brought to you by the CORE

CrossMark

organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Enrofloxacinium oxalate

Thammarse S. Yamuna,^a Manpreet Kaur,^a Brian J. Anderson,^b Jerry P. Jasinski^{b*} and H. S. Yathirajan^a

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA Correspondence e-mail: jjasinski@keene.edu

Received 20 January 2014; accepted 21 January 2014

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.145; data-to-parameter ratio = 13.3.

The title salt, $2C_{19}H_{23}FN_3O_3^+ \cdot C_2O_4^{2-}$ {systematic name: bis-[4-(3-carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)-1-ethylpiperazin-1-ium] oxalate}, crystallizes with two independent monocations (A and B) and an oxalate dianion (C) in the asymmetric unit. The piperazinium ring in both the cations adopts a slightly disordered chair conformation. The dihedral angles between the mean planes of the cyclopropyl ring and the 10-membered quinoline ring are 50.6 (5)° (A) and 62.2 (5)° (B). In each of the cations, a single $O-H \cdots O$ intramolecular hydrogen bond is observed. In the crystal, the oxalate anions interact with the cations through N-H···O hydrogen bonds and weak $C-H \cdots O$ interactions, forming $R_2^2(8)$ graph-set ring motifs. Weak C-H···F interactions along with further $C-H \cdots O$ interactions are observed between the cations, forming zigzag chains along [001]. In addition, $\pi - \pi$ stacking interactions are observed with centroid-centroid distances of 3.5089 (13), 3.5583 (13), 3.7900 (13) and 3.7991 (13) Å.

Related literature

For general background and the pharmacological properties of fluoroquinolines, see: Bhanot *et al.* (2001); Scholar (2003). For related structures of substituted fluorinated compounds, see: Golovnev *et al.* (2012); Harrison *et al.* (2007); Jasinski *et al.* (2011*a,b*); Kavitha *et al.* (2013); Maheswararao & Angshuman (2013); Recillas-Mota *et al.* (2007); Sun *et al.* (2004). Also, various salts of enfloxacin (Maheswararao & Angshuman, 2013) and enrofloxacinium citrate monohydrate (Golovnev *et al.*, 2012) have been reported. For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen *et al.* (1987).

 $\gamma = 73.093 \ (5)^{\circ}$

Cu Ka radiation

 $\mu = 0.95 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.024$

7 - 2

V = 1828.31 (19) Å³

 $0.24 \times 0.16 \times 0.08 \text{ mm}$

11885 measured reflections 7017 independent reflections

5641 reflections with $I > 2\sigma(I)$

Experimental

Crystal data $2C_{19}H_{23}FN_{3}O_{3}^{+}C_{2}O_{4}^{2-}$ $M_{r} = 808.83$ Triclinic, $P\overline{1}$ a = 9.8552 (5) Å b = 13.3056 (8) Å c = 15.6124 (8) Å $a \approx 68.987$ (5)° $\beta = 84.740$ (4)°

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer Absorption correction: multi-scan (*CrysAlis PRO* and *CrysAlis RED*; Agilent, 2012) $T_{\rm min} = 0.880, T_{\rm max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	527 parameters
$wR(F^2) = 0.145$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.68 \ {\rm e} \ {\rm \AA}^{-3}$
7017 reflections	$\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2B-H2B\cdots O1B$	0.82	1.78	2.542 (2)	154
$N2B - H2BA \cdots O2C^{i}$	0.98	1.67	2.615 (2)	161
$O2A - H2A \cdots O1A$	0.82	1.77	2.531 (2)	154
$N2A - H2AA \cdots O4C^{ii}$	0.98	1.64	2.609 (2)	171
$C10B - H10B \cdot \cdot \cdot O1C^{i}$	0.97	2.34	3.231 (3)	153
$C11B - H11A \cdots O1C$	0.97	2.56	3.358 (3)	139
$C12B - H12A \cdots O3B^{iii}$	0.97	2.51	3.302 (3)	138
$C15B-H15A\cdots O1A^{iii}$	0.97	2.48	3.433 (3)	169
$C16B - H16A \cdots O3B^{iv}$	0.97	2.46	3.167 (3)	130
$C7A - H7A \cdots F1B^{v}$	0.93	2.54	3.314 (3)	141
$C12A - H12C \cdots O2A^{vi}$	0.97	2.53	3.462 (3)	162
$C13A - H13C \cdots O3C^{ii}$	0.97	2.47	3.254 (3)	137
$C16A - H16D \cdots O3A^{vii}$	0.97	2.37	3.325 (3)	170
$C18A - H18D \cdots O1C^{viii}$	0.97	2.58	3.236 (3)	125
$C19A - H19F \cdots O3C^{viii}$	0.96	2.44	3.375 (3)	163

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z; (iv) -x, -y + 1, -z; (v) x, y - 1, z; (vi) -x + 2, -y, -z; (vii) -x + 1, -y, -z; (viii) -x + 2, -y, -z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Agilent, 2012); program(s) used to solve structure: *SUPERFLIP* (Palatinus & Chapuis, 2007); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

HSY is grateful to RL Fine Chem, Bengaluru, India for the gift sample of enrofloxacin. TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5378).

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bhanot, S. K., Singh, M. & Chatterjee, N. R. (2001). Curr. Pharm. Des. 7, 313-337.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Golovnev, N. N., Vasiliev, A, D. & Kirik, S. D. (2012). J. Mol. Struct. 1021, 112– 117.
- Harrison, W. T. A., Yathirajan, H. S., Bindya, S., Anilkumar, H. G. & Devaraju, (2007). Acta Cryst. C63, o129–o131.
- Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Hakim Alarique, Q. N. M. (2011b). Acta Cryst. E67, 0483–0484.
- Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Siddaraju, B. P. (2011a). Acta Cryst. E67, 0432–0433.
- Kavitha, C. N., Jasinski, J. P., Matar, S. M., Yathirajan, H. S. & Ramesha, A. R. (2013). Acta Cryst. E69, 01344.
- Maheswararao, K. & Angshuman, R. C. (2013). Cryst. Growth Des. 13, 1626–1637.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Recillas-Mota, J., Flores-Alamo, M., Moreno-Esparza, R. & Gracia-Mora, J. (2007). Acta Cryst. E63, m3030–m3031.
- Scholar, E. M. (2003). Am. J. Pharm. Educ. 66, 165-172.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, H.-X., Li, Y. & Pan, Y.-J. (2004). Acta Cryst. E60, o1694-o1696.

supporting information

Acta Cryst. (2014). E70, o200-o201 [doi:10.1107/S1600536814001421]

Enrofloxacinium oxalate

Thammarse S. Yamuna, Manpreet Kaur, Brian J. Anderson, Jerry P. Jasinski and H. S. Yathirajan

S1. Comment

Enrofloxacin [systematic name : 1-Cyclopropyl-7-(4-ethyl-piperazin -1-yl)-6-fluoro-4-oxo-1,4-dihydro-quinoline-3carboxylic acid is a fluoroquinolone antibiotic and is a synthetic chemotherapeutic agent from the class of the fluoroquinolone carboxylic acid derivatives. It is available under the trade name Baytril, from Bayer Corporation and has antibacterial activity against a broad spectrum of Gram-negative and Gram-positive bacteria. Its mechanism of action is not thoroughly understood, but it is believed to act by inhibiting bacterial DNA gyrase (a type-II topoisomerase), thereby preventing DNA supercoiling and DNA synthesis. The chemical and biological aspects of fluoroquinolones is described (Bhanot *et al.*, 2001; Scholar, 2003). Earlier, the crystal structure of the enrofloxacinium picrate (Jasinski *et al.*, 2011*a*), Flunarizinium hydrogen maleate (Kavitha *et al.*, 2013) and Lomefloxacinium picrate (Jasinski *et al.*, 2011*b*) have been reported by our group . The crystal structure of a copper complex of enrofloxacin (Recillas-Mota *et al.*, 2007), escitalopram oxalate: co-existence of oxalate dianions and oxalic acid molecules in the same crystal (Harrison *et al.*, 2007) and 2-hydroxyethanaminium enrofloxacinate (Sun *et al.*, 2004) have also been reported. Also, the crystal structures of various salts of enfloxacin (Maheswararao & Angshuman, 2013) and enrofloxacinium citrate monohydrate (Golovnev *et al.*, 2012) have been reported. In continuation of our work on substituted fluorinated compounds, this paper reports the crystal structure of the title salt, (I), $2(C_{19}H_{23}FO_3N_3^+).C_2O_4^{2-}$.

The title salt, (I), $2(C_{19}H_{23}FO_3N_3^+)$. $C_2O_4^{2-}$, crystallizes with two independent monocations (A and B) and an oxalate dianion (C) in the asymmetric unit (Fig. 1). The piperazinium ring in both the cations adopts a slightly disordered chair conformation (puckering parameters (A) Q, θ , and $\varphi = 0.560$ (2)Å, 2.4 (2)° and 100 (5)°; (B) Q, θ , and $\varphi = 0.563$ (2)Å, 4.5 (2)° and 172 (3)°, respectively; (Cremer & Pople, 1975). Bond lengths are in normal ranges (Allen *et al.*, 1987). The dihedral angles between the mean planes of the cyclopropyl ring and the 10-membered quinoline ring are 50.6 (5)° (A) and 62.2 (5)° (B), respectively. In the cations, a single O—H…O intramolecular hydrogen bond is observed. In the crystal, the oxalate anions interact with the cations through N—H…O intermolecular hydrogen bonds and weak C —H…O intermolecular interactions forming R_2^2 (8) graph set ring motifs (Fig. 2). A weak C—H…F intermolecular interaction, $Cg \pi$ — π stacking interactions are observed which contribute to crystal packing stability (Cg3—Cg3 = 3.5583 (13)Å; Cg3—Cg4 = 3.7900 (13)Å; 2-x,-y,-z; Cg4—Cg8 = 3.7991 (13)Å; Cg8—Cg8 = 3.5089 (13)Å; 1-x,1-y,-z Cg3 = N3A/C7A/C6A/C5A/C4A/C8A; Cg4 = C1A-C9A; Cg8 = N3B/C7B/C6B/C5B/C4B/C8B).

S2. Experimental

Gift sample from R. L. Fine Chemicals; enrofloxacin (0.6 g, 1.6 mmol) and oxalic acid (0.146 g, 1.6 mmol) were dissolved in a mixture of acetonitrile and dimethyl sulfoxide (DMSO) (4:1 v/v) and stirred at room temperature for 15 mins. The precipitate obtained was filtered, dried and dissolved in DMSO, stirred for 15 mins at 333 K. The solution was then allowed to cool at room temperature. After few days, X-ray quality crystals of the title compound were obtained by

slow evaporation (m.p.: 498-503 K).

S3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH); 0.97Å (CH₂); 0.96Å (CH₃); 0.82Å (OH) or 0.98Å (NH) . Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH₂, NH) or 1.5 (CH₃, OH) times U_{eq} of the parent atom. Idealised Me and tetrahedral OH were refined as rotating groups.

Figure 1

ORTEP drawing of (I) $(2.(C_{19}H_{23}FO_3N_3^+). C_2O_4^{2-})$ showing the labeling scheme with 30% probability displacement ellipsoids. Dashed lines indicate a O—H···O intramolecular hydrogen bond in the cations within the asymmetric unit.

Figure 2

Molecular packing for (I) viewed along the *a* axis. Dashed lines indicate N—H…O intermolecular hydrogen bonds and weak C—H…O intermolecular interactions. H atoms not involved in hydrogen bonding have been removed for clarity.

Bis-[4-(3-carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)-1-ethylpiperazin-1-ium] oxalate

Crystal data

 $2C_{19}H_{23}FN_{3}O_{3}^{+}C_{2}O_{4}^{2-}$ $M_{r} = 808.83$ Triclinic, *P*1 a = 9.8552 (5) Å b = 13.3056 (8) Å c = 15.6124 (8) Å $a = 68.987 (5)^{\circ}$ $\beta = 84.740 (4)^{\circ}$ $\gamma = 73.093 (5)^{\circ}$ $V = 1828.31 (19) \text{ Å}^{3}$

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer Radiation source: Enhance (Cu) X-ray Source Detector resolution: 16.0416 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO* and *CrysAlis RED*; Agilent, 2012) $T_{\min} = 0.880, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.145$ S = 1.03 Z = 2 F(000) = 852 $D_x = 1.469 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 4206 reflections $\theta = 3.7-72.5^{\circ}$ $\mu = 0.95 \text{ mm}^{-1}$ T = 173 KIrregular, colourless $0.24 \times 0.16 \times 0.08 \text{ mm}$

11885 measured reflections 7017 independent reflections 5641 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 72.6^{\circ}, \theta_{min} = 3.7^{\circ}$ $h = -12 \rightarrow 10$ $k = -16 \rightarrow 15$ $l = -17 \rightarrow 19$

7017 reflections527 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0686P)^2 + 1.1302P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
-	$\Delta \rho_{\rm max} = 0.68 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1B	0.70509 (15)	0.74124 (11)	0.12480 (9)	0.0406 (3)	
O1B	0.45726 (17)	0.76166 (13)	-0.15035 (10)	0.0344 (4)	
O2B	0.30755 (18)	0.72055 (15)	-0.25107 (10)	0.0380 (4)	
H2B	0.3660	0.7429	-0.2343	0.057*	
O3B	0.16661 (17)	0.61191 (15)	-0.18637 (11)	0.0373 (4)	
N1B	0.64215 (19)	0.56582 (17)	0.27496 (12)	0.0317 (4)	
N2B	0.79517 (19)	0.43144 (15)	0.44580 (11)	0.0287 (4)	
H2BA	0.7737	0.4906	0.4725	0.034*	
N3B	0.31112 (18)	0.54720 (14)	0.07440 (11)	0.0245 (4)	
C1B	0.5793 (2)	0.60258 (17)	0.19053 (14)	0.0260 (4)	
C2B	0.6151 (2)	0.68662 (18)	0.11280 (14)	0.0280 (4)	
C3B	0.5611 (2)	0.71886 (17)	0.02720 (14)	0.0281 (4)	
H3B	0.5901	0.7734	-0.0211	0.034*	
C4B	0.4613 (2)	0.67010 (17)	0.01123 (13)	0.0246 (4)	
C5B	0.4119 (2)	0.69607 (17)	-0.08076 (14)	0.0261 (4)	
C6B	0.3120 (2)	0.63909 (17)	-0.08788 (14)	0.0258 (4)	
C7B	0.2664 (2)	0.56886 (17)	-0.01080 (14)	0.0266 (4)	
H7B	0.2008	0.5341	-0.0176	0.032*	
C8B	0.4148 (2)	0.59339 (16)	0.08783 (13)	0.0232 (4)	
C9B	0.4739 (2)	0.55956 (17)	0.17494 (13)	0.0254 (4)	
H9B	0.4425	0.5072	0.2238	0.030*	
C10B	0.5681 (2)	0.5247 (2)	0.36023 (14)	0.0336 (5)	
H10A	0.4814	0.5127	0.3463	0.040*	
H10B	0.5423	0.5809	0.3893	0.040*	
C11B	0.6586 (2)	0.4166 (2)	0.42578 (15)	0.0343 (5)	
H11A	0.6079	0.3933	0.4825	0.041*	
H11B	0.6777	0.3584	0.3991	0.041*	
C12B	0.8697 (2)	0.4687 (2)	0.35783 (14)	0.0316 (5)	
H12A	0.8919	0.4108	0.3306	0.038*	
H12B	0.9583	0.4795	0.3698	0.038*	
C13B	0.7800 (2)	0.5769 (2)	0.29089 (15)	0.0329 (5)	
H13A	0.7662	0.6368	0.3152	0.039*	
H13B	0.8292	0.5966	0.2331	0.039*	
C14B	0.2554 (2)	0.47290 (17)	0.15365 (14)	0.0273 (4)	

H14B	0.3176	0.3969	0.1816	0.033*
C15B	0.1645 (2)	0.5239 (2)	0.21785 (15)	0.0322 (5)
H15A	0.1454	0.6040	0.2032	0.039*
H15B	0.1730	0.4800	0.2829	0.039*
C16B	0.0994 (2)	0.48439 (19)	0.15630 (15)	0.0321 (5)
H16A	0.0689	0.4168	0.1845	0.039*
H16B	0.0413	0.5409	0.1047	0.039*
C17B	0.2551 (2)	0.65490 (18)	-0.17814(14)	0.0295 (5)
C18B	0.8887 (3)	0.3272 (2)	0.51176 (16)	0.0391 (5)
H18A	0.9804	0.3388	0.5154	0.047*
H18B	0.9035	0.2663	0.4885	0.047*
C19B	0.8275 (3)	0.2936 (2)	0.60727 (17)	0.0519(7)
H19A	0.7420	0.2737	0.6053	0.078*
H19B	0.8065	0.3554	0.6290	0.078*
H19C	0.8952	0.2306	0.6480	0.078*
F1A	1 13064 (14)	0.29936 (11)	0.0400 0.04417(8)	0.076 0.0342(3)
014	0.85745(17)	0.29930(11) 0.19630(13)	-0.15083(10)	0.0342(3)
024	0.63743(17)	0.19050(13) 0.11660(14)	-0.20006(10)	0.0321(3)
U2A U2A	0.08009 (19)	0.1535	-0.20000 (10)	0.0397 (4)
112A	0.7408 0.60077 (18)	-0.01045(14)	-0.00726(11)	0.000°
UJA NIA	0.00977(10)	-0.01943(14)	-0.09720(11)	0.0391(4)
NIA	1.09/98 (19)	0.17130(10)	0.22309(12) 0.28542(11)	0.0293(4)
NZA	1.27942 (18)	0.04206 (14)	0.38343 (11)	0.0255 (4)
HZAA	1.2/03	0.1003	0.4118	0.030*
N3A	0.8099 (2)	0.00160 (16)	0.11512 (12)	0.0307(4)
CIA	1.0440 (2)	0.15549 (17)	0.15500 (14)	0.0262 (4)
C2A	1.0595 (2)	0.22096 (17)	0.06202 (14)	0.0256 (4)
C3A	0.9992 (2)	0.21296 (17)	-0.00905 (14)	0.0257 (4)
H3A	1.0154	0.2555	-0.0689	0.031*
C4A	0.9124 (2)	0.14100 (16)	0.00681 (13)	0.0238 (4)
C5A	0.8418 (2)	0.13722 (17)	-0.06899 (14)	0.0252 (4)
C6A	0.7540 (2)	0.06251 (17)	-0.04422 (14)	0.0263 (4)
C7A	0.7432 (2)	-0.00186 (19)	0.04534 (15)	0.0298 (5)
H7A	0.6867	-0.0506	0.0587	0.036*
C8A	0.8943 (2)	0.07485 (17)	0.09788 (14)	0.0260 (4)
C9A	0.9630 (2)	0.08076 (18)	0.16998 (14)	0.0290 (4)
H9A	0.9543	0.0334	0.2295	0.035*
C10A	1.0411 (2)	0.1374 (2)	0.31756 (14)	0.0322 (5)
H10C	0.9480	0.1281	0.3142	0.039*
H10D	1.0305	0.1959	0.3430	0.039*
C11A	1.1360 (2)	0.02910 (19)	0.38023 (14)	0.0303 (5)
H11C	1.0957	0.0094	0.4411	0.036*
H11D	1.1429	-0.0307	0.3570	0.036*
C12A	1.3383 (2)	0.07932 (18)	0.29130 (14)	0.0285 (4)
H12C	1.3549	0.0200	0.2660	0.034*
H12D	1.4288	0.0928	0.2952	0.034*
C13A	1.2397 (2)	0.18483 (19)	0.22765 (14)	0.0302 (5)
H13C	1.2334	0.2469	0.2480	0.036*
H13D	1.2779	0.2023	0.1662	0.036*
		··	0.100-	0.000

C14A	0.8049 (3)	-0.0800(2)	0.20732 (15)	0.0351 (5)	
H14A	0.8879	-0.1454	0.2267	0.042*	
C15A	0.7333 (3)	-0.0368 (2)	0.28052 (17)	0.0419 (6)	
H15C	0.6916	0.0434	0.2638	0.050*	
H15D	0.7730	-0.0746	0.3422	0.050*	
C16A	0.6662 (3)	-0.0993 (2)	0.24179 (16)	0.0374 (5)	
H16C	0.6652	-0.1747	0.2802	0.045*	
H16D	0.5838	-0.0567	0.2018	0.045*	
C17A	0.6767 (2)	0.04869 (19)	-0.11462 (15)	0.0308 (5)	
C18A	1.3797 (2)	-0.06322 (19)	0.44442 (15)	0.0348 (5)	
H18C	1.4717	-0.0504	0.4445	0.042*	
H18D	1.3911	-0.1212	0.4183	0.042*	
C19A	1.3304 (3)	-0.1041 (2)	0.54241 (16)	0.0449 (6)	
H19D	1.2494	-0.1310	0.5441	0.067*	
H19E	1.3051	-0.0435	0.5657	0.067*	
H19F	1.4055	-0.1638	0.5796	0.067*	
O1C	0.4046 (2)	0.30357 (16)	0.54362 (14)	0.0533 (5)	
O2C	0.2052 (2)	0.42635 (15)	0.47408 (13)	0.0481 (5)	
O3C	0.3605 (2)	0.28420 (16)	0.35788 (12)	0.0496 (5)	
O4C	0.2434 (2)	0.18491 (15)	0.47003 (12)	0.0456 (4)	
C1C	0.3040 (2)	0.33643 (18)	0.48940 (15)	0.0317 (5)	
C2C	0.3017 (3)	0.26345 (19)	0.43358 (16)	0.0346 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1B	0.0524 (8)	0.0426 (8)	0.0337 (7)	-0.0283 (7)	-0.0099 (6)	-0.0070 (6)
O1B	0.0380 (9)	0.0414 (9)	0.0221 (7)	-0.0177 (7)	-0.0020 (6)	-0.0032 (6)
O2B	0.0405 (9)	0.0505 (10)	0.0232 (8)	-0.0161 (8)	-0.0039 (6)	-0.0094 (7)
O3B	0.0346 (9)	0.0509 (10)	0.0337 (8)	-0.0138 (8)	-0.0040 (7)	-0.0205 (7)
N1B	0.0292 (9)	0.0466 (11)	0.0215 (9)	-0.0151 (8)	-0.0003 (7)	-0.0108 (8)
N2B	0.0354 (10)	0.0299 (9)	0.0225 (8)	-0.0077 (8)	-0.0013 (7)	-0.0117 (7)
N3B	0.0255 (9)	0.0258 (8)	0.0226 (8)	-0.0090 (7)	-0.0006 (6)	-0.0072 (7)
C1B	0.0262 (10)	0.0302 (10)	0.0233 (10)	-0.0068 (8)	0.0001 (8)	-0.0123 (8)
C2B	0.0284 (10)	0.0306 (11)	0.0297 (11)	-0.0137 (9)	-0.0012 (8)	-0.0113 (9)
C3B	0.0325 (11)	0.0280 (10)	0.0241 (10)	-0.0119 (9)	0.0017 (8)	-0.0068 (8)
C4B	0.0247 (10)	0.0253 (10)	0.0227 (10)	-0.0057 (8)	-0.0013 (8)	-0.0074 (8)
C5B	0.0251 (10)	0.0264 (10)	0.0245 (10)	-0.0046 (8)	0.0002 (8)	-0.0082 (8)
C6B	0.0239 (10)	0.0293 (10)	0.0241 (10)	-0.0039 (8)	-0.0023 (8)	-0.0113 (8)
C7B	0.0254 (10)	0.0293 (10)	0.0281 (10)	-0.0067 (8)	-0.0022 (8)	-0.0137 (8)
C8B	0.0229 (10)	0.0239 (9)	0.0237 (10)	-0.0053 (8)	0.0001 (7)	-0.0100 (8)
C9B	0.0284 (10)	0.0251 (10)	0.0221 (10)	-0.0087 (8)	0.0014 (8)	-0.0068 (8)
C10B	0.0308 (11)	0.0511 (14)	0.0227 (10)	-0.0146 (10)	0.0021 (8)	-0.0152 (10)
C11B	0.0402 (13)	0.0431 (13)	0.0251 (10)	-0.0184 (11)	0.0024 (9)	-0.0135 (10)
C12B	0.0291 (11)	0.0430 (13)	0.0272 (11)	-0.0121 (10)	0.0012 (8)	-0.0161 (9)
C13B	0.0328 (12)	0.0423 (13)	0.0269 (11)	-0.0165 (10)	-0.0024 (9)	-0.0105 (9)
C14B	0.0297 (11)	0.0244 (10)	0.0267 (10)	-0.0106 (8)	-0.0022 (8)	-0.0045 (8)
C15B	0.0330 (11)	0.0365 (12)	0.0263 (10)	-0.0130 (9)	0.0032 (8)	-0.0080 (9)

supporting information

C16B	0.0297 (11)	0.0317 (11)	0.0330(11)	-0.0121 (9)	-0.0004(9)	-0.0059 (9)
C17B	0.0260 (10)	0.0347 (11)	0.0276 (11)	-0.0027 (9)	-0.0030 (8)	-0.0144 (9)
C18B	0.0461 (14)	0.0344 (12)	0.0332 (12)	-0.0036 (11)	-0.0066 (10)	-0.0116 (10)
C19B	0.0691 (19)	0.0451 (15)	0.0316 (13)	-0.0115 (14)	-0.0073 (12)	-0.0035 (11)
F1A	0.0425 (7)	0.0353 (7)	0.0285 (6)	-0.0195 (6)	-0.0064 (5)	-0.0068 (5)
O1A	0.0425 (9)	0.0348 (8)	0.0214 (7)	-0.0150 (7)	-0.0033 (6)	-0.0083 (6)
O2A	0.0536 (11)	0.0451 (10)	0.0260 (8)	-0.0232 (8)	-0.0085 (7)	-0.0093 (7)
O3A	0.0459 (10)	0.0476 (10)	0.0330 (8)	-0.0240 (8)	-0.0051 (7)	-0.0145 (7)
N1A	0.0279 (9)	0.0415 (10)	0.0221 (8)	-0.0124 (8)	-0.0026 (7)	-0.0117 (8)
N2A	0.0277 (9)	0.0260 (9)	0.0234 (8)	-0.0072 (7)	-0.0034 (7)	-0.0093 (7)
N3A	0.0338 (10)	0.0371 (10)	0.0226 (9)	-0.0157 (8)	-0.0037 (7)	-0.0063 (7)
C1A	0.0238 (10)	0.0302 (10)	0.0240 (10)	-0.0040 (8)	-0.0045 (8)	-0.0103 (8)
C2A	0.0238 (10)	0.0258 (10)	0.0282 (10)	-0.0083 (8)	-0.0017 (8)	-0.0091 (8)
C3A	0.0291 (10)	0.0243 (10)	0.0215 (9)	-0.0056 (8)	-0.0001 (8)	-0.0068 (8)
C4A	0.0234 (10)	0.0247 (10)	0.0232 (10)	-0.0044 (8)	-0.0016 (7)	-0.0093 (8)
C5A	0.0256 (10)	0.0247 (10)	0.0240 (10)	-0.0026 (8)	-0.0012 (8)	-0.0101 (8)
C6A	0.0268 (10)	0.0272 (10)	0.0259 (10)	-0.0050 (8)	-0.0042 (8)	-0.0113 (8)
C7A	0.0282 (11)	0.0339 (11)	0.0304 (11)	-0.0132 (9)	-0.0027 (8)	-0.0106 (9)
C8A	0.0259 (10)	0.0292 (10)	0.0236 (10)	-0.0088 (8)	-0.0018 (8)	-0.0086 (8)
C9A	0.0299 (11)	0.0355 (11)	0.0203 (10)	-0.0110 (9)	-0.0024 (8)	-0.0061 (8)
C10A	0.0271 (11)	0.0462 (13)	0.0248 (10)	-0.0083 (10)	-0.0008 (8)	-0.0154 (9)
C11A	0.0303 (11)	0.0389 (12)	0.0257 (10)	-0.0156 (9)	0.0014 (8)	-0.0114 (9)
C12A	0.0252 (10)	0.0370 (11)	0.0264 (10)	-0.0111 (9)	0.0008 (8)	-0.0130 (9)
C13A	0.0344 (11)	0.0360 (11)	0.0235 (10)	-0.0164 (9)	-0.0044 (8)	-0.0080 (9)
C14A	0.0391 (13)	0.0370 (12)	0.0282 (11)	-0.0130 (10)	-0.0025 (9)	-0.0077 (9)
C15A	0.0470 (14)	0.0453 (14)	0.0358 (13)	-0.0150 (12)	0.0017 (11)	-0.0151 (11)
C16A	0.0419 (13)	0.0446 (13)	0.0299 (11)	-0.0201 (11)	0.0025 (10)	-0.0119 (10)
C17A	0.0328 (11)	0.0335 (11)	0.0285 (11)	-0.0078 (9)	-0.0034 (9)	-0.0137 (9)
C18A	0.0353 (12)	0.0306 (11)	0.0332 (12)	-0.0039 (9)	-0.0049 (9)	-0.0077 (9)
C19A	0.0518 (15)	0.0406 (14)	0.0308 (12)	-0.0068 (12)	-0.0062 (11)	-0.0022 (10)
O1C	0.0546 (12)	0.0499 (11)	0.0629 (12)	-0.0027 (9)	-0.0203 (10)	-0.0325 (10)
O2C	0.0559 (11)	0.0402 (10)	0.0513 (11)	0.0029 (8)	-0.0187 (9)	-0.0278 (8)
O3C	0.0676 (13)	0.0535 (11)	0.0318 (9)	-0.0168 (10)	0.0009 (8)	-0.0197 (8)
O4C	0.0602 (12)	0.0431 (10)	0.0428 (10)	-0.0201 (9)	0.0007 (8)	-0.0214 (8)
C1C	0.0404 (12)	0.0304 (11)	0.0261 (10)	-0.0096 (10)	-0.0008 (9)	-0.0118 (9)
C2C	0.0383 (12)	0.0321 (12)	0.0319 (12)	-0.0035 (10)	-0.0099 (9)	-0.0117 (9)

Geometric parameters (Å, °)

F1B—C2B	1.362 (2)	O2A—C17A	1.330 (3)	
O1B—C5B	1.265 (2)	O3A—C17A	1.212 (3)	
O2B—H2B	0.8200	N1A—C1A	1.374 (3)	
O2B—C17B	1.330 (3)	N1A—C10A	1.453 (3)	
O3B—C17B	1.212 (3)	N1A—C13A	1.463 (3)	
N1B—C1B	1.368 (3)	N2A—H2AA	0.9800	
N1B—C10B	1.462 (3)	N2A—C11A	1.485 (3)	
N1B—C13B	1.461 (3)	N2A—C12A	1.494 (3)	
N2B—H2BA	0.9800	N2A—C18A	1.491 (3)	

N2B—C11B	1.492 (3)	N3A—C7A	1.344 (3)
N2B—C12B	1.487 (3)	N3A—C8A	1.399 (3)
N2B—C18B	1.497 (3)	N3A—C14A	1.466 (3)
N3B—C7B	1.344 (3)	C1A—C2A	1.421 (3)
N3B—C8B	1.401 (3)	C1A—C9A	1.393 (3)
N3B—C14B	1.457 (2)	C2A—C3A	1.356 (3)
C1B—C2B	1.423 (3)	C3A—H3A	0.9300
C1B—C9B	1.399 (3)	C3A—C4A	1.406 (3)
C2B-C3B	1.356 (3)	C4A - C5A	1.449 (3)
C3B—H3B	0.9300	C4A—C8A	1.405 (3)
C3B-C4B	1 408 (3)	C5A-C6A	1 432 (3)
C4B-C5B	1.400(3) 1.447(3)	C6A—C7A	1 366 (3)
C4B-C8B	1 406 (3)	C6A - C17A	1.500(3) 1 484(3)
C5B-C6B	1439(3)	C7A—H7A	0.9300
C6B-C7B	1 365 (3)	C8A—C9A	1402(3)
C6B-C17B	1.505(3) 1 486(3)	C9A—H9A	0.9300
C7B—H7B	0.9300	C10A - H10C	0.9700
C8B-C9B	1 394 (3)	C10A - H10D	0.9700
C9B—H9B	0.9300	C10A - C11A	1.510(3)
C10B—H10A	0.9500		0.9700
C10B—H10B	0.9700	C11A—H11D	0.9700
C10B-C11B	1 509 (3)	C12A - H12C	0.9700
C11B—H11A	0.9700	C12A - H12D	0.9700
C11B—H11B	0.9700	C12A - C13A	1 512 (3)
C12B—H12A	0.9700	C13A - H13C	0.9700
C12B—H12R	0.9700	C13A - H13D	0.9700
C12B—C13B	1 516 (3)	C14A - H14A	0.9800
C13B—H13A	0.9700	C14A - C15A	1490(3)
C13B—H13B	0.9700	C14A - C16A	1.481(3)
C14B— $H14B$	0.9800	C15A - H15C	0.9700
C14B— $C15B$	1 495 (3)	C15A - H15D	0.9700
C14B— $C16B$	1 499 (3)	C15A - C16A	1 498 (3)
C15B—H15A	0.9700	C16A - H16C	0.9700
C15B—H15B	0.9700	C16A - H16D	0.9700
C15B— $C16B$	1 511 (3)	C18A - H18C	0.9700
C16B—H16A	0.9700	C18A - H18D	0.9700
C16B—H16B	0.9700	C18A - C19A	1 514 (3)
C18B—H18A	0.9700	C19A - H19D	0.9600
C18B—H18B	0.9700	C19A—H19E	0.9600
C18B—C19B	1.517 (4)	C19A—H19E	0.9600
C19B—H19A	0.9600	01C-C1C	1,235(3)
C19B—H19B	0.9600	02C-C1C	1.264 (3)
C19B—H19C	0.9600	03C-C2C	1.207(3)
F1A—C2A	1 356 (2)	04C-C2C	1.2(2(3)) 1.268(3)
01A - C5A	1 260 (2)	C1C - C2C	1.525 (3)
O2A—H2A	0.8200	010 020	1.020 (3)
	0.0200		
C17B—O2B—H2B	109.5	C10A—N1A—C13A	111.08 (16)
	· · · · · -		

C1B—N1B—C10B	122.36 (18)	C11A—N2A—H2AA	108.2
C1B—N1B—C13B	124.61 (18)	C11A—N2A—C12A	109.96 (15)
C13B—N1B—C10B	112.54 (17)	C11A—N2A—C18A	112.47 (17)
C11B—N2B—H2BA	108.4	C12A—N2A—H2AA	108.2
C11B—N2B—C18B	112.92 (18)	C18A—N2A—H2AA	108.2
C12B—N2B—H2BA	108.4	C18A—N2A—C12A	109.69 (16)
C12B—N2B—C11B	108.48 (16)	C7A—N3A—C8A	119.97 (18)
C12B—N2B—C18B	110.20 (17)	C7A—N3A—C14A	119.13 (18)
C18B—N2B—H2BA	108.4	C8A—N3A—C14A	120.60 (17)
C7B—N3B—C8B	120.31 (17)	N1A—C1A—C2A	121.21 (19)
C7B $N3B$ $C14B$	120.01(17) 120.42(17)	N1A—C1A—C9A	122.43(19)
C8B—N3B—C14B	119 24 (16)	C9A - C1A - C2A	116 21 (18)
N1B-C1B-C2B	123.04 (19)	F1A - C2A - C1A	118.21(10) 118.45(17)
N1B - C1B - C9B	121.74 (19)	F1A - C2A - C3A	118.13(17) 118.63(18)
$C^{0}B$ $C^{1}B$ $C^{2}B$	115 22 (18)	$C_{3} = C_{2} = C_{1}$	122 80 (19)
F1B-C2B-C1B	118.60 (18)	$C_{2A} = C_{2A} = C_{1A}$	122.00 (17)
C_{3B} C_{2B} E_{1B}	117 30 (18)	$C_{2A} = C_{3A} = C_{4A}$	120.68 (10)
$C_{3B} = C_{2B} = C_{1B}$	117.39(18) 123.07(10)	$C_{2A} = C_{3A} = C_{4A}$	120.08 (19)
$C_{2B} = C_{2B} = U_{2B}$	123.97 (19)	$C_{A} = C_{A} = C_{A}$	119.7
C_{2D} C_{2D} C_{4D}	117.7	$C_{A} C_{A} C_{A} C_{A}$	120.32(18)
$C_{2}D = C_{3}D = C_{4}D$	120.21 (19)	$C_{A} = C_{A} = C_{A}$	110.19(10)
$C_{4}D = C_{3}D = D_{3}D$	119.9	C_{0A} C_{4A} C_{5A} C_{4A}	121.26(18)
C_{3B} C_{4B} C_{3B}	121.05(18) 117.21(18)	OIA - C5A - C4A	121.07 (19)
C8B - C4B - C3B	117.31 (18)	OIA—CSA—C6A	122.88 (18)
C8B—C4B—C5B	121.64 (18)	C6A—C5A—C4A	115.45 (18)
OIB-C5B-C4B	122.03 (19)	C5A—C6A—C1/A	121.50 (18)
01B—C5B—C6B	122.41 (19)	C/A—C6A—C5A	120.70 (18)
C6B—C5B—C4B	115.52 (18)	C7A—C6A—C17A	117.75 (19)
C5B—C6B—C17B	121.59 (19)	N3A—C7A—C6A	123.4 (2)
C7B—C6B—C5B	120.28 (18)	N3A—C7A—H7A	118.3
C7B—C6B—C17B	118.13 (19)	C6A—C7A—H7A	118.3
N3B—C7B—C6B	123.55 (19)	N3A—C8A—C4A	119.14 (18)
N3B—C7B—H7B	118.2	N3A—C8A—C9A	120.75 (18)
C6B—C7B—H7B	118.2	C9A—C8A—C4A	120.09 (19)
N3B—C8B—C4B	118.48 (17)	C1A—C9A—C8A	121.89 (19)
C9B—C8B—N3B	120.03 (18)	С1А—С9А—Н9А	119.1
C9B—C8B—C4B	121.43 (18)	С8А—С9А—Н9А	119.1
C1B—C9B—H9B	119.2	N1A-C10A-H10C	109.2
C8B—C9B—C1B	121.55 (19)	N1A-C10A-H10D	109.2
C8B—C9B—H9B	119.2	N1A-C10A-C11A	111.86 (18)
N1B-C10B-H10A	109.3	H10C-C10A-H10D	107.9
N1B-C10B-H10B	109.3	C11A—C10A—H10C	109.2
N1B-C10B-C11B	111.66 (19)	C11A—C10A—H10D	109.2
H10A-C10B-H10B	107.9	N2A-C11A-C10A	109.78 (17)
C11B-C10B-H10A	109.3	N2A—C11A—H11C	109.7
C11B-C10B-H10B	109.3	N2A—C11A—H11D	109.7
N2B-C11B-C10B	110.48 (18)	C10A—C11A—H11C	109.7
N2B—C11B—H11A	109.6	C10A—C11A—H11D	109.7
N2B—C11B—H11B	109.6	H11C—C11A—H11D	108.2

C10B—C11B—H11A	109.6	N2A—C12A—H12C	109.2
C10B—C11B—H11B	109.6	N2A—C12A—H12D	109.2
H11A—C11B—H11B	108.1	N2A—C12A—C13A	112.13 (17)
N2B—C12B—H12A	109.3	H12C—C12A—H12D	107.9
N2B—C12B—H12B	109.3	C13A—C12A—H12C	109.2
N2B—C12B—C13B	111.51 (18)	C13A—C12A—H12D	109.2
H12A—C12B—H12B	108.0	N1A—C13A—C12A	111.11 (17)
C13B—C12B—H12A	109.3	N1A—C13A—H13C	109.4
C13B—C12B—H12B	109.3	N1A—C13A—H13D	109.4
N1B-C13B-C12B	111.01 (18)	C12A—C13A—H13C	109.4
N1B—C13B—H13A	109.4	C12A—C13A—H13D	109.4
N1B—C13B—H13B	109.4	H13C—C13A—H13D	108.0
C12B—C13B—H13A	109.4	N3A—C14A—H14A	116.2
C12B—C13B—H13B	109.4	N3A—C14A—C15A	118.0 (2)
H13A—C13B—H13B	108.0	N3A—C14A—C16A	118.3 (2)
N3B—C14B—H14B	116.3	C15A—C14A—H14A	116.2
N3B-C14B-C15B	117.44 (17)	C16A—C14A—H14A	116.2
N3B-C14B-C16B	118.40 (17)	C16A—C14A—C15A	60.58 (16)
C15B—C14B—H14B	116.3	C14A—C15A—H15C	117.8
C15B—C14B—C16B	60.61 (14)	C14A—C15A—H15D	117.8
C16B—C14B—H14B	116.3	C14A—C15A—C16A	59.40 (16)
C14B—C15B—H15A	117.8	H15C—C15A—H15D	115.0
C14B—C15B—H15B	117.8	C16A—C15A—H15C	117.8
C14B—C15B—C16B	59.81 (14)	C16A—C15A—H15D	117.8
H15A—C15B—H15B	114.9	C14A—C16A—C15A	60.02 (16)
C16B—C15B—H15A	117.8	C14A—C16A—H16C	117.8
C16B—C15B—H15B	117.8	C14A—C16A—H16D	117.8
C14B—C16B—C15B	59.58 (14)	C15A—C16A—H16C	117.8
C14B—C16B—H16A	117.8	C15A—C16A—H16D	117.8
C14B—C16B—H16B	117.8	H16C—C16A—H16D	114.9
C15B—C16B—H16A	117.8	O2A—C17A—C6A	115.03 (19)
C15B—C16B—H16B	117.8	O3A—C17A—O2A	121.40 (19)
H16A—C16B—H16B	115.0	O3A—C17A—C6A	123.6 (2)
O2B—C17B—C6B	115.55 (18)	N2A—C18A—H18C	109.0
O3B—C17B—O2B	121.15 (19)	N2A—C18A—H18D	109.0
O3B—C17B—C6B	123.3 (2)	N2A—C18A—C19A	113.00 (19)
N2B—C18B—H18A	109.0	H18C—C18A—H18D	107.8
N2B—C18B—H18B	109.0	C19A—C18A—H18C	109.0
N2B-C18B-C19B	112.9 (2)	C19A—C18A—H18D	109.0
H18A—C18B—H18B	107.8	C18A—C19A—H19D	109.5
C19B—C18B—H18A	109.0	C18A—C19A—H19E	109.5
C19B—C18B—H18B	109.0	C18A—C19A—H19F	109.5
C18B—C19B—H19A	109.5	H19D—C19A—H19E	109.5
C18B—C19B—H19B	109.5	H19D—C19A—H19F	109.5
C18B—C19B—H19C	109.5	H19E—C19A—H19F	109.5
H19A—C19B—H19B	109.5	01C-C1C-02C	126.0 (2)
H19A—C19B—H19C	109.5	01C-C1C-C2C	116.9 (2)
H19B—C19B—H19C	109.5	02C—C1C—C2C	117.03 (19)
· *			()

C17A—O2A—H2A	109.5	O3C—C2C—O4C	126.0 (2)
C1A—N1A—C10A	120.94 (18)	O3C—C2C—C1C	117.1 (2)
C1A—N1A—C13A	124.69 (18)	O4C—C2C—C1C	116.9 (2)
F1B-C2B-C3B-C4B	-176.45 (19)	O1A—C5A—C6A—C17A	1.0 (3)
O1B—C5B—C6B—C7B	179.8 (2)	N1A—C1A—C2A—F1A	0.7 (3)
O1B-C5B-C6B-C17B	-0.5 (3)	N1A—C1A—C2A—C3A	-175.23 (19)
N1B—C1B—C2B—F1B	-7.0 (3)	N1A—C1A—C9A—C8A	172.2 (2)
N1B—C1B—C2B—C3B	175.4 (2)	N1A—C10A—C11A—N2A	58.6 (2)
N1B-C1B-C9B-C8B	-176.91 (19)	N2A—C12A—C13A—N1A	-54.1 (2)
N1B-C10B-C11B-N2B	56.9 (2)	N3A—C8A—C9A—C1A	-177.9(2)
N2B-C12B-C13B-N1B	-55.8(2)	N3A—C14A—C15A—C16A	108.5 (2)
N3B-C8B-C9B-C1B	178 95 (18)	N3A - C14A - C16A - C15A	-107.9(2)
N3B-C14B-C15B-C16B	108 8 (2)	C1A— $N1A$ — $C10A$ — $C11A$	107.9(2)
N3B - C14B - C16B - C15B	-1073(2)	C1A— $N1A$ — $C13A$ — $C12A$	-1045(2)
C1B— $N1B$ — $C10B$ — $C11B$	133 6 (2)	C1A - C2A - C3A - C4A	25(3)
C1B $N1B$ $C13B$ $C12B$	-1349(2)	C_{2A} C_{1A} C_{9A} C_{8A}	-34(3)
C1B - C2B - C3B - C4B	12(3)	C_{2A} C_{3A} C_{4A} C_{5A}	176 61 (19)
C^{2B} C^{1B} C^{9B} C^{8B}	1.2(3)	$C_{2A} = C_{3A} = C_{4A} = C_{8A}$	-23(3)
$C_{2B} = C_{1B} = C_{2B} = C_{6B}$	-1745(2)	$C_{2A} = C_{3A} = C_{4A} = C_{6A}$	2.3(3)
$C_{2B} = C_{3B} = C_{4B} = C_{3B}$	1/4.3(2)	$C_{3A} = C_{4A} = C_{5A} = O_{1A}$	-17878(18)
$C_{2D} = C_{3D} = C_{4D} = C_{6D}$	5.9(5)	$C_{A} = C_{A} = C_{A} = C_{A} = C_{A}$	-170.17(18)
$C_{3D} = C_{4D} = C_{3D} = O_{1D}$	1.1(3) 178 88 (10)	$C_{3A} = C_{4A} = C_{8A} = N_{3A}$	-1/9.17(10) -0.6(2)
$C_{2D} = C_{4D} = C_{3D} = C_{0D}$	1/0.00(19) 177.25(19)	$C_{AA} = C_{AA} = C$	-0.0(3)
$C_{3}D = C_{4}D = C_{6}D = C_{0}D$	1/7.55(18)	C4A = C5A = C6A = C7A	-1.7(3)
C_{3B} C_{4B} C_{5B} C_{6B} C_{7B}	-5.4(3)	C4A = C3A = C6A = C1/A	-1/9.16(18)
C4B - C5B - C6B - C7B	2.1(3)	C4A = C8A = C9A = C1A	3.0 (3)
C4B = C3B = C0B = C1/B	-1/8.24(18)	C5A = C4A = C8A = N3A	1.9 (3)
C4B = C8B = C9B = C1B	1.7 (3)	C5A = C4A = C8A = C9A	-1/9.55 (19)
C5B - C4B - C8B - N3B	-4.2(3)	C5A - C6A - C7A - N3A	1.4 (3)
C_{2B} C_{4B} C_{8B} C_{9B}	1/3.05 (18)	C5A - C6A - C17A - O2A	-5.0(3)
$C_{2}B = C_{2}B = C_{2}B = N_{2}B$	-0.9(3)	C5A - C6A - C1/A - O3A	1/4.4 (2)
C5B—C6B—C17B—O2B	3.0 (3)	C/A - N3A - C8A - C4A	-2.4(3)
C5B—C6B—C17B—O3B	-1/6.8(2)	C/A—N3A—C8A—C9A	1/9.1 (2)
C/B—N3B—C8B—C4B	5.5 (3)	C/A—N3A—C14A—C15A	-116.6 (2)
C/B—N3B—C8B—C9B	-1/1.83 (18)	C/A—N3A—C14A—C16A	-46.8 (3)
C7B—N3B—C14B—C15B	-112.4 (2)	C7A—C6A—C17A—O2A	177.5 (2)
С/В—N3В—С14В—С16В	-42.8 (3)	С/А—С6А—С1/А—ОЗА	-3.1 (3)
C7B—C6B—C17B—O2B	-177.35 (19)	C8A—N3A—C7A—C6A	0.8 (3)
C7B—C6B—C17B—O3B	2.8 (3)	C8A—N3A—C14A—C15A	69.7 (3)
C8B—N3B—C7B—C6B	-3.0 (3)	C8A—N3A—C14A—C16A	139.5 (2)
C8B—N3B—C14B—C15B	69.3 (2)	C8A—C4A—C5A—O1A	179.98 (19)
C8B—N3B—C14B—C16B	138.96 (19)	C8A—C4A—C5A—C6A	0.1 (3)
C8B—C4B—C5B—O1B	-177.22 (19)	C9A—C1A—C2A—F1A	176.35 (18)
C8B—C4B—C5B—C6B	0.5 (3)	C9A—C1A—C2A—C3A	0.4 (3)
C9B—C1B—C2B—F1B	172.84 (18)	C10A—N1A—C1A—C2A	157.2 (2)
C9B—C1B—C2B—C3B	-4.8 (3)	C10A—N1A—C1A—C9A	-18.1 (3)
C10B—N1B—C1B—C2B	150.0 (2)	C10A—N1A—C13A—C12A	55.0 (2)
C10B—N1B—C1B—C9B	-29.8(3)	C11A—N2A—C12A—C13A	54.7 (2)

C10B—N1B—C13B—C12B	53.0 (3)	C11A—N2A—C18A—C19A	-59.7 (2)
C11B—N2B—C12B—C13B	58.3 (2)	C12A—N2A—C11A—C10A	-55.9 (2)
C11B—N2B—C18B—C19B	-66.5 (3)	C12A—N2A—C18A—C19A	177.63 (19)
C12B—N2B—C11B—C10B	-58.4 (2)	C13A—N1A—C1A—C2A	-45.1 (3)
C12B—N2B—C18B—C19B	172.0 (2)	C13A—N1A—C1A—C9A	139.5 (2)
C13B—N1B—C1B—C2B	-21.4 (3)	C13A—N1A—C10A—C11A	-58.0 (2)
C13B—N1B—C1B—C9B	158.8 (2)	C14A—N3A—C7A—C6A	-172.9 (2)
C13B—N1B—C10B—C11B	-54.1 (2)	C14A—N3A—C8A—C4A	171.22 (19)
C14B—N3B—C7B—C6B	178.77 (19)	C14A—N3A—C8A—C9A	-7.3 (3)
C14B—N3B—C8B—C4B	-176.27 (18)	C17A—C6A—C7A—N3A	178.9 (2)
C14B—N3B—C8B—C9B	6.4 (3)	C18A—N2A—C11A—C10A	-178.43 (17)
C17B—C6B—C7B—N3B	179.40 (18)	C18A—N2A—C12A—C13A	178.91 (17)
C18B-N2B-C11B-C10B	179.11 (17)	01C—C1C—C2C—O3C	-90.8 (3)
C18B—N2B—C12B—C13B	-177.60 (18)	O1C—C1C—C2C—O4C	87.1 (3)
F1A—C2A—C3A—C4A	-173.48 (18)	O2C—C1C—C2C—O3C	87.3 (3)
O1A—C5A—C6A—C7A	178.4 (2)	O2C—C1C—C2C—O4C	-94.8 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O2 <i>B</i> —H2 <i>B</i> ···O1 <i>B</i>	0.82	1.78	2.542 (2)	154
N2B—H2BA···O2 C^{i}	0.98	1.67	2.615 (2)	161
O2 <i>A</i> —H2 <i>A</i> ···O1 <i>A</i>	0.82	1.77	2.531 (2)	154
$N2A$ — $H2AA$ ···O4 C^{ii}	0.98	1.64	2.609 (2)	171
C10 <i>B</i> —H10 <i>B</i> ····O1 <i>C</i> ⁱ	0.97	2.34	3.231 (3)	153
C11 <i>B</i> —H11 <i>A</i> ···O1 <i>C</i>	0.97	2.56	3.358 (3)	139
C12 <i>B</i> —H12 <i>A</i> ···O3 <i>B</i> ⁱⁱⁱ	0.97	2.51	3.302 (3)	138
C15 <i>B</i> —H15 <i>A</i> ···O1 <i>A</i> ⁱⁱⁱ	0.97	2.48	3.433 (3)	169
C16 <i>B</i> —H16 <i>A</i> ···O3 <i>B</i> ^{iv}	0.97	2.46	3.167 (3)	130
$C7A$ — $H7A$ ···F1 B^{v}	0.93	2.54	3.314 (3)	141
C12 <i>A</i> —H12 <i>C</i> ···O2 <i>A</i> ^{vi}	0.97	2.53	3.462 (3)	162
C13 <i>A</i> —H13 <i>C</i> ···O3 <i>C</i> ⁱⁱ	0.97	2.47	3.254 (3)	137
С16А—Н16Д…ОЗА ^{vii}	0.97	2.37	3.325 (3)	170
C18 <i>A</i> —H18 <i>D</i> ···O1 <i>C</i> ^{viii}	0.97	2.58	3.236 (3)	125
C19 <i>A</i> —H19 <i>F</i> ····O3 <i>C</i> ^{viii}	0.96	2.44	3.375 (3)	163

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) -*x*+1, -*y*+1, -*z*; (iv) -*x*, -*y*+1, -*z*; (v) *x*, *y*-1, *z*; (vi) -*x*+2, -*y*, -*z*; (vii) -*x*+1, -*y*, -*z*; (viii) -*x*+2, -*y*, -*z*; (viii) -*x*+1, -*y*, -*z*; (viii) -*x*+2, -*y*, -*z*; (viii) -*x*+1, -*y*, -*z*; (viii) -*x*+2, -*y*