L. Dileep and S. Latha

ON P-VALENT FUNCTIONS OF COMPLEX ORDER

Abstract

The purpose of the present paper is to derive characterization theorem and radius of starlikeness for certain class of p - valent analytic functions. In connection with these results some more properties are discussed.

1. Introduction

Let \mathcal{A}_{p} denote the class of analytic functions defined in the unit disc $\mathcal{U}=\{z:|z|<1\}$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}, \quad(p \in \mathbb{N}:=\{1,2,3, \cdots\}) . \tag{1.1}
\end{equation*}
$$

For $-1 \leq B<A \leq 1$, let $\mathcal{P}(A, B)$ [8] denote the class of functions which are of the form

$$
\begin{equation*}
p_{1}(z)=\frac{1+A \omega(z)}{1+B \omega(z)} \tag{1.2}
\end{equation*}
$$

where ω is bounded analytic functions satisfying the conditions $\omega(0)=0$ and $|\omega(z)|<1$.

Let $\mathcal{P}(A, B, p, \alpha)$ denote the class of functions $p(z)=p+\sum_{n=1}^{\infty} a_{n} z^{n}$ which are analytic in \mathcal{U} and

$$
\begin{equation*}
p(z)=(p-\alpha) p_{1}(z)+\alpha \quad p_{1}(z) \in \mathcal{P}(A, B) \tag{1.3}
\end{equation*}
$$

Using (1.2) and (1.3), one can show that $p(z) \in \mathcal{P}(A, B, p, \alpha)$ if and only if

$$
\begin{equation*}
p(z)=\frac{p+\gamma \omega(z)}{1+B \omega(z)}, \quad \omega(z) \in \mathcal{U} \tag{1.4}
\end{equation*}
$$

where $\gamma=(p-\alpha) A+\alpha B$.

[^0]For some real $\lambda,|\lambda|<\frac{\pi}{2}, b$ a non-zero complex number, we designate $\mathcal{S}_{p}^{\lambda}(A, B, b)$ as the class of functions $f(z) \in \mathcal{A}_{p}$ such that

$$
\begin{equation*}
p+d\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)=p(z), \text { for } p(z) \in \mathcal{P}(A, B, p, \alpha) \tag{1.5}
\end{equation*}
$$

$$
\text { where } d=\frac{e^{i \lambda}}{b \cos \lambda}
$$

This class generalizes various classes studied earlier by Aouf [2], Janowski [8], Golzina [5], Ganesan [4], Silverman [10] and Polatoglu et al. [11] respectively. In particular, $\mathcal{S}(A, B, p, \alpha), \mathcal{S}^{*}(A, B), \mathcal{S}_{\alpha}(p), \mathcal{S}_{p}(A, B), \mathcal{S}(a, b)$ and $\mathcal{S}^{\lambda}(A, B, b)$ are all contained in the class $\mathcal{S}_{p}^{\lambda}(A, B, b)$.

2. Some preliminaries

Lemma 2.1. [2] Let $p(z) \in \mathcal{P}(A, B, p, \alpha)$. Then, for $|z| \leq r$, we have

$$
\begin{align*}
&\left|p(z)-\frac{p-[p B+(A-B)(p-\alpha)] B r^{2}}{1-B^{2} r^{2}}\right| \tag{2.1}\\
& \leq \frac{(A-B)(p-\alpha) r}{1-B^{2} r^{2}}, \quad z \in \mathcal{U}
\end{align*}
$$

Lemma 2.2. [2] $f(z) \in \mathcal{S}(A, B, p, \alpha)$ if and only if

$$
\begin{equation*}
f(z)=z^{p}\left[\frac{f_{1}(z)}{z}\right]^{p-\alpha}, \quad f_{1}(z) \in \mathcal{S}^{*}(A, B), \quad z \in \mathcal{U} \tag{2.2}
\end{equation*}
$$

Lemma 2.3. [9] If $f(z) \in \mathcal{S}^{*}(A, B)(-1 \leq B<A \leq 1)$, then

$$
\begin{equation*}
\left|\arg \frac{f(z)}{z}\right| \leq \frac{2(A-B)}{(1-B)} \arcsin r,|z|=r<1 \tag{2.3}
\end{equation*}
$$

3. Main results

In this section, a necessary and sufficient condition, radius of starlikeness for functions belonging to class $\mathcal{S}_{p}^{\lambda}(A, B, b)$ are determined.

Theorem 3.1. A function $f(z)=z^{p}+a_{p+1} z^{p+1}+a_{p+2} z^{p+2}+\ldots$, belongs to the class $\mathcal{S}_{p}^{\lambda}(A, B, b)$ if and only if

$$
e^{i \lambda}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right) \prec \frac{(\gamma-p B) b \cos \lambda z}{1+B z}, \quad z \in \mathcal{U} .
$$

Proof. Let

$$
e^{i \lambda}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right) \prec \frac{(\gamma-p B) b \cos \lambda z}{1+B z} .
$$

Using subordination principle, it follows that

$$
p+\frac{e^{i \lambda}}{b \cos \lambda}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)=p+\frac{(\gamma-p B) \omega(z)}{1+B \omega(z)}=\frac{p+\gamma \omega(z)}{1+B \omega(z)}
$$

This implies $f(z) \in \mathcal{S}_{p}^{\lambda}(A, B, b)$.
Conversely if $f(z) \in \mathcal{S}_{p}^{\lambda}(A, B, b)$, then for some $p(z) \in \mathcal{P}(A, B, p, \alpha)$ and $z \in \mathcal{U}$,

$$
p+\frac{e^{i \lambda}}{b \cos \lambda}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)=p(z)
$$

Hence, we have

$$
p+\frac{e^{i \lambda}}{b \cos \lambda}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)=\frac{p+\gamma \omega(z)}{1+B \omega(z)}
$$

This simplifies into

$$
\frac{e^{i \lambda}}{b \cos \lambda}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)=\frac{(\gamma-p B) \omega(z)}{1+B \omega(z)}
$$

By subordination principle, it follows that

$$
e^{i \lambda}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right) \prec \frac{(\gamma-p B) b \cos \lambda z}{1+B z} .
$$

For parametric values $p=1$ and $\alpha=0$, we get the Theorem 1 in [11] which reads as follows:

Corollary 3.2. $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$, belongs to $\mathcal{S}^{\lambda}(A, B, b)$ if and only if

$$
e^{i \lambda}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \begin{cases}\frac{(A-B) b \cos \lambda z}{1+B z}, & B \neq 0 \\ A b \cos \lambda z, & B=0 .\end{cases}
$$

Theorem 3.3. If $f(z) \in \mathcal{S}_{p}^{\lambda}(A, B, b)$, then

$$
\begin{equation*}
\left|1-\left(\frac{f(z)}{z^{p}}\right)^{\frac{B d}{(\gamma-p B)}}\right|<1, \quad z \in \mathcal{U} \tag{3.1}
\end{equation*}
$$

Proof. We define the function $\omega(z)$ by

$$
\frac{f(z)}{z^{p}}=(1+B \omega(z))^{\frac{(\gamma-p B)}{B d}}
$$

where the exponent is so chosen that $(1+B \omega(z))^{\frac{(\gamma-p B)}{B d}}$ has the value 1 at the origin. Then, $\omega(z)$ is analytic in \mathcal{U} and $\omega(0)=0$. Logarithmic differentiation, yields

$$
e^{i \lambda} \frac{z f^{\prime}(z)}{f(z)}-e^{i \lambda} p=\frac{(\gamma-p B) b \cos \lambda \omega^{\prime}(z)}{1+B \omega(z)}
$$

By Theorem 3.1, it follows that $|\omega(z)|<1$ for all $z \in \mathcal{U}$ with $\left|\omega\left(z_{1}\right)\right|=1$ such that $|\omega(z)|$ attains its maximum value on the circle $|z|=z_{1}<1$ at the point z_{1}.
Using Jack's Lemma in this equality, since $\left|\omega\left(z_{1}\right)\right|=1$ and $k \geq 1$, we obtain

$$
e^{i \lambda} z_{1} \frac{f^{\prime}\left(z_{1}\right)}{f\left(z_{1}\right)}-e^{i \lambda} p=\frac{(\gamma-p B) b \cos \lambda \omega\left(z_{1}\right)}{1+B \omega\left(z_{1}\right)}=F\left(\omega\left(z_{1}\right)\right) \notin F(\mathcal{U})
$$

But this contradicts Theorem 3.1. Now using (3.1), we obtain

$$
\left|1-\left(\frac{f(z)}{z^{p}}\right)^{\frac{B d}{(\gamma-p B)}}\right|=|B \omega(z)|<|B|
$$

which completes the proof.
For parametric values $p=1$ and $\alpha=0$, we get the Theorem 2 in [11] which reads as follows:

Corollary 3.4. If $f(z) \in \mathcal{S}_{p}(A, B, b)$, then

$$
\left|1-\left(\frac{f(z)}{z}\right)^{\frac{B d}{(A-B)}}\right|<1, \quad z \in \mathcal{U}
$$

THEOREM 3.5. If $f(z)=z^{p}+a_{p+2} z^{p+2}+a_{p+3} z^{p+3}+\cdots$, belongs to $\mathcal{S}_{p}^{\lambda}(A, B, b)$, then

$$
G(r,-A,-B,|b|) \leq|f(z)| \leq G(r, A, B,|b|), \quad z \in \mathcal{U}
$$

where,

$$
G(r, A, B,|b|)= \begin{cases}r^{p}(1+B r)^{\frac{(\gamma-p B) \cos \lambda(|b|+\Re\{b\} \cos \lambda)}{2 B}}, & B \neq 0 \\ r^{p} e^{A(p-\alpha)|b| \cos \lambda r}, & B=0\end{cases}
$$

This bound is sharp, being attained by the extremal function

$$
f_{*}(z)= \begin{cases}z^{p}(1+B z)^{\frac{(\gamma-p B)}{B d}}, & B \neq 0 \tag{3.2}\\ z^{p} e^{\frac{A(p-\alpha)}{d}}, & B=0\end{cases}
$$

The radius of starlikeness of the class $\mathcal{S}_{p}^{\lambda}(A, B, b)$ is

$$
\begin{aligned}
& r_{s}= \\
& \frac{(\gamma-p B)|b| \cos \lambda-\sqrt{(\gamma-p B)^{2}|b|^{2} \cos ^{2} \lambda+4 B^{2}+4 B(\gamma-p B) \Re\{b\} \cos ^{2} \lambda}}{2\left[-B^{2}-B(\gamma-p B) \Re\{b\} \cos ^{2} \lambda\right]}
\end{aligned}
$$

This radius is sharp, being attained by the extremal function

$$
f_{*}(z)=z(1+B z)^{\frac{(\gamma-p B) e^{-i \lambda_{b} \cos \lambda}}{B}}
$$

Proof. Let $f(z) \in \mathcal{S}_{p}^{\lambda}(A, B, b)$ and $B=0$. Therefore, from (2.1) we have

$$
\left|p+d\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)-\frac{p-[p B+(\gamma-p B)] B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(\gamma-p B)|b| \cos \lambda r}{1-B^{2} r^{2}} .
$$

Hence we get

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{p\left(1-B^{2} r^{2}\right)-B(\gamma-p B) b \cos ^{2} \lambda r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(\gamma-p B)|b| \cos \lambda r}{1-B^{2} r^{2}} \tag{3.3}
\end{equation*}
$$

The set of the values of $\frac{z f^{\prime}(z)}{f(z)}$ in the closed disc with center

$$
\begin{equation*}
\left(\frac{p\left(1-B^{2} r^{2}\right)-B(\gamma-p B) b \cos ^{2} \lambda r^{2}}{1-B^{2} r^{2}}, \frac{p\left(1-B^{2} r^{2}\right)+B(\gamma-p B) b \cos ^{2} \lambda r^{2}}{1-B^{2} r^{2}}\right) \tag{3.4}
\end{equation*}
$$

and radius

$$
\rho(r)=\frac{(\gamma-p B)|b| \cos \lambda r}{1-B^{2} r^{2}} .
$$

The inequality (3.3) can be written in the form,

$$
\begin{equation*}
M_{1}(r) \leq \Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \leq M_{2}(r), \tag{3.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& M_{1}(r)=\frac{p-(\gamma-p B)|b| \cos \lambda r+p\left(B^{2}+B(\gamma-p B) \Re\{b\} \cos ^{2} \lambda\right) r^{2}}{1-B^{2} r^{2}}, \\
& M_{2}(r)=\frac{p+(\gamma-p B)|b| \cos \lambda r-p\left(B^{2}+B(\gamma-p B) \Re\{b\} \cos ^{2} \lambda\right) r^{2}}{1-B^{2} r^{2}} .
\end{aligned}
$$

On the other hand

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}=r \frac{\partial}{\partial r} \log |f(z)| . \tag{3.6}
\end{equation*}
$$

By considering (3.5) and (3.6) we can write

$$
M_{1}(r) \leq r \frac{\partial}{\partial r} \log |f(z)| \leq M_{2}(r)
$$

which yields the desired result on integration. If we take $B=0$ in the inequality (3.3) we obtain the complete result.

From (3.3), we have

$$
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geq \frac{p-(\gamma-p B)|b| \cos \lambda r-\left(B^{2}+B(\gamma-p B) \Re\{b\} \cos ^{2} \lambda\right) r^{2}}{1-B^{2} r^{2}} .
$$

For $r<r_{s}$ the right hand side of the preceding inequality is positive, which implies

$$
\begin{aligned}
& r_{s}= \\
& \frac{(\gamma-p B)|b| \cos \lambda-\sqrt{(\gamma-p B)^{2}|b|^{2} \cos ^{2} \lambda+4 B^{2}+4 B(\gamma-p B) \Re\{b\} \cos ^{2} \lambda}}{2\left[-B^{2}-B(\gamma-p B) \Re\{b\} \cos ^{2} \lambda\right]} .
\end{aligned}
$$

We also note that the inequality (3.3) becomes an equality for the function

$$
f_{*}(z)=z(1+B z)^{\frac{(\gamma-p B) b e^{-i \lambda} \cos \lambda}{B}} .
$$

Hence the proof is complete.
Theorem 3.6. If $f(z) \in \mathcal{S}_{p}^{\lambda}(A, B, b)$, then for $|z|=r<1$,

$$
\left|\arg \frac{f(z)}{z^{p}}\right| \leq \frac{2(\gamma-p B)}{(1-B) d}, \quad z \in \mathcal{U}
$$

Proof. From (2.2) $\frac{f(z)}{z^{p}}=\left(\frac{f_{1}(z)}{z}\right)^{\left(\frac{p-\alpha}{d}\right)}$ where $f_{1}(z) \in \mathcal{S}^{*}(A, B)$. From (2.3), the desired inequality follows.

Acknowledgement. This work was supported by UGC Major Research Fund F. No. 38-268/2009(SR).

References

[1] F. M. AL-Oboudi, M. M. Haidan, Spirallike functions of complex order, J. Nat. Geom. 19 (2000), 53-72.
[2] M. K. Aouf, On class of p-valent starlike functions of order α, Internat. J. Math. Math. Sci. 10(4) (1987), 733-744.
[3] M. K. Aouf, F. M. Al-Oboudi, M. M. Haidan, On some results for λ - spirallike and λ-Robertson functions of complex order, Publ. Instit. Math. Belgrade 77 (2005), 93-98.
[4] M. S. Ganesan, A study in the theory of univalent function and multivalent functions, Ph. D Thesis.
[5] E. G. Golzina, On the coefficients of a class of functions regular in a disk and having an integral representation in it, J. of Soviet Math. 6(2) (1974), 606-617.
[6] A. W. Goodman, Univalent Functions, Vol. I \& II, Mariner Publishing Comp. Inc., Tampa, Florida, 1983.
[7] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3(2) (1971), 469-474.
[8] W. Janowski, Some extremal problems for certain families of analytic functions, I. Ann. Polon. Math. 28 (1973), 297-326.
[9] B. Pinchuk, On starlike and convex functions of order α, Duke Math. J. 35 (1968), 721-734.
[10] H. Silverman, Subclasses of starlike functions, Rev. Roumaine Math. Pures Appl. 23 (1978), 1093-1099.
[11] Y. Polatoglu, A. Sen, Some results on subclasses of Janowski λ-spirallike functions of complex order, Gen. Math. 15(2-3) (2007), 88-97.

L. Dileep
DEPARTMENT OF MATHEMATICS
VIDYAVARDHAKA COLLEGE OF ENGINEERING
Gokolum 3rd stage
MYSORE, INDIA
E-mail: dileep184@gmail.com
S. Latha
DEPARTMENT OF MATHEMATICS
YUVARAJA'S COLLEGE
UNIVERSITY OF MYSORE
MYSORE - 570005 , INDIA
E-mail: drlatha@gmail.com

Received May 16, 2010; revised version January 11, 2011.

[^0]: 2000 Mathematics Subject Classification: 30C45.
 Key words and phrases: p- valent functions, Janowski class.

