provided by University of Mysore - Digital Repository of Research, Innovation.

DEMONSTRATIO MATHEMATICA Vol. XLV No 3 2012

L. Dileep and S. Latha

ON P-VALENT FUNCTIONS OF COMPLEX ORDER

Abstract. The purpose of the present paper is to derive characterization theorem and radius of starlikeness for certain class of p- valent analytic functions. In connection with these results some more properties are discussed.

1. Introduction

Let \mathcal{A}_p denote the class of analytic functions defined in the unit disc $\mathcal{U} = \{z : |z| < 1\}$ of the form

(1.1)
$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n, \quad (p \in \mathbb{N} := \{1, 2, 3, \cdots\}).$$

For $-1 \leq B < A \leq 1$, let $\mathcal{P}(A, B)$ [8] denote the class of functions which are of the form

(1.2)
$$p_1(z) = \frac{1 + A\omega(z)}{1 + B\omega(z)},$$

where ω is bounded analytic functions satisfying the conditions $\omega(0) = 0$ and $|\omega(z)| < 1$.

Let $\mathcal{P}(A, B, p, \alpha)$ denote the class of functions $p(z) = p + \sum_{n=1}^{\infty} a_n z^n$ which are analytic in \mathcal{U} and

(1.3)
$$p(z) = (p - \alpha)p_1(z) + \alpha \quad p_1(z) \in \mathcal{P}(A, B).$$

Using (1.2) and (1.3), one can show that $p(z) \in \mathcal{P}(A, B, p, \alpha)$ if and only if

(1.4)
$$p(z) = \frac{p + \gamma \omega(z)}{1 + B\omega(z)}, \quad \omega(z) \in \mathcal{U},$$

where $\gamma = (p - \alpha)A + \alpha B$.

2000 Mathematics Subject Classification: 30C45.

Key words and phrases: p- valent functions, Janowski class.

For some real λ , $|\lambda| < \frac{\pi}{2}$, b a non-zero complex number, we designate $S_p^{\lambda}(A, B, b)$ as the class of functions $f(z) \in \mathcal{A}_p$ such that

(1.5)
$$p + d\left(\frac{zf'(z)}{f(z)} - p\right) = p(z), \text{ for } p(z) \in \mathcal{P}(A, B, p, \alpha),$$

where $d = \frac{e^{i\lambda}}{b\cos\lambda}.$

This class generalizes various classes studied earlier by Aouf [2], Janowski [8], Golzina [5], Ganesan [4], Silverman [10] and Polatoglu et al. [11] respectively. In particular, $\mathcal{S}(A, B, p, \alpha)$, $\mathcal{S}^*(A, B)$, $\mathcal{S}_{\alpha}(p)$, $\mathcal{S}_p(A, B)$, $\mathcal{S}(a, b)$ and $\mathcal{S}^{\lambda}(A, B, b)$ are all contained in the class $\mathcal{S}_p^{\lambda}(A, B, b)$.

2. Some preliminaries

LEMMA 2.1. [2] Let $p(z) \in \mathcal{P}(A, B, p, \alpha)$. Then, for $|z| \leq r$, we have

(2.1)
$$\left| p(z) - \frac{p - [pB + (A - B)(p - \alpha)]Br^2}{1 - B^2 r^2} \right| \le \frac{(A - B)(p - \alpha)r}{1 - B^2 r^2}, \quad z \in \mathcal{U}.$$

LEMMA 2.2. [2] $f(z) \in \mathcal{S}(A, B, p, \alpha)$ if and only if

(2.2)
$$f(z) = z^p \left[\frac{f_1(z)}{z} \right]^{p-\alpha}, \quad f_1(z) \in \mathcal{S}^*(A, B), \quad z \in \mathcal{U}.$$

LEMMA 2.3. [9] If $f(z) \in S^*(A, B)$ $(-1 \le B < A \le 1)$, then

(2.3)
$$\left|\arg\frac{f(z)}{z}\right| \le \frac{2(A-B)}{(1-B)}\arcsin r, \ |z| = r < 1.$$

3. Main results

In this section, a necessary and sufficient condition, radius of starlikeness for functions belonging to class $S_p^{\lambda}(A, B, b)$ are determined.

THEOREM 3.1. A function $f(z) = z^p + a_{p+1}z^{p+1} + a_{p+2}z^{p+2} + \dots$, belongs to the class $S_p^{\lambda}(A, B, b)$ if and only if

$$e^{i\lambda}\left(\frac{zf'(z)}{f(z)}-p\right)\prec \frac{(\gamma-pB)b\cos\lambda z}{1+Bz}, \quad z\in\mathcal{U}.$$

Proof. Let

$$e^{i\lambda}\left(\frac{zf'(z)}{f(z)}-p\right)\prec \frac{(\gamma-pB)b\cos\lambda z}{1+Bz}.$$

542

Using subordination principle, it follows that

$$p + \frac{e^{i\lambda}}{b\cos\lambda} \left(\frac{zf'(z)}{f(z)} - p\right) = p + \frac{(\gamma - pB)\omega(z)}{1 + B\omega(z)} = \frac{p + \gamma\omega(z)}{1 + B\omega(z)}$$

This implies $f(z) \in \mathcal{S}_p^{\lambda}(A, B, b)$.

Conversely if $f(z) \in S_p^{\lambda}(A, B, b)$, then for some $p(z) \in \mathcal{P}(A, B, p, \alpha)$ and $z \in \mathcal{U}$,

$$p + \frac{e^{i\lambda}}{b\cos\lambda} \left(\frac{zf'(z)}{f(z)} - p\right) = p(z).$$

Hence, we have

$$p + \frac{e^{i\lambda}}{b\cos\lambda} \left(\frac{zf'(z)}{f(z)} - p\right) = \frac{p + \gamma\omega(z)}{1 + B\omega(z)}.$$

This simplifies into

$$\frac{e^{i\lambda}}{b\cos\lambda}\left(\frac{zf'(z)}{f(z)}-p\right) = \frac{(\gamma-pB)\omega(z)}{1+B\omega(z)}$$

By subordination principle, it follows that

$$e^{i\lambda}\left(\frac{zf'(z)}{f(z)}-p\right)\prec \frac{(\gamma-pB)b\cos\lambda z}{1+Bz}.$$

For parametric values p = 1 and $\alpha = 0$, we get the Theorem 1 in [11] which reads as follows:

COROLLARY 3.2. $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$, belongs to $S^{\lambda}(A, B, b)$ if and only if

$$e^{i\lambda}\left(\frac{zf'(z)}{f(z)}-1\right)$$
 \prec $\begin{cases} \frac{(A-B)b\cos\lambda z}{1+Bz}, B\neq 0\\ Ab\cos\lambda z, B=0. \end{cases}$

THEOREM 3.3. If $f(z) \in \mathcal{S}_p^{\lambda}(A, B, b)$, then

(3.1)
$$\left|1 - \left(\frac{f(z)}{z^p}\right)^{\frac{Bd}{(\gamma - pB)}}\right| < 1, \qquad z \in \mathcal{U}.$$

Proof. We define the function $\omega(z)$ by

$$\frac{f(z)}{z^p} = (1 + B\omega(z))^{\frac{(\gamma - pB)}{Bd}}$$

where the exponent is so chosen that $(1+B\omega(z))^{\frac{(\gamma-pB)}{Bd}}$ has the value 1 at the origin. Then, $\omega(z)$ is analytic in \mathcal{U} and $\omega(0) = 0$. Logarithmic differentiation, yields

$$e^{i\lambda}\frac{zf'(z)}{f(z)} - e^{i\lambda}p = \frac{(\gamma - pB)b\cos\lambda\omega'(z)}{1 + B\omega(z)}.$$

By Theorem 3.1, it follows that $|\omega(z)| < 1$ for all $z \in \mathcal{U}$ with $|\omega(z_1)| = 1$ such that $|\omega(z)|$ attains its maximum value on the circle $|z| = z_1 < 1$ at the point z_1 .

Using Jack's Lemma in this equality, since $|\omega(z_1)| = 1$ and $k \ge 1$, we obtain

$$e^{i\lambda}z_1\frac{f'(z_1)}{f(z_1)} - e^{i\lambda}p = \frac{(\gamma - pB)b\cos\lambda\omega(z_1)}{1 + B\omega(z_1)} = F(\omega(z_1)) \notin F(\mathcal{U}).$$

But this contradicts Theorem 3.1. Now using (3.1), we obtain

$$\left|1 - \left(\frac{f(z)}{z^p}\right)^{\frac{Bd}{(\gamma - pB)}}\right| = |B\omega(z)| < |B|,$$

which completes the proof. \blacksquare

For parametric values p = 1 and $\alpha = 0$, we get the Theorem 2 in [11] which reads as follows:

COROLLARY 3.4. If $f(z) \in S_p(A, B, b)$, then

$$\left|1 - \left(\frac{f(z)}{z}\right)^{\frac{Bd}{(A-B)}}\right| < 1, \qquad z \in \mathcal{U}.$$

THEOREM 3.5. If $f(z) = z^p + a_{p+2}z^{p+2} + a_{p+3}z^{p+3} + \cdots$, belongs to $S_p^{\lambda}(A, B, b)$, then

$$G(r, -A, -B, |b|) \le |f(z)| \le G(r, A, B, |b|), \quad z \in \mathcal{U}$$

where,

$$G(r, A, B, |b|) = \begin{cases} r^p (1 + Br)^{\frac{(\gamma - pB)\cos\lambda(|b| + \Re\{b\}\cos\lambda)}{2B}}, B \neq 0\\ r^p e^{A(p-\alpha)|b|\cos\lambda r}, \qquad B = 0. \end{cases}$$

This bound is sharp, being attained by the extremal function

(3.2)
$$f_*(z) = \begin{cases} z^p (1+Bz)^{\frac{(\gamma-pB)}{Bd}}, B \neq 0\\ z^p e^{\frac{A(p-\alpha)}{d}}, B = 0 \end{cases}$$

The radius of starlikeness of the class $\mathcal{S}_p^{\lambda}(A, B, b)$ is

$$r_s =$$

$$\frac{(\gamma - pB)|b|\cos\lambda - \sqrt{(\gamma - pB)^2|b|^2\cos^2\lambda + 4B^2 + 4B(\gamma - pB)\Re\{b\}\cos^2\lambda}}{2[-B^2 - B(\gamma - pB)\Re\{b\}\cos^2\lambda]}$$

This radius is sharp, being attained by the extremal function

$$f_*(z) = z(1+Bz)^{\frac{(\gamma-pB)e^{-i\lambda}b\cos\lambda}{B}}.$$

Proof. Let $f(z) \in \mathcal{S}_p^{\lambda}(A, B, b)$ and B = 0. Therefore, from (2.1) we have

$$\left| p + d\left(\frac{zf'(z)}{f(z)} - p\right) - \frac{p - [pB + (\gamma - pB)]Br^2}{1 - B^2r^2} \right| \le \frac{(\gamma - pB)|b|\cos\lambda r}{1 - B^2r^2}.$$

Hence we get

(3.3)
$$\left| \frac{zf'(z)}{f(z)} - \frac{p(1-B^2r^2) - B(\gamma-pB)b\cos^2\lambda r^2}{1-B^2r^2} \right| \le \frac{(\gamma-pB)|b|\cos\lambda r}{1-B^2r^2}.$$

The set of the values of $\frac{zf'(z)}{f(z)}$ in the closed disc with center

(3.4)
$$C(r) = \left(\frac{p(1-B^2r^2) - B(\gamma - pB)b\cos^2\lambda r^2}{1-B^2r^2}, \frac{p(1-B^2r^2) + B(\gamma - pB)b\cos^2\lambda r^2}{1-B^2r^2}\right)$$

and radius

$$\rho(r) = \frac{(\gamma - pB)|b|\cos\lambda r}{1 - B^2 r^2}$$

The inequality (3.3) can be written in the form,

(3.5)
$$M_1(r) \le \Re\left\{\frac{zf'(z)}{f(z)}\right\} \le M_2(r),$$

where

$$M_1(r) = \frac{p - (\gamma - pB)|b|\cos\lambda r + p(B^2 + B(\gamma - pB)\Re\{b\}\cos^2\lambda)r^2}{1 - B^2r^2},$$
$$M_2(r) = \frac{p + (\gamma - pB)|b|\cos\lambda r - p(B^2 + B(\gamma - pB)\Re\{b\}\cos^2\lambda)r^2}{1 - B^2r^2}.$$

On the other hand

(3.6)
$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} = r\frac{\partial}{\partial r}\log|f(z)|.$$

By considering (3.5) and (3.6) we can write

$$M_1(r) \le r \frac{\partial}{\partial r} \log |f(z)| \le M_2(r),$$

which yields the desired result on integration. If we take B = 0 in the inequality (3.3) we obtain the complete result.

From (3.3), we have

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} \ge \frac{p - (\gamma - pB)|b|\cos\lambda r - (B^2 + B(\gamma - pB)\Re\{b\}\cos^2\lambda)r^2}{1 - B^2r^2}.$$

L. Dileep, S. Latha

For $r < r_s$ the right hand side of the preceding inequality is positive, which implies

$$\begin{aligned} r_s &= \\ \frac{(\gamma - pB)|b|\cos\lambda - \sqrt{(\gamma - pB)^2|b|^2\cos^2\lambda + 4B^2 + 4B(\gamma - pB)\Re\{b\}\cos^2\lambda}}{2[-B^2 - B(\gamma - pB)\Re\{b\}\cos^2\lambda]}. \end{aligned}$$

We also note that the inequality (3.3) becomes an equality for the function

$$f_*(z) = z(1+Bz)^{\frac{(\gamma-pB)be^{-i\lambda}\cos\lambda}{B}}$$

Hence the proof is complete.

THEOREM 3.6. If $f(z) \in S_p^{\lambda}(A, B, b)$, then for |z| = r < 1,

$$\left|\arg\frac{f(z)}{z^p}\right| \le \frac{2(\gamma - pB)}{(1 - B)d}, \quad z \in \mathcal{U}.$$

Proof. From (2.2) $\frac{f(z)}{z^p} = \left(\frac{f_1(z)}{z}\right)^{\left(\frac{p-\alpha}{d}\right)}$ where $f_1(z) \in \mathcal{S}^*(A, B)$. From (2.3), the desired inequality follows.

Acknowledgement. This work was supported by UGC Major Research Fund F. No. 38-268/2009(SR).

References

- F. M. AL-Oboudi, M. M. Haidan, Spirallike functions of complex order, J. Nat. Geom. 19 (2000), 53–72.
- [2] M. K. Aouf, On class of p-valent starlike functions of order α, Internat. J. Math. Math. Sci. 10(4) (1987), 733–744.
- [3] M. K. Aouf, F. M. Al-Oboudi, M. M. Haidan, On some results for λ- spirallike and λ-Robertson functions of complex order, Publ. Instit. Math. Belgrade 77 (2005), 93–98.
- [4] M. S. Ganesan, A study in the theory of univalent function and multivalent functions, Ph. D Thesis.
- [5] E. G. Golzina, On the coefficients of a class of functions regular in a disk and having an integral representation in it, J. of Soviet Math. 6(2) (1974), 606–617.
- [6] A. W. Goodman, Univalent Functions, Vol. I & II, Mariner Publishing Comp. Inc., Tampa, Florida, 1983.
- [7] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3(2) (1971), 469–474.
- [8] W. Janowski, Some extremal problems for certain families of analytic functions, I. Ann. Polon. Math. 28 (1973), 297–326.
- B. Pinchuk, On starlike and convex functions of order α, Duke Math. J. 35 (1968), 721–734.

- [10] H. Silverman, Subclasses of starlike functions, Rev. Roumaine Math. Pures Appl. 23 (1978), 1093–1099.
- Y. Polatoglu, A. Sen, Some results on subclasses of Janowski λ-spirallike functions of complex order, Gen. Math. 15(2-3) (2007), 88–97.

L. Dileep DEPARTMENT OF MATHEMATICS VIDYAVARDHAKA COLLEGE OF ENGINEERING Gokolum 3rd stage MYSORE, INDIA E-mail: dileep184@gmail.com

S. Latha DEPARTMENT OF MATHEMATICS YUVARAJA'S COLLEGE UNIVERSITY OF MYSORE MYSORE - 570 005, INDIA E-mail: drlatha@gmail.com

Received May 16, 2010; revised version January 11, 2011.