Southeast Asian Bulletin of Mathematics (2010) 34: 953-958

Southeast Asian Bulletin of Mathematics © SEAMS. 2010

The Line n-Sigraph of a Symmetric n-Sigraph^{*}

E. Sampathkumar Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570 006, India Email: esampathkumar@eth.net

P. Siva Kota Reddy Department of Mathematics, Acharya Institute of Technology, Soldevanahalli, Bangalore 560 090, India Email: reddy_math@yahoo.com

M. S. Subramanya Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570 006, India Email: subramanya_ms@rediffmail.com

Received 4 July 2008 Accepted 8 January 2009

Communicated by H.K. Yang

AMS Mathematics Subject Classification(2000): 05C22

Abstract. An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}, 1 \le k \le n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric *n*-tuples. A symmetric *n*-sigraph (symmetric *n*-marked graph) is an ordered pair $S_n = (G, \sigma)$ ($S_n = (G, \mu)$), where G = (V, E) is a graph called the underlying graph of S_n and $\sigma : E \to H_n$ ($\mu : V \to H_n$) is a function. Analogous to the concept of the line sigraph of a sigraph, the line symmetric *n*-sigraph of a symmetric *n*-sigraph is defined. We then give a structural characterization of line symmetric *n*-sigraphs, extending the well known characterization of line graphs due to Beineke. Analogous to the concept of switching in sigraphs we introduce the notion of switching in symmetric *n*-sigraphs and line

^{*}The authors are thankful to Department of Science and Technology, Government of India, New Delhi for the financial support under the project grant SR/S4/MS:275/05.

symmetric *n*-sigraphs.

Keywords: Symmetric *n*-sigraphs; Symmetric *n*-marked graphs; Balance; Switching; Jump symmetric *n*-sigraphs; Line symmetric *n*-sigraphs; Complements of *n*-sigraph.

1. Introduction

For graph theoretical terminologies and notations in this paper we follow the book [7].

Let $n \ge 1$ be an integer. An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}, 1 \le k \le n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric *n*-tuples. Note that H_n is a group under coordinate wise multiplication, and the order of H_n is 2^m , where $m = \lceil \frac{n}{2} \rceil$.

A symmetric *n*-sigraph (symmetric *n*-marked graph) is an ordered pair $S_n = (G, \sigma)$ $(S_n = (G, \mu))$, where G = (V, E) is a graph called the underlying graph of S_n and $\sigma : E \to H_n$ $(\mu : V \to H_n)$ is a function.

A sigraph (marked graph) is an ordered pair $S = (G, \sigma)$ ($S = (G, \mu)$), where G = (V, E) is a graph called the underlying graph of S and $\sigma : E \to \{+, -\}$ ($\mu : V \to \{+, -\}$) is a function. Thus a symmetric 1-sigraph (symmetric 1-marked graph) is a sigraph (marked graph). Sigraphs (Marked graphs) are well studied in literature (See for example [8, 12, 13, 17, 18, 3, 11, 12, 13]).

The line graph L(G) of graph G has the edges of G as the vertices and two vertices of L(G) are adjacent if the corresponding edges of G are adjacent.

The jump graph J(G) of a graph G = (V, E) is $\overline{L(G)}$, the complement of the line graph L(G) of G (See [5, 7]).

Behzad and Chartrand [4] introduced the notion of line sigraph L(S) of a given sigraph S as follows: Given a signed graph $S = (G, \sigma)$ its line sigraph $L(S) = (L(G), \sigma')$ is that signed graph whose underlying graph is L(G), the line graph of G, where for any edge $e_i e_j$ in L(S), $\sigma'(e_i e_j)$ is negative if and only if both e_i and e_j are adjacent negative edges in S. Another notion of line sigraph introduced in [6], is as follows: The line sigraph of a sigraph $S = (G, \sigma)$ is a sigraph $L(S) = (L(G), \sigma')$, where for any edge ee' in L(S), $\sigma'(ee') = \sigma(e)\sigma(e')$ (See also [15]).

In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-tuple/symmetric n-sigraph/symmetric n-marked graph.

Analogous to the concept of line sigraph defined in [6] we define line *n*-sigraph as follows: A line *n*-sigraph $L(S_n)$ of an *n*-sigraph $S_n = (G, \sigma)$ is an *n*-sigraph $L(S_n) = (L(G), \sigma')$ where for any edge ee' in L(G), $\sigma'(ee') = \sigma(e)\sigma(e')$.

Hence, we shall call a given *n*-sigraph S_n a line *n*-sigraph if it is isomorphic to the line *n*-sigraph $L(S'_n)$ of some *n*-sigraph S'_n .

In the following section, we shall present an extension of well known characterization of a line graph given in most of the standard text-books on graph theory (e.g., see [7]), originally due to [2]. The Line n-Sigraph of a Symmetric n-Sigraph

The jump *n*-sigraph $J(S_n)$ of an *n*-sigraph $S_n = (G, \sigma)$ is defined as follows (See [14]): $J(S_n) = (J(G), \sigma')$, where for any edge ee' in $J(G), \sigma'(ee') = \sigma(e)\sigma(e')$.

Further, an *n*-tuple $(a_1, a_2, ..., a_n)$ is the identity *n*-tuple, if $a_k = +$, for $1 \le k \le n$, otherwise it is a non-identity *n*-tuple. In an *n*-sigraph $S_n = (G, \sigma)$ an edge labeled with the identity *n*-tuple is called an identity edge, otherwise it is a non-identity edge.

In an *n*-sigraph $S_n = (G, \sigma)$, for any $A \subseteq E(G)$ the *n*-tuple $\sigma(A)$ is the product of the *n*-tuples on the edges of A.

2. Balance in an *n*-Sigraph

In [14], we define two notions of balance in *n*-sigraph $S_n = (G, \sigma)$ as follows:

Definition 1. Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then,

- (i) S_n is identity balanced (or i-balanced), if product of n-tuples on each cycle of G is the identity n-tuple, and
- (ii) S_n is balanced, if every cycle in G contains an even number of non-identity edges.

Note 2. An *i*-balanced *n*-sigraph need not be balanced and vice versa.

Proposition 3. [14] An n-sigraph $S_n = (G, \sigma)$ is i-balanced if and only if it is possible to assign n-tuples to its vertices such that the n-tuple of each edge uv is equal to the product of the n-tuples of u and v.

In [14], we define switching and cycle isomorphism of an *n*-sigraph $S_n = (G, \sigma)$ as follows:

Let $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$, be two *n*-sigraphs. Then S_n and S'_n are said to be isomorphic, written as $S_n \cong S'_n$, if there exists an isomorphism $\phi : G \to G'$ such that if uv is an edge in S_n with label $(a_1, a_2, ..., a_n)$ then $\phi(u)\phi(v)$ is an edge in S'_n with label $(a_1, a_2, ..., a_n)$.

Given an *n*-marking μ of an *n*-sigraph $S_n = (G, \sigma)$, switching S_n with respect to μ is the operation of changing the *n*-tuple of every edge uv of S_n by $\mu(u)\sigma(uv)\mu(v)$. The *n*-sigraph obtained in this way is denoted by $S_{\mu}(S_n)$ and is called the μ -switched *n*-sigraph or just switched *n*-sigraph.

Further, an *n*-sigraph S_n switches to *n*-sigraph S'_n (or they are witching equivalent to each other), written as $S_n \sim S'_n$, whenever there exists an *n*-marking of S_n such that $\mathcal{S}_{\mu}(S_n) \cong S'_n$.

Two *n*-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ are said to be cycle isomorphic, if there exists an isomorphism $\phi : G \to G'$ such that the *n*-tuple $\sigma(C)$ of every cycle C in S_n equals to the *n*-tuple $\sigma(\phi(C))$ in S'_n . We make use of the following known result (see [14]). **Proposition 4.** [14] Given a graph G, any two n-sigraphs with G as underlying graphs are switching equivalent if and only if they are cycle isomorphic.

In [14], it has been shown that the jump *n*-sigraph of an *n*-sigraphs $S_n = (G, \sigma)$ is *i*-balanced. This is also true for line *n*-sigraph of an *n*-sigraph.

Proposition 5. For any n-sigraph $S_n = (G, \sigma)$, its line n-sigraph $L(S_n) = (L(G), \sigma')$ is i-balanced.

Proof. We first note that the labeling σ of S_n can be treated as an *n*-marking of vertices of $L(S_n)$. Then by definition of $L(S_n)$ we see that $\sigma'(ee') = \sigma(e)\sigma(e')$, for every edge ee' of $L(S_n)$ and hence, by proposition 1, the result follows.

Remark 6. In [1], M. Acharya has proved the above result in the special case when n = 1. The proof given here is different from that given in [1].

The following result characterizes n-sigraphs which are line n-sigraphs.

Proposition 7. An n-sigraph $S_n = (G, \sigma)$ is a line n-sigraph if and only if S_n is *i*-balanced n-sigraph and its underlying graph G is a line graph.

Proof. Suppose that S_n is *i*-balanced and G is a line graph. Then there exists a graph H such that $L(H) \cong G$. Since S_n is *i*-balanced, by Proposition 3, there exists an *n*-marking μ of G such that each edge uv in S_n satisfies $\sigma(uv) = \mu(u)\mu(v)$. Now consider the *n*-sigraph $S'_n = (H, \sigma')$, where for any edge e in H, $\sigma'(e)$ is the *n*-marking of the corresponding vertex in G. Then clearly, $L(S'_n) \cong S_n$. Hence S_n is a line *n*-sigraph.

Conversely, suppose that $S_n = (G, \sigma)$ is a line *n*-sigraph. Then there exists an *n*-sigraph $S'_n = (H, \sigma')$ such that $L(S'_n) \cong S_n$. Hence G is the line graph of H and by Proposition 5, S_n is *i*-balanced.

3. Operations on an *n*-tuple $(a_1, a_2, ..., a_n)$

For any $a \in \{+, -\}$, let $\overline{a} \in \{+, -\} \setminus \{a\}$. In an *n*-tuple $(a_1, a_2, ..., a_n)$, the elements $a_{\lceil \frac{n}{2} \rceil}$ and $a_{\lceil \frac{n+1}{2} \rceil}$ are called middle elements. Note that an *n*-tuple has two middle elements if *n* is even and exactly one if *n* is odd. We now define various operations on an *n*-tuple $(a_1, a_2, ..., a_n)$ as follows:

- (i) *f*-complement, $(a_1, a_2, ..., a_n)^f = (\overline{a}_1, \overline{a}_2, ..., \overline{a}_n)$.
- (ii) *m*-complement $(a_1, a_2, ..., a_n)^m = (b_1, b_2, ..., b_n)$, where

$$b_k = \begin{cases} \overline{a}_k, & \text{if } a_k \text{ is a middle element,} \\ a_k, & \text{otherwise.} \end{cases}$$

The Line n-Sigraph of a Symmetric n-Sigraph

(iii) *e*-complement $(a_1, a_2, ..., a_n)^e = (b_1, b_2, ..., b_n)$, where,

 $b_k = \begin{cases} \overline{a}_k, & \text{if } a_k \text{ is not a middle element,} \\ a_k, & \text{otherwise.} \end{cases}$

Let $t \in \{f, e, m\}$. Then t-complement S_n^t of an n-sigraph $S_n = (G, \sigma)$ is obtained from S_n by replacing each n-tuple on the edges of S_n by its t-complement.

For an *n*-sigraph $S_n = (G, \sigma)$, the $L(S_n)$ is *i*-balanced (Proposition 5) and $J(S_n)$ is also *i*-balanced (see [14]). We now examine, the conditions under which *t*-complements of $L(S_n)$ and $J(S_n)$ are *i*-balanced, where $t \in \{f, e, m\}$.

Proposition 8. Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then, for any $t \in \{f, e, m\}$,

(i) If L(G) is bipartite then $(L(S_n))^t$ is i-balanced.

(ii) If J(G) is bipartite then $(J(S_n))^t$ is i-balanced.

Proof. (i) Since, by Proposition 5, $L(S_n)$ is *i*-balanced, for each $k, 1 \le k \le n$, the number of *n*-tuples on any cycle C in $L(S_n)$ whose k^{th} co-ordinate are - is even. Also, since L(G) is bipartite, all cycles have even length; thus, for each $k, 1 \le k \le n$, the number of *n*-tuples on any cycle C in $L(S_n)$ whose k^{th} co-ordinate are + is also even. This implies that the same thing is true in any *t*-complement, where $t \in \{f, e, m\}$. Hence $(L(S_n))^t$ is *i*-balanced.

Similarly (ii) follows.

4. Complement of an *n*-Sigraph $S_n = (G, \sigma)$

Let $S_n = (G, \sigma)$ be an *n*-sigraph. Consider the *n*-marking μ on vertices of S_n defined as follows: for each vertex $v \in V$, $\mu(v)$ is the *n*-tuple which is the product of the *n*-tuples on the edges incident with *v*. Complement of S_n is an *n*-sigraph $\overline{S_n} = (\overline{G}, \sigma^c)$, where for any edge $e = uv \in \overline{G}, \sigma^c(uv) = \mu(u)\mu(v)$. Clearly, $\overline{S_n}$ as defined here is an *i*-balanced *n*-sigraph due to Proposition 3.

The following result is easy to verify using Proposition 4.

Proposition 9. For any n-sigraph $S_n = (G, \sigma), \overline{L(S_n)} \sim J(S_n)$.

5. Switching Equivalence of Jump *n*-Sigraphs and Line *n*-sigraphs

Towards searching for an ideal notion of the complement of a given *n*-sigraph, one is naturally led to look for the analogue of the graph equation, $J(G) \cong L(G)$ for the case of jump *n*-sigraphs. Since $J(G) = \overline{L(G)}$, the solutions to the above equation would be graphs whose line graphs are self-complementary; these graphs have been determined already.

Proposition 10. [16] The graph equation $J(G) \cong L(G)$ has only six solutions; namely $K_2, P_5, P_3 \circ K_1, K_{3,3} - e, K_{3,3}$.

957

Proposition 11. An *n*-sigraph $S_n = (G, \sigma)$ satisfies $L(S_n) \sim J(S_n)$ if and only if G is isomorphic to any of the graphs $K_2, P_5, P_3 \circ K_1, K_{3,3} - e, K_{3,3}$.

The reader may refer the papers [9, 10] for some more related topics in concerning the minimum number of vertices and edges in a graph with a given vertex conecticity, edge conectivity and minimum degree. Further, we can easily extend the same to *n*-sigraphs.

Acknowledgement. The authors thank the referee for carefully reading the manuscript and many helpful suggestions.

References

- M. Acharya, x-Line sigraph of a sigraph, J. Combin. Math. Combin. Comput. 69 (2009) 103–111.
- [2] L.W. Beineke, Characterizations of derived graphs, J. Combinatorial Theory 9 (1970) 129–135.
- [3] L.W. Beineke, F. Harary, Consistent graphs with signed points, *Riv. Math. Sci. Econom. Sociale* 1 (1978) 81–88.
- [4] M. Behzad, G.T. Chartrand, Line coloring of signed graphs, Element der Mathematik 24 (3) (1969), 49–52.
- [5] G.T. Chartrand, H. Hevia, E.B. Jaretre, M. Schutz, Subgraph distance in graphs defined by edge transfers, *Discrete mathematics* 170 (1997) 63–79.
- [6] M.K. Gill, Contributions to some topics in graph theory and its applications, Ph.D. thesis, The Indian Institute of Technology, Bombay, 1983.
- [7] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
- [8] F. Harary, On the notion of balance of a signed graph, Michigan Math. J. 2 (1953) 143–146.
- [9] F. Harary, J.A. Kabell, Extremal graphs with given connectivities, Southeast Asain Bull. Math. 2 (2) (1978) 101–102.
- [10] K.M. Koh, Some problems on graph theory, Southeast Asain Bull. Math. 1 (1) (1977) 39–43.
- [11] F.S. Roberts, On the problem of consistent marking of a graph, *Linear Algebra and Appl.* 217 (1995) 255–263.
- [12] F.S. Roberts, On balanced signed graphs and consistent marked graphs, Preprint.
- [13] E. Sampathkumar, Point signed and line signed graphs, Nat. Acad. Sci. Letters 7 (3) (1984) 91–93.
- [14] E. Sampathkumar, P.S.K. Reddy, M.S. Subramanya, Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc. 11 (1) (2008) 89–95.
- [15] E. Sampathkumar, M.S. Subramanya, P.S.K. Reddy, Characterization of Line Sidigraphs, Southeast Asian Bull. Math., to appear.
- [16] B. Wu, X. Guo, Diameters of jump graphs and self-complementary jump graph, Graph Theory Notes of New York XL (6) (2001) 1–34.
- [17] T. Zaslavsky, Signed Graphs, Discrete Appl. Math. 4 (1) (1982) 47–74.
- [18] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and its allied areas, *Electronic J. Combin.* 8 (1) (1998) 8.