CrossMark

organic compounds

 $\mu = 0.49 \text{ mm}^{-1}$

 $0.24 \times 0.20 \times 0.12 \text{ mm}$

11261 measured reflections

2865 independent reflections

2413 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.024$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(7-Chloro-2-oxo-2*H*-chromen-4-yl)methyl diethylcarbamodithioate

Provided by University of Mysore - Digital Repository of Research, Innovation and Scholarship (ePrints@UoM)

T. G. Meenakshi,^a J. Shylajakumari,^b H. C. Devarajegowda,^c* K. Mahesh Kumar^d and O. Kotresh^d

^aDepartment of Physics, Y. Y. D. Govt. First Grade College, Belur 573 115, Hassan, Karnataka, India, ^bDepartment of Physics, AVK College for Women, Hassan 573 201, Karnataka, India, ^cDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and ^dDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad, Karnataka 580 001, India

Correspondence e-mail: devarajegowda@yahoo.com

Received 31 July 2013; accepted 9 August 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.091; data-to-parameter ratio = 15.1.

In the title compound, $C_{15}H_{16}CINO_2S_2$, the 2*H*-chromene ring system is nearly planar, with a maximum deviation of 0.023 (2) Å. In the crystal, $C-H\cdots O$ hydrogen bonds give $R_2^1(7)$ motifs, which generate [100] chains. $C-H\cdots \pi$ and $\pi-\pi$ interactions between chromene moieties [shortest ring centroid–centroid distance = 3.6199 (13) Å] consolidate the packing.

Related literature

For biological applications of coumarins and dithiocarbamates, see: Abd Elhafez *et al.* (2003); Basanagouda *et al.* (2009); Borges *et al.* (2009); Bottomeley *et al.* (1985); Emmanuel-Giota *et al.* (2001); Hamdi & Dixneuf (2007); Marchenko *et al.* (2006); Teramoto *et al.* (1980); Trapkov *et al.* (1996). For a related structure and the synthesis of the title compound, see: Kumar *et al.* (2012).

Experimental

Crystal data $C_{15}H_{16}CINO_2S_2$ $M_r = 341.86$ Monoclinic, $P2_1/c$

a = 7.7005 (2) Åb = 23.3452 (8) Åc = 9.7016 (3) Å $\beta = 110.349 \ (2)^{\circ}$ $V = 1635.21 \ (9) \ \text{Å}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2007) $T_{\rm min} = 0.770, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ 190 parameters $wR(F^2) = 0.091$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.38 \text{ e } \text{\AA}^{-3}$ 2865 reflections $\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C14/C15/C18-C21 ring.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C12 - H12A \cdots O5^{i}$ $C18 - H18 \cdots O5^{i}$ $C8 - H8A \cdots Cg2^{ii}$	0.97 0.93 0.97	2.43 2.54 2.95	3.264 (3) 3.424 (3) 3.792 (3)	144 159 146

Symmetry codes: (i) x + 1, y, z; (ii) x, y, z - 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97*.

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the CCD X-ray facilities, X-ray data collection, GCMS, IR, CHNS and NMR data. One of the authors, KMK is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2274).

References

- Abd Elhafez, O. M., El Khrisy, A. M., Badria, F. & Fathy, A. M. (2003). Arch. Pharm. Res. 26, 686–696.
- Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.
- Borges, F., Roleira, F., Milhazes, N., Uriarte, E. & Santana, L. (2009). Front. Med. Chem. 4, 23–85.
- Bottomeley, P., Hodless, R. A. & Smart, N. A. (1985). *Residue Rev.* 95, 45–89. Bruker (2001). *SMART* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Emmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem. 38, 717–722.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
 Hamdi, N. & Dixneuf, P. H. (2007). In Topics in Heterocyclic Chemistry. Berlin, Heidelberg: Springer-Verlag.
- Kumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, 0878–0879.
- Marchenko, M. M., Kopyl'chuk, G. P., Shmarakov, I. A., Ketsa, O. V. & Kushnir, V. M. (2006). *Pharm. Chem. J.* 40, 296–297.

Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Teramoto, S., Saito, R. & Shirasu, Y. (1980). *Teratology*, 21, 71–78.
Trapkov, V. A., Parfenov, E. A. & Smirnov, L. D. (1996). *Pharm. Chem. J.* 30, 445–447.

supporting information

Acta Cryst. (2013). E69, o1431-o1432 [doi:10.1107/S160053681302240X]

(7-Chloro-2-oxo-2H-chromen-4-yl)methyl diethylcarbamodithioate

T. G. Meenakshi, J. Shylajakumari, H. C. Devarajegowda, K. Mahesh Kumar and O. Kotresh

S1. Comment

Coumarins are a large family of compounds, of natural and synthetic origin, that display a variety of pharmacological properties. Due to their structural variability they occupy an important place in the realm of natural products and synthetic organic chemistry. Recent studies pay special attention to their antioxidative and enzymatic inhibition properties (Borges *et al.*, 2009). Numerous functionalized coumarins have been presented as anti-bacterial (Abd Elhafez *et al.*, 2003; Basanagouda *et al.*, 2009), anti-oxidant (Trapkov *et al.*, 1996), anti-inflammatory (Emmanuel-Giota *et al.*, 2001; Hamdi & Dixneuf, 2007), anti-coagulant (Hamdi & Dixneuf, 2007) and anti-tumour (Marchenko *et al.*, 2006) agents.

Antifungal treatments are widely used to prevent the development of pathogenic fungi, which are responsible each year for various crop diseases leading to large economical losses. The dithiocarbamate fungicides form the most important class of pesticides for broad spectrum control of a variety of fungal diseases on seeds, fruits and vegetables. Among dithiocarbamates, ethylenebis (dithiocarbamates) are the most widely used fungicides in the world. Due to their non selectivity and multisite action they are still spread in large quantities in association with more specific pesticides. Despite their low acute toxicity, these fungicides constitute a pesticide family of environmental concern since many reports suspect them of inducing neurological troubles resembling Parkinson disease, carcinogenesis w and teratogenesis (Teramoto *et al.*, 1980; Bottomeley *et al.*, 1985). Therefore, the synthesis of new coumarin derivatives is of considerable interest. In order to study the influence of new substituents on the activity of the coumarin dithiocarbamates (Kumar *et al.*, 2012), the title compound, (7-chloro-2-oxo-2*H*-chromen-4-yl)methyl diethylcarbamodithioate, $C_{15}H_{16}Cl N O_2S_2$, has been synthesized and the structure is reported herein.

In this compound (Fig. 1), the 2*H*-chromene ring system is nearly planar, with a maximum deviation of 0.023 (2) Å. In the crystal, cyclic intermolecular C12—H12*A*···O5ⁱ and C18—H18···O5ⁱ hydrogen-bonding interactions (Table 1) through an $R^{1}_{2}(7)$ ring motif, generate chains which extend along the *a* axis. In addition, C—H··· π and π - π interactions involving the benzene ring of the chromene moiety defined by C14/C15/C18—C21) [shortest centroid–centroid distance = 3.6199 (13) Å] stabilize the crystal packing and give a two-dimensional layered structure lying along [0 1 0] (Fig. 2).

S2. Experimental

All the chemicals used were of analytical reagent grade and were used directly without further purification. The title compound was synthesized according to the reported method (Kumar *et al.*, 2012). The compound was recrystallized from an ethanol-chloroform mixture giving colourless crystals (m.p. 383–385 K: yield, 88%).

S3. Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C —H = 0.96 Å for methyl H, and refined using a riding model with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H-atoms and $U_{iso}(H) = 1.2U_{eq}(C)$ for all other H-atoms.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure 2

A perspective view of the packing of the molecules in the unit cell, with hydrogen bonds shown as dashed lines.

(7-Chloro-2-oxo-2H-chromen-4-yl)methyl diethylcarbamodithioate

Crystal data

C₁₅H₁₆ClNO₂S₂ $M_r = 341.86$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.7005 (2) Å b = 23.3452 (8) Å c = 9.7016 (3) Å $\beta = 110.349$ (2)° V = 1635.21 (9) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector	11261 measured reflections
diffractometer	2865 independent reflections
Radiation source: fine-focus sealed tube	2413 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
φ and ω scans	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 1.7^\circ$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Sheldrick, 2007)	$k = -26 \rightarrow 27$
$T_{\min} = 0.770, \ T_{\max} = 1.000$	$l = -10 \rightarrow 11$

Refinement

Special details

F(000) = 712

 $\theta = 1.7 - 25.0^{\circ}$

 $\mu = 0.49 \text{ mm}^{-1}$

Plate, colourless

 $0.24 \times 0.20 \times 0.12 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.389 {\rm Mg} {\rm m}^{-3}$

Melting point = 383–385 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2865 reflections

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.57033 (9)	0.42546 (3)	1.32189 (7)	0.0585 (2)

S2	0.39037 (8)	0.35206 (3)	0.57232 (6)	0.04076 (17)
S3	0.03698 (10)	0.35303 (3)	0.30671 (8)	0.0604 (2)
O4	0.01217 (19)	0.44543 (7)	0.86479 (16)	0.0419 (4)
05	-0.2474 (2)	0.45502 (9)	0.6779 (2)	0.0622 (5)
N6	0.2357 (3)	0.26131 (9)	0.4244 (2)	0.0508 (5)
C7	0.5614 (4)	0.22830 (15)	0.4920 (4)	0.0815 (10)
H7A	0.6573	0.2077	0.5657	0.122*
H7B	0.6027	0.2666	0.4850	0.122*
H7C	0.5334	0.2094	0.3989	0.122*
C8	0.3895 (4)	0.23021 (12)	0.5337 (3)	0.0658 (8)
H8A	0.3502	0.1914	0.5429	0.079*
H8B	0.4192	0.2487	0.6286	0.079*
С9	0.1075 (4)	0.22566 (13)	0.3077 (3)	0.0656 (8)
H9A	0.1741	0.1929	0.2895	0.079*
H9B	0.0612	0.2478	0.2176	0.079*
C10	-0.0528 (5)	0.20496 (15)	0.3481 (5)	0.0893 (11)
H10A	-0.1327	0.1819	0.2697	0.134*
H10B	-0.1207	0.2372	0.3640	0.134*
H10C	-0.0076	0.1825	0.4363	0.134*
C11	0.2113 (3)	0.31763 (11)	0.4273 (3)	0.0411 (6)
C12	0.3112 (3)	0.42508 (9)	0.5676 (2)	0.0357 (5)
H12A	0.4168	0.4508	0.5943	0.043*
H12B	0.2311	0.4345	0.4685	0.043*
C13	0.2076 (3)	0.43346 (9)	0.6713 (2)	0.0321 (5)
C14	0.3045 (3)	0.43248 (9)	0.8290 (2)	0.0315 (5)
C15	0.2014 (3)	0.43771 (9)	0.9211 (2)	0.0335 (5)
C16	-0.0825 (3)	0.44760 (11)	0.7160 (3)	0.0410 (6)
C17	0.0229 (3)	0.44064 (10)	0.6207 (2)	0.0380 (5)
H17	-0.0394	0.4411	0.5196	0.046*
C18	0.4971 (3)	0.42649 (10)	0.8967 (2)	0.0365 (5)
H18	0.5709	0.4239	0.8387	0.044*
C19	0.5781 (3)	0.42443 (10)	1.0466 (2)	0.0392 (5)
H19	0.7057	0.4203	1.0902	0.047*
C20	0.4683 (3)	0.42857 (10)	1.1319 (2)	0.0384 (5)
C21	0.2794 (3)	0.43545 (10)	1.0716 (2)	0.0384 (5)
H21	0.2070	0.4385	1.1306	0.046*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0491 (4)	0.0892 (5)	0.0311 (3)	0.0021 (3)	0.0063 (3)	0.0033 (3)
S2	0.0367 (3)	0.0470 (4)	0.0369 (3)	0.0075 (3)	0.0107 (2)	-0.0014 (3)
S3	0.0507 (4)	0.0590 (4)	0.0541 (4)	0.0072 (3)	-0.0036 (3)	-0.0032 (3)
04	0.0246 (7)	0.0666 (11)	0.0366 (9)	0.0023 (7)	0.0134 (7)	-0.0014 (8)
05	0.0249 (8)	0.1095 (16)	0.0517 (11)	0.0071 (9)	0.0127 (8)	0.0029 (11)
N6	0.0462 (12)	0.0463 (13)	0.0573 (13)	0.0041 (10)	0.0150 (10)	-0.0056 (10)
C7	0.0573 (18)	0.078 (2)	0.100 (3)	0.0199 (16)	0.0165 (18)	-0.0167 (19)
C8	0.0703 (19)	0.0452 (16)	0.072 (2)	0.0111 (14)	0.0122 (16)	0.0004 (14)

C9	0.0649 (18)	0.0548 (17)	0.072 (2)	0.0003 (14)	0.0170 (16)	-0.0194 (15)
C10	0.067 (2)	0.076 (2)	0.120 (3)	-0.0166 (18)	0.027 (2)	-0.013 (2)
C11	0.0386 (12)	0.0494 (15)	0.0384 (13)	0.0022 (11)	0.0174 (11)	-0.0026 (11)
C12	0.0339 (11)	0.0416 (13)	0.0342 (12)	0.0008 (10)	0.0151 (10)	0.0022 (10)
C13	0.0325 (11)	0.0311 (11)	0.0346 (11)	-0.0011 (9)	0.0142 (9)	0.0001 (9)
C14	0.0279 (10)	0.0341 (12)	0.0326 (11)	-0.0010 (9)	0.0109 (9)	-0.0009 (9)
C15	0.0271 (10)	0.0389 (12)	0.0356 (12)	-0.0014 (9)	0.0121 (9)	-0.0009 (9)
C16	0.0274 (11)	0.0551 (15)	0.0398 (13)	0.0016 (10)	0.0107 (10)	0.0006 (11)
C17	0.0317 (11)	0.0497 (14)	0.0320 (12)	0.0021 (10)	0.0104 (9)	0.0018 (10)
C18	0.0292 (11)	0.0447 (13)	0.0380 (12)	0.0007 (9)	0.0145 (10)	-0.0008 (10)
C19	0.0281 (11)	0.0475 (14)	0.0388 (13)	0.0011 (10)	0.0077 (10)	0.0012 (11)
C20	0.0389 (12)	0.0424 (13)	0.0321 (12)	-0.0016 (10)	0.0102 (10)	0.0011 (10)
C21	0.0379 (12)	0.0470 (14)	0.0349 (12)	0.0001 (10)	0.0185 (10)	-0.0018 (10)

Geometric parameters (Å, °)

Cl1—C20	1.735 (2)	C10—H10A	0.9600
S2—C11	1.783 (2)	C10—H10B	0.9600
S2C12	1.806 (2)	C10—H10C	0.9600
S3—C11	1.662 (2)	C12—C13	1.498 (3)
O4—C16	1.373 (3)	C12—H12A	0.9700
O4—C15	1.379 (2)	C12—H12B	0.9700
O5—C16	1.205 (3)	C13—C17	1.344 (3)
N6—C11	1.330 (3)	C13—C14	1.451 (3)
N6—C9	1.474 (3)	C14—C15	1.392 (3)
N6—C8	1.477 (3)	C14—C18	1.404 (3)
C7—C8	1.513 (4)	C15—C21	1.373 (3)
С7—Н7А	0.9600	C16—C17	1.437 (3)
С7—Н7В	0.9600	C17—H17	0.9300
С7—Н7С	0.9600	C18—C19	1.370 (3)
C8—H8A	0.9700	C18—H18	0.9300
C8—H8B	0.9700	C19—C20	1.378 (3)
C9—C10	1.498 (5)	C19—H19	0.9300
С9—Н9А	0.9700	C20—C21	1.375 (3)
С9—Н9В	0.9700	C21—H21	0.9300
C11 - S2 - C12	104 12 (11)	C13—C12—H12A	109.4
C16 - 04 - C15	121.54 (17)	S2-C12-H12A	109.4
C11—N6—C9	120.8 (2)	C13—C12—H12B	109.4
C11—N6—C8	123.7 (2)	S2—C12—H12B	109.4
C9—N6—C8	115.4 (2)	H12A—C12—H12B	108.0
С8—С7—Н7А	109.5	C17—C13—C14	118.6 (2)
С8—С7—Н7В	109.5	C17—C13—C12	120.9 (2)
H7A—C7—H7B	109.5	C14—C13—C12	120.47 (18)
C8—C7—H7C	109.5	C15—C14—C18	117.00 (19)
H7A—C7—H7C	109.5	C15—C14—C13	118.45 (18)
Н7В—С7—Н7С	109.5	C18—C14—C13	124.5 (2)
N6-C8-C7	112.4 (3)	C21—C15—O4	115.93 (19)

N6—C8—H8A	109.1	C21—C15—C14	122.90 (19)
С7—С8—Н8А	109.1	O4—C15—C14	121.17 (19)
N6—C8—H8B	109.1	O5—C16—O4	116.5 (2)
С7—С8—Н8В	109.1	O5—C16—C17	126.2 (2)
H8A—C8—H8B	107.9	O4—C16—C17	117.40 (18)
N6-C9-C10	112.0 (3)	C13—C17—C16	122.8 (2)
N6—C9—H9A	109.2	С13—С17—Н17	118.6
С10—С9—Н9А	109.2	C16—C17—H17	118.6
N6—C9—H9B	109.2	C19—C18—C14	121.1 (2)
С10—С9—Н9В	109.2	C19—C18—H18	119.4
H9A—C9—H9B	107.9	C14—C18—H18	119.4
C9—C10—H10A	109.5	C18—C19—C20	119.2 (2)
C9—C10—H10B	109.5	C18—C19—H19	120.4
H10A—C10—H10B	109.5	C20—C19—H19	120.4
С9—С10—Н10С	109.5	C21—C20—C19	122.1 (2)
H10A—C10—H10C	109.5	C21—C20—C11	118.57 (18)
H10B-C10-H10C	109.5	C19—C20—C11	119.29 (17)
N6—C11—S3	124.23 (19)	C15—C21—C20	117.6 (2)
N6—C11—S2	112.71 (17)	C15—C21—H21	121.2
S3—C11—S2	123.04 (15)	C20—C21—H21	121.2
C13—C12—S2	111.11 (15)		
C11—N6—C8—C7	-87.5 (3)	C18—C14—C15—C21	-2.1(3)
C9—N6—C8—C7	92.0 (3)	C13—C14—C15—C21	177.9 (2)
C11—N6—C9—C10	-89.0 (3)	C18—C14—C15—O4	178.11 (19)
C8—N6—C9—C10	91.4 (3)	C13—C14—C15—O4	-2.0(3)
C9—N6—C11—S3	1.6 (4)	C15—O4—C16—O5	-179.3(2)
C8—N6—C11—S3	-178.9 (2)	C15—O4—C16—C17	0.9 (3)
C9—N6—C11—S2	-176.8(2)	C14—C13—C17—C16	0.2 (3)
C8—N6—C11—S2	2.7 (3)	C12—C13—C17—C16	178.6 (2)
C12—S2—C11—N6	-172.85 (18)	O5-C16-C17-C13	178.8 (3)
C12—S2—C11—S3	8.80 (18)	O4—C16—C17—C13	-1.4(4)
C11—S2—C12—C13	93.46 (17)	C15—C14—C18—C19	1.7 (3)
S2—C12—C13—C17	-108.0(2)	C13—C14—C18—C19	-178.2 (2)
S2—C12—C13—C14	70.4 (2)	C14—C18—C19—C20	-0.3 (3)
C17—C13—C14—C15	1.4 (3)	C18—C19—C20—C21	-0.8 (4)
C12—C13—C14—C15	-177.0 (2)	C18—C19—C20—Cl1	179.55 (18)
C17—C13—C14—C18	-178.6 (2)	O4—C15—C21—C20	-179.1 (2)
C12—C13—C14—C18	2.9 (3)	C14—C15—C21—C20	1.0 (3)
C16—O4—C15—C21	-179.1 (2)	C19—C20—C21—C15	0.5 (4)
C16—O4—C15—C14	0.8 (3)	Cl1—C20—C21—C15	-179.90 (17)
	~ /		× /

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C14/C15/C18–C21 ring.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C12—H12A···O5 ⁱ	0.97	2.43	3.264 (3)	144

			supporting information		
C18—H18····O5 ⁱ	0.93	2.54	3.424 (3)	159	
<u>C8—H8A…Cg2ⁱⁱ</u>	0.97	2.95	3.792 (3)	146	

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*, *z*-1.