

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Opipramol dipicrate

Jerry P. Jasinski,^a* Albert E. Pek,^a B. P. Siddaraju,^b H. S. Yathiraian^c and B. Naravana^d

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Chemistry, V. V. Puram College of Science, Bangalore 560 004, India, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India Correspondence e-mail: jjasinski@keene.edu

Received 17 June 2010; accepted 5 July 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.049: *wR* factor = 0.123: data-to-parameter ratio = 16.0.

In the crystal structure of the title compound, $C_{23}H_{31}N_3O^{2+}$. 2C₆H₂N₃O₇⁻, {systematic name: 1-[3-(5H-dibenz[b,f]azepin-5-yl)propyl]-4-(2-hydroxyethyl)piperazine-1,4-diium bis(2,4,6trinitrophrenolate)} the piperazine group in the opipramol dication is protonated at both N atoms. Each picrate anion interacts with the protonated N atom in the cation through a bifurcated N-H···O hydrogen bond, forming an $R_2^1(6)$ ring motif. In the cation, the dihedral angle between the mean planes of the two benzene rings is 50.81 (8) Å. Intermolecular $O-H \cdots O$ and weak $C-H \cdots O$ hydrogen bonds, and weak π ring and π - π stacking interactions dominate the crystal packing.

Related literature

For the use of opipramol in the treatment of anxiety disorder, see: Moller et al. (2001). For its use in the preparation of amine derivatives, see: Shriner et al. (1980). For crystal engineering research, see: Desiraju et al. (1989). For related structures, see: Bindya et al. (2007); Jasinski et al. (2010); Yathirajan et al. (2007). For bond-length data, see: Allen et al. (1987).

V = 1818.6 (3) Å³

Experimental

Crystal data

 $C_{23}H_{31}N_3O^{2+} \cdot 2C_6H_2N_3O_7^{-1}$ $\gamma = 73.866 \ (2)^{\circ}$ $M_r = 821.72$ Triclinic, $P\overline{1}$ Z = 2a = 7.3838 (8) Å Mo $K\alpha$ radiation b = 12.0400 (13) Å $\mu = 0.12 \text{ mm}^{-1}$ c = 22.074 (2) Å $T = 100 {\rm K}$ $0.55 \times 0.50 \times 0.14 \text{ mm}$ $\alpha = 74.821 \ (1)^{\circ}$ $\beta = 84.355 (2)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2008) $T_{\min} = 0.937, T_{\max} = 0.983$

Refinement

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$

10692 measured reflections

10692 independent reflections

7831 reflections with $I > 2\sigma(I)$

 $\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1B^{i}$ $N1 - H1 \cdots O7B^{i}$ $N2 - H2 \cdots O1A^{ii}$ $N2 - H2 \cdots O2A^{ii}$ $O1 - H1C \cdots O1B^{i}$ $O1 - H1C \cdots O7B^{i}$	0.91 (2) 0.91 (2) 0.90 (2) 0.90 (2) 0.82 0.82	1.85 (2) 2.383 (19) 1.78 (2) 2.43 (2) 2.50 2.38	2.6901 (16) 3.0466 (17) 2.6204 (16) 3.0711 (16) 3.1600 (19) 3.0841 (18)	152.6 (18) 130.0 (16) 154.6 (19) 128.2 (16) 138 144

Symmetry codes: (i) x + 1, y, z; (ii) x, y + 1, z.

Table 2

 $Y - X \cdots Cg \pi$ ring interactions (Å).

Cg3 and Cg9 are the centroids of the C10-C15 and C1A-C6A rings, respectively. $CgX \cdots$ Perp and $CgY \cdots$ Perp are the perpendicular distances between atoms X and Y and the ring centroid.

$Y - X \cdots Cg$	$X \cdots Cg$	$Y \cdots Cg$	X···Perp
$C1A - O1A \cdots Cg3^{i}$	3.5674 (13)	3.6471 (17)	3.494
$N3A - O4A \cdots Cg9$	3.8172 (17)	3.8173 (17)	-3.357
$N3B - O4B \cdots Cg^{9^{ii}}$	3.4320 (15)	3.9391 (15)	3.288

Symmetry codes: (i) x, -1 + y, z; (ii) 1 - x, -y, 1 - z.

Table 3

 $Cg \cdots Cg \pi$ stacking interactions (Å).

Cg2, Cg3, Cg8 and Cg9 are the centroids of the C10-C15, C18-C23, C1A-C6A and C1B-C6B rings, respectively. $CgX \cdots$ Perp and $CgY \cdots$ Perp are the perpendicular distances between the ring centroid and the other ring.

	$CgX \cdots CgY$	CgX···Perp	CgY···Perp
$Cg2 \cdots Cg2^{i}$	3.8038 (11)	-3.5589 (7)	-3.5590(7)
$Cg3 \cdot \cdot \cdot Cg3^{i}$	3.7164 (10)	-3.6624(7)	-3.6623(7)
$Cg8 \cdots Cg9$	3.9558 (10)	-3.2475 (6)	3.3731 (6)

Symmetry code: (i) 2 - x, 1 - y, -z.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

JPJ thanks Dr Matthias Zeller and the YSU Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU. HSY thanks the UOM for research facilities and for sabbatical leave. BPS thanks R. L. Fine Chem, Bangalore, for a gift sample of opipramol dihydrochloride.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2786).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, 0546–0548.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
- Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, 0411-0412.
- Moller, H. J., Volz, H. P., Reimann, I. W. & Stoll, K. D. (2001). J. Clin. Psychopharmacol. 21, 59-65.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shriner, R. L., Fuson, R. C., Curtin, D. Y. & Morrill, T. C. (1980). *Qualitative Identification of Organic Compounds*, 6th ed., pp. 236–237. New York: Wiley.
- Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, 01693–01695.

Acta Cryst. (2010). E66, o1979-o1980 [https://doi.org/10.1107/S1600536810026565]

Opipramol dipicrate

Jerry P. Jasinski, Albert E. Pek, B. P. Siddaraju, H. S. Yathirajan and B. Narayana

S1. Comment

Opipramol (systematic IUPAC name: 4-[3-(5*H*-dibenz[b,f]azepin-5-yl)propyl]-1-piperazinethanol) is an antidepressant and anxiolytic typically used in the treatment of generalized anxiety disorder (Moller *et al.*, 2001). Opipramol, a drug widely prescribed in Germany, is a tricyclic compound with no reuptake-inhibiting properties. However, it has pronounced D2-, 5-HT2-, and H1-blocking potential and high affinity to sigma receptors (sigma-1 and sigma-2). Crystalline picrates have commonly been used in the preparation of amine derivatives in qualitative organic chemistry (Shriner *et al.*, 1980). Hydrogen bonding plays a key role in molecular recognition and crystal engineering research (Desiraju *et al.*, 1989). The crystal structures of trifluoperazinium dipicrate (Yathirajan *et al.*, 2007), amitriptylinium picrate (Bindya *et al.*, 2007) and imatinibium dipicrate (Jasinski *et al.*, 2010) have been reported. The present work reports the crystal structure of the salt formed by the interaction between 4-[3-(5*H*-dibenz[b,f]azepin-5-yl)propyl]-1piperazinethanol dihydrochloride and 2,4,6-trinitrophenol in aqueous medium.

In opipramol dipicrate, $C_{23}H_{33}N_3O^+$, $(C_6H_2N_3O_7)_2$, the piperazine group in the opipramol cation is protonated at both of the N atoms. The 6-membered piperazine group (N1/C5/C6/N2/C4/C3) adopts a slightly distorted chair conformation with puckering parameters Q, θ and φ of 0.584 (7)A%, 178.40°, and 312.658 (8)°, respectively (Fig.1). For an ideal chair θ has a value of 0 or 180°. Bond distances and angles are in normal ranges (Allen *et al.*, 1987). R_2^{1} (6) graph-set motifs are formed between piperazine N1—H1 and N2—H2 groups and the picrate anions (labeled A and B) through bifurcated N—H···O hydrgen bonds (Fig. 2). The mean plane of the two *o*-NO₂ groups in the two picrate anions are twisted by 31.8 (8)°, 31.8 (8)° in both the A ring B rings with respect to the mean planes of the 6-membered benzene rings. The *p*-NO₂ groups in both picrate anions are nearly in the plane of the ring (torsion angles O4A—N3A—C4A—C3A = -1.7 (2)°; O4B—N3B—C4B—C3B = -12.1 (2)°). An extensive array of weak O—H···O and C—H···O intermolecular hydrogen bonds (Table 1), weak π -ring (Table 2) and π - π (Table 3) stacking interactions dominate crystal packing in the unit cell (Fig. 3).

S2. Experimental

Opipramol dihydrochloride (4.38 g, 0.01 mol) was dissolved in 25 ml of water and picric acid (2.4 g, 0.01 mol) was dissolved in 25 ml of water. Both the solutions were mixed and stirred in a beaker at room temperature for one hour. The mixture was kept aside for two days at room temperature. The formed salt was filtered & dried in vacuum desiccator over phosphorous pentoxide. The salt was recrystallized from DMSO by slow evaporation (m.p: 453–455 K).

S3. Refinement

The H1C, H1 and H2 atoms were located by a Fourier map. These H atoms and the rest of the H atoms were then positioned geometrically and allowed to ride on their parent atoms with Atom—H lengths of 0.82Å (O1), 0.91Å (NH), 0.93 Å (CH), 0.97Å (CH₂) or (CH₃). Isotropic displacement parameters for these atoms were set to 1.40 times (OH), 1.20 times (NH), 1.20 (CH) or 1.22 (CH₂) times (CH₃) U_{eq} of the parent atom. The highest and lowest peaks (0.64 & 0.31 eÅ⁻³)

are located 1.21Å and 0.31Å from atoms N1A and H1C, respectively.

Figure 1

Molecular structure of, $C_{23}H_{33}N_3O^+$, $(C_6H_2N_3O_7)_2$, showing the atom labeling scheme and 30% probability displacement ellipsoids.

Diagram for the $R_2^{1}(6)$ ··· ab..graph-set motif in the cation of the title compound, $C_{23}H_{33}N_3O^+$, $(C_6H_2N_3O_7)_2$.

Figure 3

Packing diagram of the title compound viewed down the *a* axis. Dashed lines indicate intermolecular N—H…O and C—H…O hydrogen bond interactions.

1-[3-(5*H*-dibenz[*b*,*f*]azepin-5-yl)propyl]-4-(2- hydroxyethyl)piperazine-1,4-diium bis(2,4,6-trinitrophrenolate)

Z = 2

F(000) = 856

 $\theta = 2.9 - 30.4^{\circ}$

 $\mu = 0.12 \text{ mm}^{-1}$

Plate, yellow

 $R_{\rm int} = 0.000$

 $h = -10 \rightarrow 10$ $k = -16 \rightarrow 17$

 $l = 0 \rightarrow 30$

 $0.55 \times 0.50 \times 0.14 \text{ mm}$

 $\theta_{\text{max}} = 31.1^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$

10692 measured reflections

10692 independent reflections

7831 reflections with $I > 2\sigma(I)$

T = 100 K

 $D_{\rm x} = 1.501 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5178 reflections

Crystal data

 $\begin{array}{l} C_{23}H_{31}N_{3}O^{2+}\cdot 2C_{6}H_{2}N_{3}O_{7}^{-}\\ M_{r}=821.72\\ \text{Triclinic, }P\overline{1}\\ \text{Hall symbol: -p 1}\\ a=7.3838\ (8)\ \text{\AA}\\ b=12.0400\ (13)\ \text{\AA}\\ c=22.074\ (2)\ \text{\AA}\\ a=74.821\ (1)^{\circ}\\ \beta=84.355\ (2)^{\circ}\\ \gamma=73.866\ (2)^{\circ}\\ V=1818.6\ (3)\ \text{\AA}^{3} \end{array}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.937, T_{\max} = 0.983$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.123$	neighbouring sites
S = 0.98	H atoms treated by a mixture of independent
10692 reflections	and constrained refinement
669 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0431P)^2 + 1.3196P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.64 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.39$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	1.02455 (17)	0.60675 (11)	0.37838 (6)	0.0151 (2)
N1A	0.8758 (2)	0.06526 (12)	0.19787 (7)	0.0288 (3)
N1B	0.49985 (18)	0.35440 (11)	0.34309 (6)	0.0191 (2)

N2	0.83911 (17)	0.63062 (11)	0.26315 (5)	0.0154 (2)
N2A	0.36714 (18)	-0.11954 (11)	0.30334 (6)	0.0201 (3)
N2B	0.0123 (2)	0.16475 (12)	0.46259 (7)	0.0240 (3)
N3	0.65920 (18)	0.69770 (11)	0.08383 (6)	0.0183 (2)
N3A	0.2539 (2)	0.30858 (12)	0.23707 (7)	0.0296 (3)
N3B	0.6228 (2)	-0.07470(12)	0.40742 (6)	0.0262 (3)
01	1.32600 (16)	0.50804 (10)	0.47765 (5)	0.0238(2)
H1C	1 3355	0 4665	0 4528	0.036*
01A	0.73234(15)	-0.13584(9)	0.23643(5)	0.0225(2)
01R	0.13483(17)	0 36702 (10)	0.23013(5) 0.41214(6)	0.0225(2) 0.0335(3)
024	0.15405(17) 0.45142(16)	-0.22069(9)	0.41214(0) 0.29802(6)	0.0333(3)
02R 02B	-0.12159(18)	0.22009(9)	0.29002(0) 0.43026(7)	0.0243(2) 0.0439(4)
020	0.12137(10)	-0.10226(11)	0.43020(7) 0.33074(6)	0.0437(4)
O3R	-0.00152(19)	0.10220(11) 0.10754(10)	0.53974(0) 0.51708(6)	0.0309(3)
03B	0.00132(19) 0.0037(2)	0.10734(10) 0.21524(12)	0.31708(0) 0.25084(7)	0.0302(3)
04A 04B	0.0937(2)	0.31334(12) 0.16285(10)	0.23984(7)	0.0431(4)
046	0.3803(2) 0.3147(2)	-0.10383(10)	0.44085(0)	0.0303(3)
05A 05D	0.3147(2)	0.396//(10)	0.21386 (6)	0.0366(3)
058	0.76309 (19)	-0.07890 (11)	0.37238 (6)	0.0350 (3)
O6A	0.9082 (2)	0.14690 (14)	0.15701 (10)	0.0721 (6)
O6B	0.64141 (15)	0.33702 (10)	0.30921 (5)	0.0240 (2)
O7A	0.99987 (19)	-0.02019 (13)	0.22406 (7)	0.0419 (3)
O7B	0.40979 (18)	0.45584 (10)	0.34673 (6)	0.0327 (3)
C1	1.2578 (2)	0.63008 (14)	0.44618 (8)	0.0226 (3)
C1A	0.6250 (2)	-0.03839 (12)	0.24106 (7)	0.0169 (3)
C1B	0.2478 (2)	0.27017 (12)	0.40804 (7)	0.0188 (3)
C2	1.0532 (2)	0.65724 (14)	0.43134 (7)	0.0201 (3)
C2A	0.4357 (2)	-0.01908 (12)	0.26842 (7)	0.0174 (3)
C2B	0.2017 (2)	0.15826 (13)	0.43494 (7)	0.0180 (3)
C3	0.8236 (2)	0.60313 (13)	0.37804 (7)	0.0158 (3)
C3A	0.3154 (2)	0.09238 (13)	0.26613 (7)	0.0203 (3)
C3B	0.3198 (2)	0.04765 (13)	0.43780 (7)	0.0203 (3)
C4	0.7918 (2)	0.55480 (12)	0.32445 (6)	0.0157 (3)
C4A	0.3782 (2)	0.19229 (13)	0.23820 (7)	0.0223 (3)
C4B	0.4978 (2)	0.04110 (12)	0.40896 (7)	0.0196 (3)
C5	1.0750 (2)	0.68021 (13)	0.31640 (7)	0.0173 (3)
C5A	0.5629 (2)	0.18292 (13)	0.21535 (7)	0.0224 (3)
C5B	0.5537 (2)	0.14175 (13)	0.37891 (7)	0.0180 (3)
C6	1.0402 (2)	0.63363 (13)	0.26278 (7)	0.0181 (3)
C6A	0.6808 (2)	0.07208 (13)	0.21871 (7)	0.0202 (3)
C6B	0.4335(2)	0.25296 (12)	0.37819 (7)	0.0170(3)
C7	0.8042(2)	0 58956 (14)	0 20786 (7)	0.0208(3)
C8	0.5012(2) 0.5958(2)	0.61594 (14)	0.19562(7)	0.0200(3)
C9	0.5705(2)	0.61345 (14)	0.12799(7)	0.0217(3)
C10	0.7251(2)	0 67135 (13)	0.02498 (7)	0.0217(3)
C11	0.7231(2) 0.6288(3)	0.61785(14)	-0.00504(7)	0.0170(3)
C12	0.0200(3)	0 58299 (15)	-0.05966 (8)	0.0252(5) 0.0300(4)
C12	0.7055 (3)	0.50277(15)	-0.08304 (8)	0.0309(+) 0.0327(4)
C13	0.0755(5)	0.00070(10)	-0.05502(9)	0.0327(4)
014	0.2027 (3)	0.05574(15)	(0) 202 (0)	0.0290 (4)

C15	0.8954 (2)	0.69466 (14)	-0.00106 (7)	0.0229 (3)
C16	0.9953 (2)	0.75994 (16)	0.02502 (8)	0.0280 (3)
C17	0.9182 (3)	0.84618 (16)	0.05467 (8)	0.0284 (4)
C18	0.7192 (2)	0.89186 (14)	0.07048 (7)	0.0228 (3)
C19	0.6521 (3)	1.01141 (15)	0.07358 (8)	0.0312 (4)
C20	0.4661 (3)	1.05952 (16)	0.08865 (8)	0.0359 (4)
C21	0.3421 (3)	0.98862 (17)	0.10155 (8)	0.0345 (4)
C22	0.4037 (2)	0.87034 (16)	0.09885 (7)	0.0264 (3)
C23	0.5914 (2)	0.82097 (13)	0.08345 (7)	0.0198 (3)
H1	1.096 (3)	0.5306 (18)	0.3834 (9)	0.027 (5)*
H2	0.769 (3)	0.7069 (19)	0.2581 (9)	0.032 (5)*
H1A	1.334 (3)	0.6519 (17)	0.4086 (9)	0.029 (5)*
H1B	1.265 (3)	0.6790 (17)	0.4736 (9)	0.028 (5)*
H2A	1.000 (3)	0.7399 (18)	0.4188 (9)	0.028 (5)*
H2B	0.984 (2)	0.6202 (16)	0.4667 (9)	0.019 (4)*
H3A	0.748 (2)	0.6818 (15)	0.3746 (8)	0.014 (4)*
H3B	0.797 (2)	0.5526 (16)	0.4172 (8)	0.018 (4)*
H3C	0.192 (3)	0.0976 (17)	0.2851 (9)	0.027 (5)*
H3D	0.280 (3)	-0.0219 (17)	0.4569 (9)	0.025 (5)*
H4A	0.871 (2)	0.4727 (15)	0.3266 (8)	0.014 (4)*
H4B	0.660 (3)	0.5557 (15)	0.3244 (8)	0.018 (4)*
H5A	1.205 (3)	0.6769 (16)	0.3158 (8)	0.020 (4)*
H5B	0.995 (3)	0.7623 (16)	0.3130 (8)	0.022 (5)*
H5C	0.608 (3)	0.2514 (18)	0.1990 (9)	0.031 (5)*
H5D	0.670 (3)	0.1386 (17)	0.3592 (9)	0.029 (5)*
H6A	1.064 (3)	0.6881 (17)	0.2241 (9)	0.028 (5)*
H6B	1.119 (3)	0.5537 (17)	0.2650 (8)	0.023 (5)*
H7A	0.868 (3)	0.5037 (18)	0.2157 (9)	0.028 (5)*
H7B	0.865 (3)	0.6356 (16)	0.1722 (9)	0.021 (4)*
H8A	0.530 (2)	0.6955 (15)	0.2024 (8)	0.015 (4)*
H8B	0.537 (2)	0.5596 (16)	0.2237 (8)	0.019 (4)*
H9A	0.637 (3)	0.5335 (17)	0.1205 (8)	0.023 (5)*
H9B	0.430 (3)	0.6262 (17)	0.1206 (9)	0.029 (5)*
H11	0.513 (3)	0.6024 (18)	0.0116 (10)	0.033 (5)*
H12	0.632 (3)	0.5471 (19)	-0.0806 (10)	0.038 (6)*
H13	0.932 (3)	0.5741 (19)	-0.1207 (10)	0.038 (6)*
H14	1.085 (3)	0.6724 (17)	-0.0727 (9)	0.030 (5)*
H16	1.129 (3)	0.746 (2)	0.0137 (10)	0.044 (6)*
H17	0.998 (3)	0.8897 (18)	0.0633 (10)	0.036 (6)*
H19	0.740 (3)	1.0580 (18)	0.0661 (10)	0.034 (5)*
H20	0.426 (3)	1.1418 (19)	0.0917 (10)	0.040 (6)*
H21	0.213 (3)	1.023 (2)	0.1115 (11)	0.045 (6)*
H22	0.313 (3)	0.8197 (17)	0.1082 (9)	0.029 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0133 (6)	0.0123 (5)	0.0194 (6)	-0.0018 (4)	-0.0006 (4)	-0.0052 (4)

N1A	0.0266 (7)	0.0211 (6)	0.0364 (8)	-0.0088(6)	0.0042 (6)	-0.0022 (6)
N1B	0.0171 (6)	0.0173 (6)	0.0237 (6)	-0.0042(5)	0.0011 (5)	-0.0073 (5)
N2	0.0164 (6)	0.0132 (5)	0.0158 (5)	-0.0026(5)	-0.0005 (4)	-0.0032 (4)
N2A	0.0165 (6)	0.0203 (6)	0.0246 (6)	-0.0040 (5)	-0.0010 (5)	-0.0083(5)
N2B	0.0241 (7)	0.0248 (7)	0.0272 (7)	-0.0115 (6)	0.0024 (5)	-0.0092(5)
N3	0.0225 (6)	0.0187 (6)	0.0144 (5)	-0.0071 (5)	0.0001 (5)	-0.0036 (5)
N3A	0.0403 (9)	0.0184 (6)	0.0229 (7)	0.0090 (6)	-0.0089 (6)	-0.0073 (5)
N3B	0.0341 (8)	0.0167 (6)	0.0246 (7)	0.0057 (6)	-0.0132 (6)	-0.0082(5)
01	0.0223 (6)	0.0215 (5)	0.0244 (5)	0.0004 (4)	-0.0065 (4)	-0.0047 (4)
O1A	0.0192 (5)	0.0133 (5)	0.0306 (6)	-0.0006 (4)	0.0033 (4)	-0.0030 (4)
O1B	0.0281 (6)	0.0145 (5)	0.0456 (7)	0.0017 (5)	0.0160 (5)	-0.0005 (5)
O2A	0.0216 (6)	0.0166 (5)	0.0340 (6)	-0.0045 (4)	0.0040 (5)	-0.0071 (5)
O2B	0.0188 (6)	0.0655 (10)	0.0417 (8)	-0.0087 (6)	-0.0041 (5)	-0.0047 (7)
O3A	0.0267 (6)	0.0318 (6)	0.0347 (7)	-0.0081(5)	0.0110 (5)	-0.0126(5)
O3B	0.0439 (7)	0.0259 (6)	0.0256 (6)	-0.0174 (5)	0.0102 (5)	-0.0098 (5)
O4A	0.0434 (8)	0.0295 (7)	0.0431 (8)	0.0164 (6)	0.0061 (6)	-0.0060 (6)
O4B	0.0476 (8)	0.0139 (5)	0.0443 (8)	-0.0005 (5)	-0.0108 (6)	-0.0065 (5)
O5A	0.0537 (9)	0.0153 (5)	0.0377 (7)	0.0023 (5)	-0.0136 (6)	-0.0090 (5)
O5B	0.0374 (7)	0.0278 (6)	0.0285 (6)	0.0135 (5)	-0.0034(5)	-0.0101 (5)
O6A	0.0530 (10)	0.0301 (8)	0.1039 (15)	-0.0083 (7)	0.0356 (10)	0.0170 (9)
O6B	0.0191 (5)	0.0256 (6)	0.0279 (6)	-0.0064(4)	0.0065 (4)	-0.0094 (5)
O7A	0.0241 (7)	0.0411 (8)	0.0543 (9)	-0.0092(6)	-0.0031 (6)	0.0005 (7)
O7B	0.0311 (7)	0.0154 (5)	0.0498 (8)	-0.0068(5)	0.0170 (6)	-0.0109 (5)
C1	0.0212 (8)	0.0202 (7)	0.0256 (8)	-0.0051 (6)	-0.0080 (6)	-0.0018 (6)
C1A	0.0175 (7)	0.0139 (6)	0.0171 (6)	-0.0010 (5)	-0.0033 (5)	-0.0022(5)
C1B	0.0182 (7)	0.0141 (6)	0.0218 (7)	-0.0019(5)	-0.0004(5)	-0.0031(5)
C2	0.0185 (7)	0.0190 (7)	0.0239 (7)	0.0002 (6)	-0.0065 (6)	-0.0103 (6)
C2A	0.0166 (7)	0.0159 (6)	0.0193 (6)	-0.0018 (5)	-0.0034 (5)	-0.0052 (5)
C2B	0.0180 (7)	0.0176 (6)	0.0186 (6)	-0.0057 (5)	-0.0017 (5)	-0.0034(5)
C3	0.0123 (6)	0.0174 (6)	0.0173 (6)	-0.0030 (5)	0.0003 (5)	-0.0049 (5)
C3A	0.0182 (7)	0.0214 (7)	0.0198 (7)	0.0021 (6)	-0.0060 (5)	-0.0081 (6)
C3B	0.0285 (8)	0.0149 (6)	0.0187 (7)	-0.0060 (6)	-0.0052 (6)	-0.0042 (5)
C4	0.0173 (7)	0.0137 (6)	0.0165 (6)	-0.0053 (5)	-0.0012 (5)	-0.0028(5)
C4A	0.0294 (8)	0.0146 (6)	0.0193 (7)	0.0042 (6)	-0.0072 (6)	-0.0061 (5)
C4B	0.0243 (8)	0.0128 (6)	0.0200 (7)	0.0020 (5)	-0.0073 (6)	-0.0060(5)
C5	0.0144 (7)	0.0142 (6)	0.0222 (7)	-0.0039(5)	-0.0003 (5)	-0.0021 (5)
C5A	0.0325 (9)	0.0144 (6)	0.0193 (7)	-0.0041 (6)	-0.0043 (6)	-0.0032(5)
C5B	0.0162 (7)	0.0188 (7)	0.0186 (6)	0.0000 (5)	-0.0041 (5)	-0.0075 (5)
C6	0.0147 (7)	0.0178 (7)	0.0192 (7)	-0.0024(5)	0.0007 (5)	-0.0026(5)
C6A	0.0223 (7)	0.0162 (6)	0.0208 (7)	-0.0041 (6)	-0.0015 (6)	-0.0029(5)
C6B	0.0176 (7)	0.0143 (6)	0.0192 (6)	-0.0036 (5)	-0.0011 (5)	-0.0044 (5)
C7	0.0246 (8)	0.0203 (7)	0.0162 (6)	0.0002 (6)	-0.0034 (6)	-0.0078 (6)
C8	0.0246 (8)	0.0210 (7)	0.0149 (6)	-0.0085 (6)	-0.0005 (5)	-0.0031 (5)
C9	0.0275 (8)	0.0239 (7)	0.0164 (6)	-0.0115 (6)	-0.0009 (6)	-0.0046 (6)
C10	0.0237 (7)	0.0167 (6)	0.0155 (6)	-0.0027 (6)	-0.0013 (5)	-0.0011 (5)
C11	0.0337 (9)	0.0235 (8)	0.0191 (7)	-0.0096 (7)	-0.0014 (6)	-0.0041 (6)
C12	0.0503 (11)	0.0242 (8)	0.0189 (7)	-0.0099 (8)	-0.0037 (7)	-0.0052 (6)
C13	0.0464 (11)	0.0259 (8)	0.0182 (7)	0.0012 (8)	0.0028 (7)	-0.0051 (6)
	· /	× /	× /	× /	× /	

C14	0.0295 (9)	0.0263 (8)	0.0232 (8)	0.0008 (7)	0.0052 (7)	0.0000 (6)
C15	0.0220 (8)	0.0211 (7)	0.0200 (7)	-0.0004 (6)	-0.0022 (6)	-0.0001 (6)
C16	0.0195 (8)	0.0325 (9)	0.0283 (8)	-0.0076 (7)	-0.0019 (6)	0.0000 (7)
C17	0.0286 (9)	0.0300 (8)	0.0290 (8)	-0.0148 (7)	-0.0065 (7)	-0.0017 (7)
C18	0.0314 (8)	0.0204 (7)	0.0168 (7)	-0.0077 (6)	-0.0052 (6)	-0.0021 (6)
C19	0.0537 (12)	0.0206 (8)	0.0207 (8)	-0.0128 (8)	-0.0081 (7)	-0.0019 (6)
C20	0.0590 (13)	0.0199 (8)	0.0207 (8)	0.0056 (8)	-0.0101 (8)	-0.0046 (6)
C21	0.0375 (10)	0.0329 (9)	0.0219 (8)	0.0107 (8)	-0.0051 (7)	-0.0073 (7)
C22	0.0242 (8)	0.0307 (8)	0.0197 (7)	-0.0003 (7)	-0.0041 (6)	-0.0046 (6)
C23	0.0258 (8)	0.0186 (7)	0.0134 (6)	-0.0029 (6)	-0.0049 (5)	-0.0027 (5)

Geometric parameters (Å, °)

N1—C5	1.4973 (18)	C3B—C4B	1.394 (2)
N1—C3	1.4973 (18)	C3B—H3D	0.944 (19)
N1-C2	1.5077 (18)	C4—H4A	0.992 (17)
N1—H1	0.91 (2)	C4—H4B	0.970 (18)
N1A—O6A	1.2087 (19)	C4A—C5A	1.391 (2)
N1A—O7A	1.2250 (19)	C4B—C5B	1.372 (2)
N1A—C6A	1.455 (2)	C5—C6	1.506 (2)
N1B	1.2256 (16)	C5—H5A	0.947 (19)
N1B-07B	1.2370 (16)	C5—H5B	0.988 (18)
N1B—C6B	1.4473 (18)	C5A—C6A	1.364 (2)
N2-C4	1.4913 (18)	C5A—H5C	0.95 (2)
N2—C6	1.4944 (19)	C5B—C6B	1.383 (2)
N2—C7	1.4996 (18)	C5B—H5D	0.92 (2)
N2—H2	0.90 (2)	C6—H6A	0.97 (2)
N2A—O3A	1.2316 (16)	C6—H6B	0.968 (19)
N2A—O2A	1.2344 (16)	C7—C8	1.519 (2)
N2A—C2A	1.4451 (19)	C7—H7A	0.99 (2)
N2B—O2B	1.2189 (19)	C7—H7B	0.983 (18)
N2B—O3B	1.2298 (18)	C8—C9	1.532 (2)
N2B—C2B	1.460 (2)	C8—H8A	0.989 (17)
N3—C10	1.4250 (18)	C8—H8B	0.960 (18)
N3—C23	1.4264 (19)	С9—Н9А	1.000 (18)
N3—C9	1.4609 (19)	C9—H9B	1.03 (2)
N3A—O4A	1.229 (2)	C10—C11	1.389 (2)
N3A—O5A	1.235 (2)	C10—C15	1.400 (2)
N3A—C4A	1.4408 (19)	C11—C12	1.393 (2)
N3B—O5B	1.2277 (19)	C11—H11	0.95 (2)
N3B—O4B	1.2334 (19)	C12—C13	1.379 (3)
N3B—C4B	1.4493 (19)	C12—H12	0.98 (2)
01—C1	1.4207 (18)	C13—C14	1.377 (3)
O1—H1C	0.8200	C13—H13	0.97 (2)
O1A—C1A	1.2431 (17)	C14—C15	1.400 (2)
O1B—C1B	1.2504 (18)	C14—H14	0.95 (2)
C1—C2	1.505 (2)	C15—C16	1.462 (2)
C1—H1A	0.97 (2)	C16—C17	1.336 (3)

C1—H1B	0.96 (2)	C16—H16	0.97 (2)
C1A—C2A	1.449 (2)	C17—C18	1.461 (2)
C1A—C6A	1.450 (2)	C17—H17	0.95 (2)
C1B-C2B	1442(2)	$C_{18} - C_{23}$	1403(2)
C1B C6B	1.112(2) 1.447(2)	C18 $C19$	1.103(2) 1.404(2)
	1.447(2)	C10_C19	1.404(2)
C2—H2A	0.94(2)	C19 - C20	1.379(3)
C2—H2B	0.965 (18)	C19—H19	0.95 (2)
C2A—C3A	1.379 (2)	C20—C21	1.380 (3)
C2B—C3B	1.364 (2)	С20—Н20	0.97 (2)
C3—C4	1.5114 (19)	C21—C22	1.385 (3)
С3—НЗА	0.944 (17)	C21—H21	0.95 (2)
С3—Н3В	0.956 (18)	C22—C23	1.395 (2)
C3A—C4A	1.381 (2)	C22—H22	1.00 (2)
СЗА—НЗС	0.960 (19)		()
C5 N1 C3	100 10 (11)	N1 C5 H5A	108.6(11)
C_{3}	109.19 (11)	NI-CS-HSA	108.0 (11)
C5—NI—C2	110.78 (11)	C6C5H5A	108.5 (11)
C3—N1—C2	110.41 (11)	N1—C5—H5B	106.6 (10)
C5—N1—H1	109.1 (12)	C6—C5—H5B	110.4 (11)
C3—N1—H1	106.7 (12)	H5A—C5—H5B	111.4 (15)
C2—N1—H1	110.5 (12)	C6A—C5A—C4A	118.59 (14)
06A—N1A—07A	123.06 (16)	C6A—C5A—H5C	120.0 (12)
O6A—N1A—C6A	118.13 (15)	C4A—C5A—H5C	121.4 (12)
07A - N1A - C6A	118 74 (13)	C4B—C5B—C6B	119 73 (14)
O(B-N)B-O7B	122.01(13)	C4B $C5B$ $H5D$	122.4(12)
OGB NIB CGB	122.01(13) 118.63(12)	C6B C5B H5D	122.4(12) 117.8(12)
OOD-NID-COD	110.03(12)		117.8(12)
	119.32 (12)	$N_2 - C_0 - C_3$	111.06 (12)
C4—N2—C6	109.13 (11)	N2—C6—H6A	107.4 (12)
C4—N2—C7	112.96 (11)	С5—С6—Н6А	107.9 (12)
C6—N2—C7	110.53 (11)	N2—C6—H6B	108.0 (11)
C4—N2—H2	110.9 (13)	С5—С6—Н6В	111.3 (11)
C6—N2—H2	106.2 (13)	H6A—C6—H6B	111.0 (16)
C7—N2—H2	106.9 (13)	C5A—C6A—C1A	124.68 (15)
O3A—N2A—O2A	121.74 (13)	C5A—C6A—N1A	117.16 (14)
O3A—N2A—C2A	118.85 (12)	C1A—C6A—N1A	118.16 (13)
$\Omega^2 A - N^2 A - C^2 A$	119 34 (12)	C5B-C6B-C1B	123 28 (13)
O2B = N2B = O3B	124 29 (15)	C5B - C6B - N1B	116 20 (13)
O2B N2B C2B	124.29(13) 11814(13)	CIP C6P NIP	110.20(13) 120.47(12)
O2D = N2D = C2D	110.14(13) 117.59(14)	$\frac{CID}{C7} = \frac{C9}{C9}$	120.47(12)
$O_{3}D_{1}O_{2}D_{1}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	117.38 (14)	$N_2 = C_7 = U_7 A$	112.82 (12)
C10—N3—C23	116.26 (11)	N2 - C / - H / A	107.2 (11)
C10—N3—C9	117.10 (12)	С8—С7—Н7А	112.1 (11)
C23—N3—C9	118.09 (12)	N2—C7—H7B	104.2 (11)
O4A—N3A—O5A	123.17 (14)	C8—C7—H7B	109.4 (11)
O4A—N3A—C4A	118.62 (15)	H7A—C7—H7B	110.9 (15)
O5A—N3A—C4A	118.21 (15)	C7—C8—C9	109.79 (13)
O5B—N3B—O4B	123.64 (14)	C7—C8—H8A	109.1 (10)
O5B—N3B—C4B	118.44 (14)	C9—C8—H8A	109.9 (10)
O4B—N3B—C4B	117.91 (15)	C7—C8—H8B	112.2 (11)
	···· = ()		()

C1-01-H1C	109 5	C9—C8—H8B	108.8 (11)
01-C1-C2	110 26 (13)	H8A—C8—H8B	107.1(14)
01-C1-H1A	111.6 (12)	N3-C9-C8	110,11(12)
$C_2 - C_1 - H_1 A$	111.5(12)	N3-C9-H9A	105.3(10)
01-C1-H1B	109.2(12)	C8—C9—H9A	110.6(11)
$C_2 - C_1 - H_1B$	109.2(12) 106.8(12)	N3C9H9B	110.0(11) 114.5(11)
HIA CI HIB	107.3(12)	$C_8 = C_9 = H_9B$	109.6(11)
$\Omega_{1A} = C_{1A} = C_{2A}$	107.3(10) 126.28(13)		109.0(11) 106.4(15)
O1A $C1A$ $C6A$	120.28(13) 121.87(14)	$113A - C_{3} - 113B$	100.4(13)
$C_{2A} = C_{1A} = C_{6A}$	121.07(14) 111.95(12)	$C_{11} = C_{10} = C_{13}$	119.05(14)
C_{2A} C_{1B} C_{2B} C_{2B}	111.03(12) 121.18(14)	C15 C10 N2	121.27(14)
OIB-CIB-C2B	121.18(14) 127.15(14)	C10 - C10 - N3	118.80(14)
	127.15 (14)	C10-C11-C12	120.62(17)
C_2B — C_1B — C_6B	111.66 (12)	CIO-CII-HII	120.9 (12)
CI-C2-NI	112.61 (12)		118.4 (13)
C1—C2—H2A	110.8 (12)	C13—C12—C11	119.76 (17)
N1—C2—H2A	106.4 (12)	C13—C12—H12	121.0 (12)
C1—C2—H2B	110.7 (11)	C11—C12—H12	119.2 (12)
N1—C2—H2B	104.6 (11)	C14—C13—C12	119.82 (16)
H2A—C2—H2B	111.4 (16)	C14—C13—H13	119.3 (13)
C3A—C2A—N2A	116.23 (13)	C12—C13—H13	120.9 (13)
C3A—C2A—C1A	123.64 (14)	C13—C14—C15	121.58 (17)
N2A—C2A—C1A	120.05 (12)	C13—C14—H14	120.5 (12)
C3B—C2B—C1B	125.93 (14)	C15—C14—H14	117.8 (12)
C3B—C2B—N2B	117.41 (13)	C10-C15-C14	118.24 (16)
C1B—C2B—N2B	116.65 (13)	C10—C15—C16	122.62 (14)
N1—C3—C4	111.05 (11)	C14—C15—C16	119.13 (16)
N1—C3—H3A	107.0 (10)	C17—C16—C15	126.76 (16)
C4—C3—H3A	111.2 (10)	C17—C16—H16	118.1 (13)
N1—C3—H3B	107.5 (11)	C15—C16—H16	114.5 (13)
C4—C3—H3B	109.9 (11)	C16—C17—C18	127.92 (16)
НЗА—СЗ—НЗВ	110.0 (14)	С16—С17—Н17	117.6 (13)
C2A—C3A—C4A	119.18 (15)	С18—С17—Н17	114.2 (13)
С2А—С3А—Н3С	118.5 (11)	C23—C18—C19	118.16 (16)
C4A—C3A—H3C	122.3 (11)	C23—C18—C17	122.83 (14)
C2B-C3B-C4B	117.56 (14)	C19 - C18 - C17	119.01 (16)
C2B-C3B-H3D	121.2(11)	C_{20} C_{19} C_{18} C_{18}	121 74 (18)
C4B-C3B-H3D	121.2(11) 121.2(11)	C20-C19-H19	120.6(13)
$N_2 - C_4 - C_3$	110.39(11)	C18 - C19 - H19	1176(13)
N2-C4-H4A	106.7(10)	C19-C20-C21	119.48(17)
$C_3 - C_4 - H_{4A}$	112.7(10)	$C_{19} = C_{20} = H_{20}$	119.40(17)
$N_2 C_4 H_4 B$	112.7(10) 108.1(10)	$C_{21} C_{20} H_{20}$	117.4(13)
$C_3 = C_4 = H_4 B$	108.1(10) 109.6(10)	$C_{21} = C_{20} = C_{120}$	121.1(13) 120.24(18)
	109.0(10) 100.3(14)	$C_{20} = C_{21} = C_{22}$	120.27(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.3(14) 121.45(14)	$C_{20} = C_{21} = 1121$	117.0(14) 120.7(14)
$C_{A} = C_{A} = C_{A}$	121.43(14) 110.11(15)	$C_{22} = C_{21} = \Pi_{21}$	120.7(14)
$C_{A} = C_{A} = N_{A}$	117.11(13) 110.27(15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.70(17)
C_{A} C_{A	119.27(13)	$C_{21} = C_{22} = \Pi_{22}$	119.7 (11)
$C_{3B} = C_{4B} = C_{3B}$	121.03 (13)	$C_{23} = C_{22} = H_{22}$	119.0 (11)
U3B—U4B—N3B	119.00(14)	U22-U25-U18	119.08 (15)

C3B—C4B—N3B	119.21 (14)	C22—C23—N3	121.32 (14)
N1—C5—C6	111.44 (12)	C18—C23—N3	118.92 (14)
01—C1—C2—N1	-73.47 (17)	06A—N1A—C6A—C5A	-30.2 (2)
C5—N1—C2—C1	-75.95 (15)	O7A—N1A—C6A—C5A	146.94 (16)
C3—N1—C2—C1	162.96 (13)	O6A—N1A—C6A—C1A	149.37 (18)
O3A—N2A—C2A—C3A	-16.0(2)	O7A—N1A—C6A—C1A	-33.4 (2)
O2A—N2A—C2A—C3A	167.07 (13)	C4B—C5B—C6B—C1B	0.1 (2)
O3A—N2A—C2A—C1A	160.72 (14)	C4B—C5B—C6B—N1B	-177.32 (13)
O2A—N2A—C2A—C1A	-16.2 (2)	O1B—C1B—C6B—C5B	176.23 (16)
O1A—C1A—C2A—C3A	-172.63 (14)	C2B—C1B—C6B—C5B	-3.3 (2)
C6A—C1A—C2A—C3A	7.6 (2)	O1B—C1B—C6B—N1B	-6.4 (2)
O1A—C1A—C2A—N2A	10.9 (2)	C2B—C1B—C6B—N1B	174.07 (12)
C6A—C1A—C2A—N2A	-168.85(12)	O6B—N1B—C6B—C5B	10.6 (2)
01B—C1B—C2B—C3B	-174.15 (15)	07B—N1B—C6B—C5B	-171.39 (14)
C6B—C1B—C2B—C3B	5.4 (2)	O6B—N1B—C6B—C1B	-166.93(13)
01B—C1B—C2B—N2B	4.6 (2)	07B—N1B—C6B—C1B	11.1 (2)
C6B-C1B-C2B-N2B	-175.85(12)	C4—N2—C7—C8	72.88 (16)
O2B-N2B-C2B-C3B	-127.14(16)	C6—N2—C7—C8	-164.52(12)
O3B—N2B—C2B—C3B	52.44 (19)	N2-C7-C8-C9	160.20 (12)
O2B-N2B-C2B-C1B	54.0 (2)	C10—N3—C9—C8	152.17 (13)
O3B—N2B—C2B—C1B	-126.42(15)	C23—N3—C9—C8	-61.06(17)
C5—N1—C3—C4	56.93 (14)	C7—C8—C9—N3	-56.46 (17)
C2—N1—C3—C4	178.96 (12)	C23—N3—C10—C11	-111.87 (16)
N2A—C2A—C3A—C4A	174.47 (13)	C9—N3—C10—C11	35.5 (2)
C1A—C2A—C3A—C4A	-2.1 (2)	C23—N3—C10—C15	71.41 (18)
C1B—C2B—C3B—C4B	-4.1 (2)	C9—N3—C10—C15	-141.22 (14)
N2B—C2B—C3B—C4B	177.17 (13)	C15—C10—C11—C12	2.4 (2)
C6—N2—C4—C3	58.56 (15)	N3—C10—C11—C12	-174.26 (14)
C7—N2—C4—C3	-178.06 (12)	C10-C11-C12-C13	0.6 (3)
N1—C3—C4—N2	-59.29 (15)	C11—C12—C13—C14	-1.8(3)
C2A—C3A—C4A—C5A	-3.5 (2)	C12—C13—C14—C15	0.0 (3)
C2A—C3A—C4A—N3A	-178.66 (13)	C11—C10—C15—C14	-4.1 (2)
O4A—N3A—C4A—C3A	-1.6 (2)	N3—C10—C15—C14	172.67 (14)
O5A—N3A—C4A—C3A	177.50 (14)	C11—C10—C15—C16	174.51 (15)
O4A—N3A—C4A—C5A	-176.91 (15)	N3-C10-C15-C16	-8.7 (2)
O5A—N3A—C4A—C5A	2.2 (2)	C13—C14—C15—C10	2.9 (2)
C2B—C3B—C4B—C5B	0.2 (2)	C13—C14—C15—C16	-175.71 (16)
C2B—C3B—C4B—N3B	-176.01 (13)	C10-C15-C16-C17	-31.2 (3)
O5B—N3B—C4B—C5B	-9.7 (2)	C14—C15—C16—C17	147.44 (18)
O4B—N3B—C4B—C5B	171.44 (14)	C15—C16—C17—C18	3.0 (3)
O5B—N3B—C4B—C3B	166.71 (14)	C16—C17—C18—C23	30.6 (3)
O4B—N3B—C4B—C3B	-12.2 (2)	C16—C17—C18—C19	-150.09 (18)
C3—N1—C5—C6	-56.04 (15)	C23—C18—C19—C20	-0.2 (2)
C2—N1—C5—C6	-177.86 (12)	C17—C18—C19—C20	-179.58 (16)
C3A—C4A—C5A—C6A	2.6 (2)	C18—C19—C20—C21	0.5 (3)
N3A—C4A—C5A—C6A	177.78 (14)	C19—C20—C21—C22	-0.5 (3)
C3B—C4B—C5B—C6B	1.6 (2)	C20—C21—C22—C23	0.3 (2)

N3B—C4B—C5B—C6B	177.86 (13)	C21—C22—C23—C18	-0.1 (2)
C4—N2—C6—C5	-57.85 (15)	C21—C22—C23—N3	176.53 (14)
C7—N2—C6—C5	177.35 (12)	C19—C18—C23—C22	0.0 (2)
N1—C5—C6—N2	57.52 (15)	C17—C18—C23—C22	179.34 (15)
C4A—C5A—C6A—C1A	4.0 (2)	C19—C18—C23—N3	-176.67 (13)
C4A—C5A—C6A—N1A	-176.42 (14)	C17—C18—C23—N3	2.7 (2)
01A—C1A—C6A—C5A	171.60 (15)	C10—N3—C23—C22	116.62 (16)
C2A—C1A—C6A—C5A	-8.7 (2)	C9—N3—C23—C22	-30.4 (2)
O1A—C1A—C6A—N1A	-8.0 (2)	C10—N3—C23—C18	-66.76 (18)
C2A—C1A—C6A—N1A	171.77 (13)	C9—N3—C23—C18	146.20 (14)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 <i>B</i> ⁱ	0.91 (2)	1.85 (2)	2.6901 (16)	152.6 (18)
N1—H1···O7 B^{i}	0.91 (2)	2.383 (19)	3.0466 (17)	130.0 (16)
N2—H2···O1A ⁱⁱ	0.90 (2)	1.78 (2)	2.6204 (16)	154.6 (19)
N2—H2···O2A ⁱⁱ	0.90 (2)	2.43 (2)	3.0711 (16)	128.2 (16)
O1—H1 <i>C</i> ···O1 <i>B</i> ⁱ	0.82	2.50	3.1600 (19)	138
O1—H1 <i>C</i> ···O7 <i>B</i> ⁱ	0.82	2.38	3.0841 (18)	144
C2—H2 A ···O5 B^{ii}	0.94 (2)	2.43 (2)	3.3130 (19)	155.7 (16)
C2—H2 A ···O3 B ⁱⁱⁱ	0.94 (2)	2.60 (2)	3.2350 (19)	125.4 (15)
C3—H3 B ···O1 ^{iv}	0.956 (18)	2.410 (18)	3.3250 (18)	160.0 (14)
$C3B$ — $H3D$ ···O $3B^{v}$	0.944 (19)	2.503 (19)	3.318 (2)	144.7 (15)
C4—H4 B ···O2 A^{ii}	0.970 (18)	2.648 (17)	3.1064 (18)	109.3 (12)
C5—H5 A ···O2 A ^{vi}	0.947 (19)	2.418 (19)	3.2683 (18)	149.3 (14)
C5—H5 B ···O1 A ⁱⁱ	0.988 (18)	2.523 (18)	3.1842 (18)	124.1 (13)
C5—H5 <i>B</i> ···O5 <i>B</i> ⁱⁱ	0.988 (18)	2.714 (18)	3.5844 (19)	147.2 (14)
C6—H6 B ···O5 A^{i}	0.968 (19)	2.492 (19)	3.3728 (19)	151.2 (15)
C7—H7 A ···O4 A^{i}	0.99 (2)	2.44 (2)	3.371 (2)	158.0 (16)
C8—H8A···O2A ⁱⁱ	0.989 (17)	2.521 (17)	3.2870 (19)	134.1 (13)
C14—H14····O6 <i>A</i> ^{vii}	0.95 (2)	2.47 (2)	3.085 (2)	122.0 (15)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+2, -*y*+1, -*z*+1; (v) -*x*, -*y*, -*z*+1; (vi) *x*+1, *y*+1, *z*; (vii) -*x*+2, -*y*+1, -*z*.