# The Line $n$-Sigraph of a Symmetric $n$-Sigraph ${ }^{*}$ 

E. Sampathkumar<br>Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570 006, India<br>Email: esampathkumar@eth.net<br>P. Siva Kota Reddy<br>Department of Mathematics, Acharya Institute of Technology, Soldevanahalli, Bangalore 560 090, India<br>Email: reddy_math@yahoo.com<br>M. S. Subramanya<br>Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570 006, India<br>Email: subramanya_ms@rediffmail.com

Received 4 July 2008
Accepted 8 January 2009

Communicated by H.K. Yang
AMS Mathematics Subject Classification(2000): 05C22


#### Abstract

An $n$-tuple ( $a_{1}, a_{2}, \ldots, a_{n}$ ) is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric $n$-tuples. A symmetric $n$-sigraph (symmetric $n$-marked graph) is an ordered pair $S_{n}=(G, \sigma)\left(S_{n}=(G, \mu)\right)$, where $G=(V, E)$ is a graph called the underlying graph of $S_{n}$ and $\sigma: E \rightarrow H_{n}\left(\mu: V \rightarrow H_{n}\right)$ is a function. Analogous to the concept of the line sigraph of a sigraph, the line symmetric $n$-sigraph of a symmetric $n$-sigraph is defined. We then give a structural characterization of line symmetric $n$-sigraphs, extending the well known characterization of line graphs due to Beineke. Analogous to the concept of switching in sigraphs we introduce the notion of switching in symmetric $n$-sigraphs and obtain some relationships between jump symmetric $n$-sigraphs and line


[^0]symmetric $n$-sigraphs.

Keywords: Symmetric $n$-sigraphs; Symmetric $n$-marked graphs; Balance; Switching; Jump symmetric $n$-sigraphs; Line symmetric $n$-sigraphs; Complements of $n$-sigraph.

## 1. Introduction

For graph theoretical terminologies and notations in this paper we follow the book [7].

Let $n \geq 1$ be an integer. An $n$-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is symmetric, if $a_{k}=$ $a_{n-k+1}, 1 \leq k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq\right.$ $k \leq n\}$ be the set of all symmetric $n$-tuples. Note that $H_{n}$ is a group under coordinate wise multiplication, and the order of $H_{n}$ is $2^{m}$, where $m=\left\lceil\frac{n}{2}\right\rceil$.

A symmetric $n$-sigraph (symmetric $n$-marked graph) is an ordered pair $S_{n}=$ $(G, \sigma)\left(S_{n}=(G, \mu)\right)$, where $G=(V, E)$ is a graph called the underlying graph of $S_{n}$ and $\sigma: E \rightarrow H_{n}\left(\mu: V \rightarrow H_{n}\right)$ is a function.

A sigraph (marked graph) is an ordered pair $S=(G, \sigma)(S=(G, \mu)$ ), where $G=(V, E)$ is a graph called the underlying graph of $S$ and $\sigma: E \rightarrow\{+,-\}$ $(\mu: V \rightarrow\{+,-\})$ is a function. Thus a symmetric 1-sigraph (symmetric 1marked graph) is a sigraph (marked graph). Sigraphs (Marked graphs) are well studied in literature (See for example $[8,12,13,17,18,3,11,12,13]$ ).

The line graph $L(G)$ of graph $G$ has the edges of $G$ as the vertices and two vertices of $L(G)$ are adjacent if the corresponding edges of $G$ are adjacent.

The jump graph $J(G)$ of a graph $G=(V, E)$ is $\overline{L(G)}$, the complement of the line graph $L(G)$ of $G$ (See $[5,7]$ ).

Behzad and Chartrand [4] introduced the notion of line sigraph $L(S)$ of a given sigraph $S$ as follows: Given a signed graph $S=(G, \sigma)$ its line sigraph $L(S)=\left(L(G), \sigma^{\prime}\right)$ is that signed graph whose underlying graph is $L(G)$, the line graph of $G$, where for any edge $e_{i} e_{j}$ in $L(S), \sigma^{\prime}\left(e_{i} e_{j}\right)$ is negative if and only if both $e_{i}$ and $e_{j}$ are adjacent negative edges in $S$. Another notion of line sigraph introduced in [6], is as follows: The line sigraph of a sigraph $S=(G, \sigma)$ is a sigraph $L(S)=\left(L(G), \sigma^{\prime}\right)$, where for any edge $e e^{\prime}$ in $L(S), \sigma^{\prime}\left(e e^{\prime}\right)=\sigma(e) \sigma\left(e^{\prime}\right)$ (See also [15]).

In this paper by an $n$-tuple/ $n$-sigraph/ $n$-marked graph we always mean a symmetric $n$-tuple/symmetric $n$-sigraph/symmetric $n$-marked graph.

Analogous to the concept of line sigraph defined in [6] we define line $n$-sigraph as follows: A line $n$-sigraph $L\left(S_{n}\right)$ of an $n$-sigraph $S_{n}=(G, \sigma)$ is an $n$-sigraph $L\left(S_{n}\right)=\left(L(G), \sigma^{\prime}\right)$ where for any edge $e e^{\prime}$ in $L(G), \sigma^{\prime}\left(e e^{\prime}\right)=\sigma(e) \sigma\left(e^{\prime}\right)$.

Hence, we shall call a given $n$-sigraph $S_{n}$ a line $n$-sigraph if it is isomorphic to the line $n$-sigraph $L\left(S_{n}^{\prime}\right)$ of some $n$-sigraph $S_{n}^{\prime}$.

In the following section, we shall present an extension of well known characterization of a line graph given in most of the standard text-books on graph theory (e.g., see [7]), originally due to [2].

The jump $n$-sigraph $J\left(S_{n}\right)$ of an $n$-sigraph $S_{n}=(G, \sigma)$ is defined as follows (See [14]): $J\left(S_{n}\right)=\left(J(G), \sigma^{\prime}\right)$, where for any edge $e e^{\prime}$ in $J(G), \sigma^{\prime}\left(e e^{\prime}\right)=$ $\sigma(e) \sigma\left(e^{\prime}\right)$.

Further, an $n$-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the identity $n$-tuple, if $a_{k}=+$, for $1 \leq k \leq n$, otherwise it is a non-identity $n$-tuple. In an $n$-sigraph $S_{n}=(G, \sigma)$ an edge labeled with the identity $n$-tuple is called an identity edge, otherwise it is a non-identity edge.

In an $n$-sigraph $S_{n}=(G, \sigma)$, for any $A \subseteq E(G)$ the $n$-tuple $\sigma(A)$ is the product of the $n$-tuples on the edges of $A$.

## 2. Balance in an $\boldsymbol{n}$-Sigraph

In [14], we define two notions of balance in $n$-sigraph $S_{n}=(G, \sigma)$ as follows:

Definition 1. Let $S_{n}=(G, \sigma)$ be an $n$-sigraph. Then,
(i) $S_{n}$ is identity balanced (or i-balanced), if product of $n$-tuples on each cycle of $G$ is the identity n-tuple, and
(ii) $S_{n}$ is balanced, if every cycle in $G$ contains an even number of non-identity edges.

Note 2. An $i$-balanced $n$-sigraph need not be balanced and vice versa.
Proposition 3. [14] An n-sigraph $S_{n}=(G, \sigma)$ is $i$-balanced if and only if it is possible to assign n-tuples to its vertices such that the $n$-tuple of each edge $u v$ is equal to the product of the $n$-tuples of $u$ and $v$.

In [14], we define switching and cycle isomorphism of an $n$-sigraph $S_{n}=$ $(G, \sigma)$ as follows:

Let $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$, be two $n$-sigraphs. Then $S_{n}$ and $S_{n}^{\prime}$ are said to be isomorphic, written as $S_{n} \cong S_{n}^{\prime}$, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that if $u v$ is an edge in $S_{n}$ with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ then $\phi(u) \phi(v)$ is an edge in $S_{n}^{\prime}$ with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Given an $n$-marking $\mu$ of an $n$-sigraph $S_{n}=(G, \sigma)$, switching $S_{n}$ with respect to $\mu$ is the operation of changing the $n$-tuple of every edge $u v$ of $S_{n}$ by $\mu(u) \sigma(u v) \mu(v)$. The $n$-sigraph obtained in this way is denoted by $\mathcal{S}_{\mu}\left(S_{n}\right)$ and is called the $\mu$-switched $n$-sigraph or just switched $n$-sigraph.

Further, an $n$-sigraph $S_{n}$ switches to $n$-sigraph $S_{n}^{\prime}$ (or they are witching equivalent to each other), written as $S_{n} \sim S_{n}^{\prime}$, whenever there exists an $n$ marking of $S_{n}$ such that $\mathcal{S}_{\mu}\left(S_{n}\right) \cong S_{n}^{\prime}$.

Two $n$-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ are said to be cycle isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that the $n$-tuple $\sigma(C)$ of every cycle $C$ in $S_{n}$ equals to the $n$-tuple $\sigma(\phi(C))$ in $S_{n}^{\prime}$. We make use of the following known result (see [14]).

Proposition 4. [14] Given a graph $G$, any two $n$-sigraphs with $G$ as underlying graphs are switching equivalent if and only if they are cycle isomorphic.

In [14], it has been shown that the jump $n$-sigraph of an $n$-sigraphs $S_{n}=$ $(G, \sigma)$ is $i$-balanced. This is also true for line $n$-sigraph of an $n$-sigraph.

Proposition 5. For any $n$-sigraph $S_{n}=(G, \sigma)$, its line $n$-sigraph $L\left(S_{n}\right)=$ $\left(L(G), \sigma^{\prime}\right)$ is $i$-balanced.

Proof. We first note that the labeling $\sigma$ of $S_{n}$ can be treated as an $n$-marking of vertices of $L\left(S_{n}\right)$. Then by definition of $L\left(S_{n}\right)$ we see that $\sigma^{\prime}\left(e e^{\prime}\right)=\sigma(e) \sigma\left(e^{\prime}\right)$, for every edge $e e^{\prime}$ of $L\left(S_{n}\right)$ and hence, by proposition 1 , the result follows.

Remark 6. In [1], M. Acharya has proved the above result in the special case when $n=1$. The proof given here is different from that given in [1].

The following result characterizes $n$-sigraphs which are line $n$-sigraphs.

Proposition 7. An n-sigraph $S_{n}=(G, \sigma)$ is a line $n$-sigraph if and only if $S_{n}$ is $i$-balanced $n$-sigraph and its underlying graph $G$ is a line graph.

Proof. Suppose that $S_{n}$ is $i$-balanced and $G$ is a line graph. Then there exists a graph $H$ such that $L(H) \cong G$. Since $S_{n}$ is $i$-balanced, by Proposition 3, there exists an $n$-marking $\mu$ of $G$ such that each edge $u v$ in $S_{n}$ satisfies $\sigma(u v)=$ $\mu(u) \mu(v)$. Now consider the $n$-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$, where for any edge $e$ in $H$, $\sigma^{\prime}(e)$ is the $n$-marking of the corresponding vertex in $G$. Then clearly, $L\left(S_{n}^{\prime}\right) \cong$ $S_{n}$. Hence $S_{n}$ is a line $n$-sigraph.

Conversely, suppose that $S_{n}=(G, \sigma)$ is a line $n$-sigraph. Then there exists an $n$-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$ such that $L\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence $G$ is the line graph of $H$ and by Proposition $5, S_{n}$ is $i$-balanced.

## 3. Operations on an $n$-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$

For any $a \in\{+,-\}$, let $\bar{a} \in\{+,-\} \backslash\{a\}$. In an $n$-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, the elements $a_{\left\lceil\frac{n}{2}\right\rceil}$ and $a_{\left\lceil\frac{n+1}{2}\right\rceil}$ are called middle elements. Note that an $n$-tuple has two middle elements if $n$ is even and exactly one if $n$ is odd. We now define various operations on an $n$-tuple ( $a_{1}, a_{2}, \ldots, a_{n}$ ) as follows:
(i) $f$-complement, $\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{f}=\left(\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n}\right)$.
(ii) $m$-complement $\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{m}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, where

$$
b_{k}= \begin{cases}\bar{a}_{k}, & \text { if } a_{k} \text { is a middle element } \\ a_{k}, & \text { otherwise }\end{cases}
$$

(iii) e-complement $\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{e}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, where,

$$
b_{k}= \begin{cases}\bar{a}_{k}, & \text { if } a_{k} \text { is not a middle element } \\ a_{k}, & \text { otherwise }\end{cases}
$$

Let $t \in\{f, e, m\}$. Then $t$-complement $S_{n}^{t}$ of an $n$-sigraph $S_{n}=(G, \sigma)$ is obtained from $S_{n}$ by replacing each $n$-tuple on the edges of $S_{n}$ by its $t$-complement.

For an $n$-sigraph $S_{n}=(G, \sigma)$, the $L\left(S_{n}\right)$ is $i$-balanced (Proposition 5) and $J\left(S_{n}\right)$ is also $i$-balanced (see [14]). We now examine, the conditions under which $t$-complements of $L\left(S_{n}\right)$ and $J\left(S_{n}\right)$ are $i$-balanced, where $t \in\{f, e, m\}$.

Proposition 8. Let $S_{n}=(G, \sigma)$ be an $n$-sigraph. Then, for any $t \in\{f, e, m\}$,
(i) If $L(G)$ is bipartite then $\left(L\left(S_{n}\right)\right)^{t}$ is $i$-balanced.
(ii) If $J(G)$ is bipartite then $\left(J\left(S_{n}\right)\right)^{t}$ is $i$-balanced.

Proof. (i) Since, by Proposition 5, $L\left(S_{n}\right)$ is $i$-balanced, for each $k, 1 \leq k \leq n$, the number of $n$-tuples on any cycle $C$ in $L\left(S_{n}\right)$ whose $k^{t h}$ co-ordinate are - is even. Also, since $L(G)$ is bipartite, all cycles have even length; thus, for each $k, 1 \leq k \leq n$, the number of $n$-tuples on any cycle $C$ in $L\left(S_{n}\right)$ whose $k^{t h}$ coordinate are + is also even. This implies that the same thing is true in any $t$-complement, where $t \in\{f, e, m\}$. Hence $\left(L\left(S_{n}\right)\right)^{t}$ is $i$-balanced.

Similarly (ii) follows.

## 4. Complement of an $n$-Sigraph $S_{n}=(G, \sigma)$

Let $S_{n}=(G, \sigma)$ be an $n$-sigraph. Consider the $n$-marking $\mu$ on vertices of $S_{n}$ defined as follows: for each vertex $v \in V, \mu(v)$ is the $n$-tuple which is the product $\frac{\text { of the }}{S_{n}} n$-tuples on the edges incident with $v$. Complement of $S_{n}$ is an $n$-sigraph $\overline{S_{n}}=\left(\bar{G}, \sigma^{c}\right)$, where for any edge $e=u v \in \bar{G}, \sigma^{c}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ as defined here is an $i$-balanced $n$-sigraph due to Proposition 3.

The following result is easy to verify using Proposition 4.
Proposition 9. For any $n$-sigraph $S_{n}=(G, \sigma), \overline{L\left(S_{n}\right)} \sim J\left(S_{n}\right)$.

## 5. Switching Equivalence of Jump $\boldsymbol{n}$-Sigraphs and Line $\boldsymbol{n}$-sigraphs

Towards searching for an ideal notion of the complement of a given $n$-sigraph, one is naturally led to look for the analogue of the graph equation, $J(G) \cong$ $L(G)$ for the case of jump $n$-sigraphs. Since $J(G)=\overline{L(G)}$, the solutions to the above equation would be graphs whose line graphs are self-complementary; these graphs have been determined already.

Proposition 10. [16] The graph equation $J(G) \cong L(G)$ has only six solutions; namely $K_{2}, P_{5}, P_{3} \circ K_{1}, K_{3,3}-e, K_{3,3}$.

Proposition 11. An n-sigraph $S_{n}=(G, \sigma)$ satisfies $L\left(S_{n}\right) \sim J\left(S_{n}\right)$ if and only if $G$ is isomorphic to any of the graphs $K_{2}, P_{5}, P_{3} \circ K_{1}, K_{3,3}-e, K_{3,3}$.

The reader may refer the papers $[9,10]$ for some more related topics in concerning the minimum number of vertices and edges in a graph with a given vertex conecticity, edge conectivity and mimimm degree. Further, we can easily extend the same to $n$-sigraphs.

Acknowledgement. The authors thank the referee for carefully reading the manuscript and many helpful suggestions.

## References

[1] M. Acharya, x-Line sigraph of a sigraph, J. Combin. Math. Combin. Comput. 69 (2009) 103-111.
[2] L.W. Beineke, Characterizations of derived graphs, J. Combinatorial Theory 9 (1970) 129-135.
[3] L.W. Beineke, F. Harary, Consistent graphs with signed points, Riv. Math. Sci. Econom. Sociale 1 (1978) 81-88.
[4] M. Behzad, G.T. Chartrand, Line coloring of signed graphs, Element der Mathematik 24 (3) (1969), 49-52.
[5] G.T. Chartrand, H. Hevia, E.B. Jaretre, M. Schutz, Subgraph distance in graphs defined by edge transfers, Discrete mathematics 170 (1997) 63-79.
[6] M.K. Gill, Contributions to some topics in graph theory and its applications, Ph.D. thesis, The Indian Institute of Technology, Bombay, 1983.
[7] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
[8] F. Harary, On the notion of balance of a signed graph, Michigan Math. J. 2 (1953) 143-146.
[9] F. Harary, J.A. Kabell, Extremal graphs with given connectivities, Southeast Asain Bull. Math. 2 (2) (1978) 101-102.
[10] K.M. Koh, Some problems on graph theory, Southeast Asain Bull. Math. 1 (1) (1977) 39-43.
[11] F.S. Roberts, On the problem of consistent marking of a graph, Linear Algebra and Appl. 217 (1995) 255-263.
[12] F.S. Roberts, On balanced signed graphs and consistent marked graphs, Preprint.
[13] E. Sampathkumar, Point signed and line signed graphs, Nat. Acad. Sci. Letters 7 (3) (1984) 91-93.
[14] E. Sampathkumar, P.S.K. Reddy, M.S. Subramanya, Jump symmetric $n$-sigraph, Proceedings of the Jangjeon Math. Soc. 11 (1) (2008) 89-95.
[15] E. Sampathkumar, M.S. Subramanya, P.S.K. Reddy, Characterization of Line Sidigraphs, Southeast Asian Bull. Math., to appear.
[16] B. Wu, X. Guo, Diameters of jump graphs and self-complementary jump graph, Graph Theory Notes of New York XL (6) (2001) 1-34.
[17] T. Zaslavsky, Signed Graphs, Discrete Appl. Math. 4 (1) (1982) 47-74.
[18] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and its allied areas, Electronic J. Combin. 8 (1) (1998) 8.


[^0]:    *The authors are thankful to Department of Science and Technology, Government of India, New Delhi for the financial support under the project grant SR/S4/MS:275/05.

