

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*E*)-1-(5-Bromothiophen-2-yl)-3-(4chlorophenyl)prop-2-en-1-one

H. D. Kavitha,^a K. R. Roopashree,^b Suresh B. Vepuri,^c H. C. Devarajegowda^b* and Venkatesh B. Devaru^d

^aDepartment of Physics, Govt. Science College, Hassan 573 201, Karnataka, India, ^bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570005, Karnataka, India, ^cInstitute of Pharmacy, GITAM University, Visakhapatnam-45, Andhrapradesh, India, and ^dDepartment of Physics, P. G. Department of Physics, LVD College, Raichur 584103, Karnataka, India Correspondence e-mail: devarajegowda@yahoo.com

Received 9 April 2013; accepted 3 May 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.081; data-to-parameter ratio = 14.3.

In the title compound, $C_{13}H_8BrClOS$, the thiophene and phenyl rings are inclined by 40.69 (11)° to each other. The crystal structure is characterized by $C-H\cdots\pi$ interactions, which link the molecules into broad layers parallel to (100). Short Br···Cl contacts [3.698 (1) Å] link these layers along [100].

Related literature

For general background to chalcones, see: Chun *et al.* (2001); Horng *et al.* (2003); Lopez *et al.* (2001); Mei *et al.* (2003). For related structures, see: Vepuri *et al.* (2012); Li & Su (1993).

Experimental

Crystal data $C_{13}H_8BrClOS$ $M_r = 327.61$ Monoclinic, $P2_1/c$ a = 15.235 (3) Å b = 13.959 (3) Å c = 5.9153 (11) Å $\beta = 93.259$ (3)°

 $V = 1255.9 \text{ (4) } \text{Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 3.63 \text{ mm}^{-1}$ T = 293 K $0.24 \times 0.20 \times 0.12 \text{ mm}$

```
Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
T_{min} = 0.770, T_{max} = 1.000
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	154 parameters
$wR(F^2) = 0.081$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
3032 reflections	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

provided by University of Mysore - Digital Repository of Research, Innov

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C5-C10 ring.

$D-H\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C10-H10\cdots Cg2^{i}$ $C16-H16\cdots Cg2^{ii}$	0.93 0.93	2.87 2.96	3.557 (3) 3.480 (3)	132 117

Symmetry codes: (i) $x, -y - \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y, -z + 2.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97*.

The authors thank Professor T. N. Guru Row, Soild State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for his constant support and for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2505).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chun, N. L., Hsin, K. H., Horng, H. K., Mei, F. H., Hsien, C. L., Ya, L. C., Mei, I. C., Jaw, J. K., Jih, P. W. & Che, M. T. (2001). Drug Dev. Res. 53, 9–14.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Horng, H. K., Lo, T. T., Kun, L. Y., Cheng, T. L., Jih, P. W. & Chun, N. L. (2003). Bioorg. Med. Chem. 1, 105–111.
- Li, Z. & Su, G. (1993). Acta Cryst. C49, 1075-1077.
- Lopez, S. N., Castelli, M. V., Zacchino, S. A., Dominguez, J. N., Lobo, G., Charris, C. J., Cortés, J. C., Ribas, J. C., Devia, C., Rodríguez, A. M. & Enriz, R. D. (2001). *Bioorg. Med. Chem.* 9, 1999–2013.
- Mei, L., Prapon, W., Simon, L. C., Agnes, L. C. T. & Mei, L. G. (2003). Bioorg. Med. Chem. 11, 2729–2738.
- Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vepuri, S. B., Devarajegowda, H. C., Jeyaseelan, S., Anbazhagan, S. & Prasad, Y. R. (2012). Acta Cryst. E68, 03456.

organic compounds

14247 measured reflections

 $R_{\rm int} = 0.023$

3032 independent reflections

2204 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2013). E69, o859 [doi:10.1107/S1600536813012063]

(2E)-1-(5-Bromothiophen-2-yl)-3-(4-chlorophenyl)prop-2-en-1-one

H. D. Kavitha, K. R. Roopashree, Suresh B. Vepuri, H. C. Devarajegowda and Venkatesh B. Devaru

S1. Comment

Chalcones are alpha beta unsaturated ketones, widely distributed in nature and are extensively studied for their biological activity (Chun *et al.*, 2001; Horng *et al.*, 2003; Lopez *et al.*, 2001; Mei *et al.*, 2003). We report here the crystal structure of a bromo derivative of hetero aryl chalcone which has shown aldose reductase inhibition in the virtual screening study conducted by us.

The titlecompound (2E)-1-(5-bromo-2-thienyl)-3-(4- chlorophenyl)prop-2-en-1-one, $C_{13}H_8Br$ Cl O S, presents a fivemembered thiophene ring (S3\C14\...C17) and a phenyl ring (C5\C6\...C10) at 40.69 (11)° to each other (Fig 1). All intermolecular bond lengths and angles are within normal ranges (Vepuri *et al.*, 2012; Li & Su, 1993). The crystal structure is characterized by C—H... π interactions (C10—H10...Cg2; C16—H16...Cg2, Cg2 = C5->C10) (Table 1) which link molecules into broad 2D structures parallel to (100). There are in addition short intermolecular Br1...Cl2 contacts of 3.698 (1) Å, which link these structures along [100]. (Fig 2)

S2. Experimental

A mixture of 2-acetyl-5-BromoThiophene (0.01 mole) and 4-chlorobenzaldehyde (0.01 mole) were stirred in ethanol (30 ml) and then an aqueous solution of potassium hydroxide (40%,15 ml)was added to it. The mixture was kept over night at room temperature and then it was poured into crushed ice and acidified with dilute hydrochloric acid. The precipiteted chalcone was filtered and crystallized from ethanol.

S3. Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing of the title compound. Dashed lines represent C-H··· π and Br···Cl bonds.

(2E)-1-(5-Bromothiophen-2-yl)-3-(4-chlorophenyl)prop-2-en-1-one

Crystal data	
C ₁₃ H ₈ BrClOS	F(000) = 648
$M_r = 327.61$	$D_{\rm x} = 1.733 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 399 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 15.235 (3) Å	Cell parameters from 2202 reflections
b = 13.959 (3) Å	$\theta = 2.0 - 25.0^{\circ}$
c = 5.9153 (11) Å	$\mu = 3.63 \text{ mm}^{-1}$
$\beta = 93.259(3)^{\circ}$	T = 293 K
V = 1255.9 (4) Å ³	Plate, colourless
Z = 4	$0.24 \times 0.20 \times 0.12 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	14247 measured reflections
diffractometer	3032 independent reflections
Radiation source: fine-focus sealed tube	2204 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.023$
ω and φ scans	$\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -18 \rightarrow 18$
(<i>SADABS</i> ; Sheldrick, 2007)	$k = 0 \rightarrow 16$
$T_{min} = 0.770, T_{max} = 1.000$	$l = 0 \rightarrow 7$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.081$	neighbouring sites
S = 1.05	H-atom parameters constrained
2202 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0473P)^2 + 0.2986P]$
154 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.40$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.29$ e Å ⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$	
Br1	0.876810 (18)	0.34860 (2)	0.10591 (6)	0.06662 (15)	
Cl2	0.03637 (5)	0.36156 (7)	0.68667 (14)	0.0719 (3)	
S3	0.67904 (4)	0.34879 (5)	-0.04338 (10)	0.04481 (18)	
O4	0.48985 (13)	0.37196 (16)	-0.1517 (3)	0.0642 (6)	
C5	0.13007 (16)	0.37433 (18)	0.5358 (4)	0.0436 (6)	
C6	0.12401 (15)	0.41523 (19)	0.3238 (4)	0.0466 (6)	
H6	0.0705	0.4381	0.2626	0.056*	
C7	0.19854 (15)	0.42171 (17)	0.2044 (4)	0.0421 (6)	
H7	0.1943	0.4480	0.0598	0.051*	
C8	0.28016 (15)	0.39015 (16)	0.2928 (4)	0.0369 (5)	
C9	0.28356 (16)	0.35027 (16)	0.5098 (4)	0.0407 (6)	
H9	0.3372	0.3292	0.5743	0.049*	
C10	0.20961 (17)	0.34157 (16)	0.6295 (4)	0.0431 (6)	
H10	0.2129	0.3138	0.7727	0.052*	
C11	0.35582 (15)	0.39464 (17)	0.1545 (4)	0.0399 (5)	
H11	0.3445	0.4112	0.0034	0.048*	

C12	0.43893 (16)	0.37794 (19)	0.2184 (4)	0.0450 (6)	
H12	0.4544	0.3669	0.3706	0.054*	
C13	0.50768 (17)	0.37658 (18)	0.0522 (4)	0.0431 (6)	
C14	0.59921 (15)	0.37793 (16)	0.1398 (4)	0.0371 (5)	
C15	0.63572 (16)	0.40178 (19)	0.3477 (4)	0.0454 (6)	
H15	0.6027	0.4194	0.4684	0.055*	
C16	0.72770 (16)	0.39728 (19)	0.3626 (4)	0.0464 (6)	
H16	0.7625	0.4121	0.4922	0.056*	
C17	0.75950 (15)	0.36879 (17)	0.1654 (4)	0.0410 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.03415 (18)	0.0911 (3)	0.0755 (2)	0.00978 (13)	0.01087 (14)	0.00945 (16)
Cl2	0.0432 (4)	0.1058 (7)	0.0687 (5)	-0.0075 (4)	0.0196 (3)	0.0045 (4)
S3	0.0374 (4)	0.0601 (4)	0.0373 (3)	0.0041 (3)	0.0062 (3)	-0.0034 (3)
O4	0.0443 (11)	0.1042 (17)	0.0438 (11)	0.0027 (10)	-0.0004 (8)	-0.0067 (10)
C5	0.0348 (13)	0.0501 (14)	0.0466 (14)	-0.0074 (11)	0.0069 (11)	-0.0050 (12)
C6	0.0318 (13)	0.0592 (17)	0.0483 (15)	0.0033 (11)	-0.0024 (10)	0.0017 (12)
C7	0.0377 (13)	0.0474 (14)	0.0407 (13)	0.0003 (11)	-0.0025 (10)	0.0034 (11)
C8	0.0344 (12)	0.0350 (12)	0.0411 (13)	-0.0037 (10)	0.0003 (10)	-0.0021 (10)
C9	0.0351 (13)	0.0433 (14)	0.0431 (14)	0.0022 (10)	-0.0029 (11)	-0.0003 (10)
C10	0.0452 (14)	0.0432 (14)	0.0408 (14)	-0.0018 (11)	0.0013 (11)	0.0006 (10)
C11	0.0367 (13)	0.0429 (13)	0.0400 (13)	-0.0018 (10)	0.0020 (10)	-0.0024 (10)
C12	0.0369 (14)	0.0580 (15)	0.0402 (13)	0.0007 (11)	0.0039 (11)	0.0015 (11)
C13	0.0367 (13)	0.0484 (14)	0.0441 (15)	0.0010 (11)	0.0017 (11)	0.0003 (11)
C14	0.0320 (12)	0.0393 (13)	0.0406 (13)	0.0014 (10)	0.0077 (10)	-0.0008 (10)
C15	0.0424 (14)	0.0525 (16)	0.0420 (14)	0.0038 (11)	0.0077 (11)	-0.0078 (11)
C16	0.0407 (14)	0.0555 (16)	0.0430 (14)	-0.0036 (12)	0.0004 (11)	-0.0066 (12)
C17	0.0300 (12)	0.0426 (13)	0.0507 (14)	-0.0018 (10)	0.0042 (10)	0.0034 (11)

Geometric parameters (Å, °)

Br1—C17	1.863 (2)	C9—C10	1.370 (3)	
Cl2—C5	1.735 (3)	С9—Н9	0.9300	
S3—C17	1.713 (3)	C10—H10	0.9300	
S3—C14	1.723 (2)	C11—C12	1.321 (3)	
O4—C13	1.223 (3)	C11—H11	0.9300	
C5—C6	1.376 (4)	C12—C13	1.477 (3)	
C5—C10	1.381 (4)	C12—H12	0.9300	
C6—C7	1.374 (3)	C13—C14	1.460 (3)	
С6—Н6	0.9300	C14—C15	1.362 (3)	
С7—С8	1.393 (3)	C15—C16	1.400 (3)	
С7—Н7	0.9300	C15—H15	0.9300	
С8—С9	1.397 (3)	C16—C17	1.348 (3)	
C8—C11	1.452 (3)	C16—H16	0.9300	
C17—S3—C14	90.57 (12)	C12—C11—H11	116.2	

C6—C5—C10	121.0 (2)	C8—C11—H11	116.2
C6—C5—Cl2	119.8 (2)	C11—C12—C13	121.1 (2)
C10—C5—Cl2	119.2 (2)	C11—C12—H12	119.5
C7—C6—C5	118.8 (2)	C13—C12—H12	119.5
С7—С6—Н6	120.6	O4—C13—C14	120.3 (2)
С5—С6—Н6	120.6	O4—C13—C12	122.1 (2)
C6—C7—C8	122.2 (2)	C14—C13—C12	117.6 (2)
С6—С7—Н7	118.9	C15—C14—C13	131.0 (2)
С8—С7—Н7	118.9	C15—C14—S3	111.04 (18)
C7—C8—C9	117.2 (2)	C13—C14—S3	117.92 (18)
C7—C8—C11	119.7 (2)	C14—C15—C16	113.7 (2)
C9—C8—C11	123.1 (2)	C14—C15—H15	123.2
С10—С9—С8	121.4 (2)	С16—С15—Н15	123.2
С10—С9—Н9	119.3	C17—C16—C15	111.5 (2)
С8—С9—Н9	119.3	C17—C16—H16	124.3
C9—C10—C5	119.4 (2)	C15—C16—H16	124.3
С9—С10—Н10	120.3	C16—C17—S3	113.23 (19)
C5-C10-H10	120.3	C16—C17—Br1	127.2 (2)
C12—C11—C8	127.6 (2)	S3—C17—Br1	119.61 (14)
C10—C5—C6—C7	1.0 (4)	C11—C12—C13—C14	167.3 (2)
Cl2—C5—C6—C7	-177.9 (2)	O4—C13—C14—C15	164.8 (3)
C5—C6—C7—C8	-1.4 (4)	C12-C13-C14-C15	-17.0 (4)
C6—C7—C8—C9	0.6 (4)	O4—C13—C14—S3	-12.8 (3)
C6—C7—C8—C11	177.1 (2)	C12—C13—C14—S3	165.31 (18)
C7—C8—C9—C10	0.7 (3)	C17—S3—C14—C15	0.3 (2)
C11—C8—C9—C10	-175.7 (2)	C17—S3—C14—C13	178.47 (19)
C8—C9—C10—C5	-1.1 (4)	C13-C14-C15-C16	-177.6 (2)
C6—C5—C10—C9	0.2 (4)	S3—C14—C15—C16	0.2 (3)
Cl2—C5—C10—C9	179.09 (18)	C14—C15—C16—C17	-0.8 (3)
C7—C8—C11—C12	171.9 (3)	C15—C16—C17—S3	1.0 (3)
C9—C8—C11—C12	-11.8 (4)	C15—C16—C17—Br1	-177.94 (19)
C8—C11—C12—C13	174.2 (2)	C14—S3—C17—C16	-0.8 (2)
C11—C12—C13—O4	-14.5 (4)	C14—S3—C17—Br1	178.26 (15)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C5–C10 ring.

D—H···A	D—H	H··· <i>A</i>	D····A	<i>D</i> —H··· <i>A</i>
C10—H10…Cg2 ⁱ	0.93	2.87	3.557 (3)	132
C16—H16…Cg2 ⁱⁱ	0.93	2.96	3.480 (3)	117

Symmetry codes: (i) *x*, –*y*–1/2, *z*–1/2; (ii) –*x*+1, –*y*, –*z*+2.