.4 (3) 6.7 (3) -172.20 (18) 2.3 (3) 177.01 (17)
$\begin{array}{c} C4 - C3 - C6 - N3 \\ O1 - C1 - C6 - C5 \\ C2 - C1 - C6 - C5 \\ O1 - C1 - C6 - N3 \\ C2 - C1 - C6 - N3 \\ O9 - C7 - C8 - C9 \\ O8 - C7 - C8 - C9 \\ O9 - C7 - C8 - C13 \\ O8 - C7 - C8 - C13 \\ C13 - C8 - C9 - C10 \\ C7 - C8 $	-179.92 (16) 175.93 (18) -2.4 (3) -2.2 (3) 179.41 (16) 13.3 (3) -165.86 (16) -168.83 (19) 12.1 (2) -0.7 (3) 177.30 (16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-177.91(17) -178.37(18) 1.4(3) 146.71(18) -35.0(2) -32.8(2) 145.57(18) -58.31(19) 176.17(15) 56.68(19) -177.48(15)
C7-C8-C9-C10 C8-C9-C10-C11 C9-C10-C11-C12 C9-C10-C11-C14 C10-C11-C12-C13 C14-C11-C12-C13 C11-C12-C13-C8	$ \begin{array}{c} -0.3 (3) \\ -1.5 (3) \\ -178.33 (16) \\ -1.8 (3) \\ 178.01 (16) \\ 0.9 (3) \end{array} $	C16—C15—N4—C14 C11—C14—N4—C18 C11—C14—N4—C15 C18—C17—N5—C19 C18—C17—N5—C16 C15—C16—N5—C17 C15—C16—N5—C19	$\begin{array}{c} -177.48 (13) \\ 64.0 (2) \\ -60.5 (2) \\ 178.02 (17) \\ -57.47 (19) \\ 55.6 (2) \\ 179.69 (17) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O8—H8…N4 ⁱ	0.82	1.79	2.6006 (19)	172
N5—H5A····O1 ⁱⁱ	0.89 (2)	1.89 (2)	2.734 (2)	156.9 (18)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+1, –*y*+2, –*z*+1.