
International Journal of Computer Applications Technology and Research

Volume 4– Issue 10, 728 - 736, 2015, ISSN: 2319–8656

www.ijcat.com 728

Duplicate Code Detection using Control Statements

Sudhamani M

Department of Computer Science

University of Mysore

Mysore 570006, India

Lalitha Rangarajan

Department of Computer Science

University of Mysore

Mysore 570006, India

Abstract: Code clone detection is an important area of research as reusability is a key factor in software evolution. Duplicate code

degrades the design and structure of software and software qualities like readability, changeability, maintainability. Code clone

increases the maintenance cost as incorrect changes in copied code may lead to more errors. In this paper we address structural code

similarity detection and propose new methods to detect structural clones using structure of control statements. By structure we mean

order of control statements used in the source code. We have considered two orders of control structures: (i) Sequence of control

statements as it appears (ii) Execution flow of control statements.

Keywords: Control statements; Control structure; Execution flow; Similarity value; Structural similarity.

1. INTRODUCTION
Duplicate codes are identical or similar code fragments

present in software program. Two code fragments are similar

if these code segments are similar in their structure of control

statements and similar control flow between control lines [1,

15].
Different types of code clones are [15]

Type 1: Exact similar code fragments except white space and

comments as shown in below example.

Ex 1:

Segment 1:

 if(n>0)

 {

 n=n*1; //multiply by plus 1

}

else

n=n*-1; // multiply by minus 1

Segment 2:

 if (n > 0)

 {

 n = n * 1; //multiply by +1

}

else

n = n * -1; // multiply by -1

Type 2: Syntactic similar code fragments except change in

variable, literal and function names.

Ex 2:

Segment 1:

 if (n>0)

 {

 n=n*1; //multiply by plus 1

}

else

n=n*-1; // multiply by minus 1

Segment 2:

 if (m > 0)

 {

 m = m * 1; //multiply by +1

}

else

m = m * -1; // multiply by -1

Type 3: Similar code fragments with slight modifications like

reordering/addition/deletion of some statements from already

existing or copied code fragments.

Segment 1: if (n > 0)

 {

 n=n*1; //multiply by plus 1

 }

 else

 n=n*-1; // multiply by minus 1

Segment 2: if (n > 0)

 {

 n=n*1; //multiply by plus 1

 }

 else

 n=n*-1; // multiply by minus 1

 x=5; //newly added statement

In the above example a new statement x=5 is added.

Type 4: Functionally similar code fragments. Below example

explains recursive and non recursive way of finding factorial

of n. (same program implemented in two ways).

Ex:

Segment 1: int i, j=1, n;

for (i=1; i<=n; i++)

j=j*i;

segment 2:

int fact(int n)

{

if (n == 0) return 1 ;

else return n * fact(n-1) ;

}

Output of program depends on the execution flow of effective

source lines. Execution flow of source lines depends on the

control lines used in the program. Control lines considered

here are iterative statements (for, while and do-while),

conditional statements (if, if-else and switch-case), and

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 10, 728 - 736, 2015, ISSN: 2319–8656

www.ijcat.com 729

 Fig 1: Different versions of bubble sort program

function call. Here we propose two approaches to find

structural similarity. Approach 1 considers order of control

statements present in the code segments and approach 2

depends on the execution flow of control lines in the program.

Figure 1 shows three different ways of writing bubble sort

program. To find similarity of these programs we compute

control structure metrics. Rest of the paper is organized as

follows. Section 2 covers key literature, section 3 describes

proposed methods and results; section 4 concludes the work

with suggestions on possible future work.

2. RELATED WORK
Duplicate code detection mainly consists of two phases where

first phase is transformation and second phase is comparison.

In transformation phase, source code is transformed in to an

Internal Code Format (ICF). Depending on the ICF

comparison, match detection techniques are classified as

follows [15].

i. String Based: In these techniques source code is considered

as an arrangement of characters/strings/lines and uses string

matching techniques to detect duplicate code [2]. Dup tool

compares lexemes on behalf of string match and finds partial

match [2, 3, 4]. Ducass et al [5] proposed dynamic matching

technique to detect code clones. String based techniques are

simple, language independent and detect type I clones [13, 14,

15, 16].

ii. Token Based: In token based approach source code is

transformed into sequence of tokens using lexer/parser. Then

these sequences of tokens are compared to find duplicate

code. This technique detects both type I and II clones.

Kamiya et al’s [5] CC Finder regenerate source file into a set

of tokens and device single token from these set of tokens and

uses suffix tree substring matching algorithm to detect code

clones. CP Miner uses frequent substring matching algorithm

to replicate tokenized statement. SIM correlate the chain of

tokens using dynamic programming string alignment

technique. Winnowing and JPlag are token based plagiarism

detection tools [13, 14, 15, 16].

iii. Tree Based: Source text is parsed to obtain Abstract

Syntax Tree (AST) or parse tree with appropriate parser. Then

tree matching techniques are used to find similar sub trees.

This approach efficiently detects type I, type II and type III

clones [5, 6]. As AST does not address data flow between

controls, it fails to detect type IV clones. Baxter et al’s

CloneDR find resemblance between programs by matching

sub trees of corresponding source program [15].

iv. Graph Based: Source program is converted into Program

Dependency Graph (PDG) where PDG contains the data flow

and control flow information of the program [6]. Then

isomorphic sub graph detection algorithms are used to find

duplicate code. This technique efficiently identifies all types

of clones. However generating PDG and finding isomorphic

sub graphs is NP hard [8]. Komondoor and Horowitz PDG-

DUP uses program slicing to find isomorphic sub graphs,

Krinke uses iterative approach to detect highest comparable

sub graphs. GPLAG is graph based plagiarism disclosure tool

[11, 16].

v. Metric Based: In this technique different metrics are

computed for code fragments and these metric values are

compared to find duplicate code [9, 10, 11, 12]. AST/PDG

representation can be used to calculate metrics like number of

nodes, number of control edges present in the graph etc. Other

common metrics are number of source lines, number of

function calls, number of local and global variables and

McCabe's cyclomatic complexity etc. eMetric, Covert and

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 10, 728 - 736, 2015, ISSN: 2319–8656

www.ijcat.com 730

Moss are metric based tools [15, 16]. Kontogiannis et al. [16]

build an abstract pattern matching tool to identify probable

matches using Markov models to measures similarity between

two programs.

3. PROPOSED METHOD
Here we propose two approaches to find duplicate code. The

different stages in the proposed method are preprocessing,

metric computation, difference matrix computation and

similarity value calculation. Architecture of proposed method

is shown in figure 2 and each stage is explained subsequently.

Preprocessing and template conversion

In preprocessing stage extra space and comments are removed

and input source program is transformed into its standard

intermediate template form. Figure 3 shows the template form

of versions of sort program in figure 1. This template is used

to compute control structure metrics.

Fig 2: Architecture of proposed method

Fig 3: Templates of sort programs in figure 1

Note that the order / structure of control statements are

different across versions. Some versions have function

calls and some don’t. Yet proposed approaches can detect

duplicate to high accuracy.

3.1 Approach 1 – Computation of

similarity using Control Structure Tables

(CSTs)
Control Structure Table (CST): Control Structure Table

contains the information about order of ingrained control

lines used in the program [11]. CST of sort program 1 and

sort program 2 in figure 1 are shown in table 1 and 2.

 Table 1. Control structure table for sort program 1

Sl.No
Type of control

statement
Loop Condition

1 Loop 0 0

2 Loop 0 0

3 Loop 1 1

4 Loop 0 1

5 Condition 0 0

6 Loop 0 0

 Table 2. Control structure table for sort program 2

Sl.No
Type of control

statement
Loop

Conditio
n

1 Loop 1 1

2 Loop 0 1

3 Condition 0 0

4 Loop 0 0

5 Loop 0 0

Difference Matrix (D) computation: Difference matrix is

calculated using two CSTs. Difference matrix calculated

from table 1 and 2 are shown in table 3. Difference matrix

shows different between all pairs of control statement.

Difference matrix (D) is computed from the respective

control structure tables. A row of program 1

(corresponding to a control statement) is compared with

every row of program 2. Row I and j of the programs are

compared using city block distance formula |Ri1-

Rj1|+|Ri2-Rj2|.

For example first row of table 1 is compared with second

row of table 2 by computing |0-0| + |0-1| =1 is entered in

(1, 2) of distance matrix (table 3). From this table we can

find similar control lines present in two programs. Presence

of zero in a position corresponding to similar control

statement indicates structural similarity of the control

statements in the two programs. For example zero at (3, 1)

in table 3 imply that the iterative statements 3 of program 1

and 1 of program 2 are probably similar. Whereas zero at

(5, 3) is not comparable because the control statements of

the programs are different (fifth control statement of

program 1 is conditional and third control statement of

program 2 is iterative). The zeros that contribute to

similarity are highlighted.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 10, 728 - 736, 2015, ISSN: 2319–8656

www.ijcat.com 731

Table 3. Distance matrix computed from table 1 and 2

Control

lines

Loop

(L)

Loop

(L)

Loop

(L)

Cond

(C)

Loop

(L)

Loop(L) 2 1 0 0 0

Loop (L) 2 1 0 0 0

Loop(L) 0 1 2 2 2

Loop(L) 1 0 1 1 1

Cond(C) 2 1 0 0 0

Loop(L) 2 1 0 0 0

Similarity between codes is found, using the formula

s n if r1=r2

1 2

n
s

r r

 otherwise ……. (1)

where r1 and r2 are the number of control lines in

two programs. From table 3 s = 9/1.

 We conducted experiments using data set 1 of 5

 distinct programs and 15 variants and similarity

 values are shown in table 4.

Table 4. Similarity table for data set 1 (s=n/|r1-r2|)

We may observe that in table 4 all programs show highest similarity only with its variants.

3.2 Approach 2: Computation of similarity

using execution flow of control statements

In pre processing stage all functions are placed above the

main function. Function Information

Table (FIT) and CST are generated in a single scan of the

program.

Function Information Table (FIT): FIT gives starting and

ending positions where a particular function begins and ends

in CST. Here function calls are considered as a control lines.

FIT of sort program 2 and 3 are shown in table 5a and 5b.

CSTs of these programs are shown in table 6a and 6b.

Table 5a. Function Information Table (FIT) for sort

program 2

Sl. No Function name Start position End position

1 Sort 1 3

2 Print 4 4

3 main 5 8

Table 5b. Function Information Table (FIT) for sort

program 3

Sl. No Function name Start position End position

1 Sort 1 2

2 Print 3 3

3 Main 4 8

The line 1 (first control statement) of program 2 is function

name ‘sort’ (beginning of function) is entered in FIT of table

5a (refer function name and start position). The control

statements scanned from line 1 onwards are recorded

sequentially in CST (table 6a) until end of the function. The

end of the function namely line 3 is recorded in FIT. Thus in

one scan FIT and CST are generated.

Execution Flow Control Structure Table (EFCST) is

computed using CST and FIT by replacing the function calls

by control lines of that particular function.

Programs

 P1v1 P1v2 P1v3 P1v4 P2v1 P2v2 P2v 3 P3v1 P3v2 P3v3 P4v1 P4v2 P4v3 P5v1 P5v2

P1v 1 0.00 37.00 37.00 37.00 2.29 2.29 2.29 2.23 2.23 2.23 1.11 1.11 1.11 4.22 4.20

P1v2 37.00 0.00 37.00 37.00 2.29 2.29 2.29 2.23 2.23 2.23 1.11 1.11 1.11 4.22 4.20

P1v3 37.00 37.00 0.00 37.00 2.29 2.29 2.29 2.23 2.23 2.23 1.11 1.11 1.11 4.22 4.20

P1v4 37.00 37.00 37.00 0.00 2.29 2.29 2.29 2.23 2.23 2.23 1.11 1.11 1.11 4.22 4.20

P2v1 2.29 2.29 2.29 2.29 0.00 8.00 8.00 0.83 0.83 0.83 2.50 2.50 2.50 1.13 1.18

P2 2 2.29 2.29 2.29 2.29 8.00 0.00 8.00 0.83 0.83 0.83 2.50 2.50 2.50 1.13 1.18

P2v3 2.29 2.29 2.29 2.29 8.00 8.00 0.00 0.83 0.83 0.83 2.50 2.50 2.50 1.13 1.18

P3v1 2.23 2.23 2.23 2.23 0.83 0.83 0.83 0.00 199.00 199.00 0.61 0.61 0.61 10.92 13.83

P3v2 2.23 2.23 2.23 2.23 0.83 0.83 0.83 199.00 0.00 199.00 0.61 0.61 0.61 10.92 13.83

P3v3 2.23 2.23 2.23 2.23 0.83 0.83 0.83 199.00 199.00 0.00 0.61 0.61 0.61 10.92 13.83

P4v1 1.11 1.11 1.11 1.11 2.50 2.50 2.50 0.61 0.61 0.61 0.00 4.00 4.00 0.83 0.89

P4v2 1.11 1.11 1.11 1.11 2.50 2.50 2.50 0.61 0.61 0.61 4.00 0.00 4.00 0.83 0.89

P4v3 1.11 1.11 1.11 1.11 2.50 2.50 2.50 0.61 0.61 0.61 4.00 4.00 0.00 0.83 0.89

P5v1 4.22 4.22 4.22 4.22 1.13 1.13 1.13 10.92 10.92 10.92 0.83 0.83 0.83 0.00 161.00

P5v2 4.20 4.20 4.20 4.20 1.18 1.18 1.18 13.83 13.83 13.83 0.89 0.89 0.89 161.00 0.00

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 10, 728 - 736, 2015, ISSN: 2319–8656

www.ijcat.com 732

Table 6a. Control Structure Table (Order) for

 program 2 in figure 1

Sl. no Control

statement

Loop Condition

1 Loop 1 1

2 Loop 0 1

3 Condition 0 0

4 Loop 0 0

5 Loop 0 0

6 Print 0 0

7 Sort 0 0

8 Print 0 0

 Table 6b. Control Structure Table (Order) for

 program 3 in figure 1

Sl. no Control

statement

Loop Condition

1 Loop 0 1

2 Condition 0 0

3 Loop 0 0

4 Loop 0 0

5 Print 0 0

6 Loop 0 0

7 Sort 0 0

8 Print 0 0

Execution Flow Control Structure Table (EFCST) of

program 2 is given in table 7. Execution flow starts in

‘main’. From FIT we see that flow starts at line 5 and ends

at line 8. The entries in these lines are copied in EFCST.

However if function call is present, FIT is referred as

corresponding control lines of the function from the

respective beginning and ending lines are copied to EFCST.

The EFCST of programs 1, 2 and 3 in figure 1 are shown in

table 7.

Table 7. EFCST of program 1, 2 and 3

Sl. no Control

statement

Loop Condition

 1 Loop 0 0

2 Loop 0 0

3 Loop 1 1

4 Loop 0 1

5 Condition 0 0

6 Loop 0 0

Difference matrix is computed using two EFCSTs as in

section 3.1 and similarity value is computed using formula

1.

We conducted experiments on data set 1 and results are

shown in below table. We conducted experiments on data

set 1 and results are shown in table 8.

Table 8. EFCST and s=n/|r1-r2|

P1v1 P1v2 P1v3 P1v4 P2v1 P2v2 P2v3 P3v1 P3v2 P3v3 P4v1 P4v2 P4v3 P5v1 P5v2

P1v1
0.00 36.00 36.00 36.00 2.14 2.14 2.14 2.14 2.14 2.14 1.00 1.00 1.00 3.55 3.30

P1v2 36.00 0.00 36.00 36.00 2.14 2.14 2.14 2.14 2.14 2.14 1.00 1.00 1.00 3.55 3.30

P1v3 36.00 36.00 0.00 36.00 2.14 2.14 2.14 2.14 2.14 2.14 1.00 1.00 1.00 3.55 3.30

P1v4 36.00 36.00 36.00 0.00 2.14 2.14 2.14 2.14 2.14 2.14 1.00 1.00 1.00 3.55 3.30

P2v1 2.14 2.14 2.14 2.14 0.00 7.00 7.00 0.76 0.76 0.76 2.00 2.00 2.00 1.00 0.88

P2v2 2.14 2.14 2.14 2.14 7.00 0.00 7.00 0.76 0.76 0.76 2.00 2.00 2.00 1.00 0.88

P2v3 2.14 2.14 2.14 2.14 7.00 7.00 0.00 0.76 0.76 0.76 2.00 2.00 2.00 1.00 0.88

P3v1 2.14 2.14 2.14 2.14 0.76 0.76 0.76 0.00 196.00 196.00 0.58 0.58 0.58 13.91 9.83

P3v2 2.14 2.14 2.14 2.14 0.76 0.76 0.76 196.00 0.00 196.00 0.58 0.58 0.58 13.91 9.83

P3v3 2.14 2.14 2.14 2.14 0.76 0.76 0.76 196.00 196.00 0.00 0.58 0.58 0.58 13.91 9.83

P4v1 1.00 1.00 1.00 1.00 2.00 2.00 2.00 0.58 0.58 0.58 0.00 3.00 3.00 0.75 0.63

P4v2 1.00 1.00 1.00 1.00 2.00 2.00 2.00 0.58 0.58 0.58 3.00 0.00 3.00 0.75 0.63

P4v3 1.00 1.00 1.00 1.00 2.00 2.00 2.00 0.58 0.58 0.58 3.00 3.00 0.00 0.75 0.63

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 10, 728 - 736, 2015, ISSN: 2319–8656

www.ijcat.com 733

Here also all programs show high similarity only with versions of the same program.

3.3 Similarity computation using CSTs,

EFCSTs and Control Metric Table (CMT)

Control Metric Table (CMT): We compute control metric

table which contains information about total number of

iterative and conditional statements present in the program

[11]. Table 9 shows CMT of data set 1 used for our

experiment.

Table 9. Control Metric Table for data set 1 (CMT)

Sl.
No

Programs
1 2 3 4

L C L C L C L C

1
Beam
search

10 2 10 2 10 2 10 2

2
Bubble

sort
4 1 4 1 4 1 - -

3 Min Max 15 19 15 19 15 19 - -

4
Linear
search

2 1 2 1 - - - -

5 Queue 3 18 3 18 3 18 - -

Computation of similarity value (s): Here similarity

computation is based on CMT as well as CST/EFCST. First

we generate CMT and CST for each program. Difference

matrix (D) is computed from the respective CSTs as explained

in earlier sub sections 3.1 and 3.2.

We compute similarity between programs only if programs

are comparable in terms of number of loops and conditional

statements. While duplicates are created it is unlikely to

expect more than 20 % variation in number of control

statements. Hence a threshold of 20 % variations in these

numbers is fixed for computation of similarity. Suppose

program 1 has x loops and y conditional statements. Program

2 is comparable with program 1 if the number loops and

conditional statements are in the range [x – 20 % (x), x + 20

% (x)] and [y – 20 % (y), y + 20 % (y)]. Table 10 show

computed similarity values with this additional consideration

of CMT.

Table 10a. CST, CMT and s=n/|r1-r2|

 P1v1 P1v2 P1v3 P1v4 P2v1 P2v2 P2v3 P3v1 P3v2 P3v3 P4v1 P4v2 P4v3 P5v1 P5v2

P1v1 0 37 37 37 0 0 0 0 0 0 0 0 0 0 0

P1v2 37 0 37 37 0 0 0 0 0 0 0 0 0 0 0

P1v3 37 37 0 37 0 0 0 0 0 0 0 0 0 0 0

P1v4 37 37 37 0 0 0 0 0 0 0 0 0 0 0 0

P2v1 0 0 0 0 0 8 8 0 0 0 0 0 0 0 0

P2v2 0 0 0 0 8 0 8 0 0 0 0 0 0 0 0

P2v3 0 0 0 0 8 8 0 0 0 0 0 0 0 0 0

P3v1 0 0 0 0 0 0 0 0 199 199 0 0 0 0 0

P3v2 0 0 0 0 0 0 0 199 0 199 0 0 0 0 0

P3v3 0 0 0 0 0 0 0 199 199 0 0 0 0 0 0

P4v1 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0

P4v2 0 0 0 0 0 0 0 0 0 0 4 0 4 0 0

P4v3 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0

P5v1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 161

P5v2 0 0 0 0 0 0 0 0 0 0 0 0 0 161 0

Table 10b. EFCST, CMT and s= n/|r1-r2|

 P1v1 P1v2 P1v3 P1v4 P2v1 P2v2 P2v3 P3v1 P3v2 P3v3 P4v1 P4v2 P4v3 P5v1 P5v2

P1v1 0 36 36 36 0 0 0 0 0 0 0 0 0 0 0

P1v2 36 0 36 36 0 0 0 0 0 0 0 0 0 0 0

P1v3 36 36 0 36 0 0 0 0 0 0 0 0 0 0 0

P1v4 36 36 36 0 0 0 0 0 0 0 0 0 0 0 0

P5v1 3.55 3.55 3.55 3.55 1.00 1.00 1.00 13.91 13.91 13.91 0.75 0.75 0.75 0.00 125.00

P5v2 3.30 3.30 3.30 3.30 0.88 0.88 0.88 9.83 9.83 9.83 0.63 0.63 0.63 125.00 0.00

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 10, 728 - 736, 2015, ISSN: 2319–8656

www.ijcat.com 734

P2v1 0 0 0 0 0 7 7 0 0 0 0 0 0 0 0

P2v2 0 0 0 0 7 0 7 0 0 0 0 0 0 0 0

P2v3 0 0 0 0 7 7 0 0 0 0 0 0 0 0 0

P3v1 0 0 0 0 0 0 0 0 196 196 0 0 0 0 0

P3v2 0 0 0 0 0 0 0 196 0 196 0 0 0 0 0

P3v3 0 0 0 0 0 0 0 196 196 0 0 0 0 0 0

P4v1 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0

P4v2 0 0 0 0 0 0 0 0 0 0 3 0 3 0 0

P4v3 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0

P5v1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 125

P5v2 0 0 0 0 0 0 0 0 0 0 0 0 0 125 0

In the above tables similarity is seen only with versions of the same program. All others are 0’s.

3.4 Experimental Results
Five programs, 15 versions data set described in earlier

sections is created in our lab and the experimental results

with two approaches have been discussed in detail in sections

3.1 to 3.3.

For thorough testing of the proposed approaches we

downloaded programs from ‘sourcefoge.net’

(www.sourceforge.net) and ‘f1sourcecode’

(www.f1sourcecode.com) and created many versions by

changing loop statements, reordering control lines and

also by refactoring. These are added to the sample data set

in the earlier sections. Thus we have created 26 distinct

programs and 100 versions data set. To find whether only

versions of the same programs, show higher similarity

when compared to similarities with other programs, we

have done clustering of similarity values using k-means

clustering algorithm with k=2. The clustering is done on

set of similarity value corresponding to one version of a

program (available in a column). The error in duplicate

detection of a program 'j' is found as ratio of number of

misclassification and total number of programs (inclusive

of versions). Total misclassification in program 'j'

includes number of false positives and true negatives.

When a version of program 'j' is clustered with any other

program it is true negative, where as when a version of

program 'i' is clustered with program 'j' it is false positive.

Average error is computed total detection errors in each

program by number of distinct programs. Table 11 shows the

average error with two approaches with and without CMT for

the sample data sets. Also shown in the table the similarity

measurements using the formula s=n/D, where n is similar

number of control lines and 'D' maximum dissimilarity [11].

Table 11. Error table for sample data sets.

 Approaches Data structure used Data set1 Data set 2

S= n /D S= n / |r1-r2| S= n / D S=n / |r1-r2|

A
p

p
ro

a
ch

 1

Only CST 0.1465 0.0375 0.5794 0.1038

CST and CMT 0 0 0.00923 0.00577

A
p

p
ro

a
ch

 2

Only EFCSTs 0.04 0.0375 0.0866 0.009615

EFCST and CMT 0 0 0.009615 0.00808

http://www.ijcat.com/
http://www.sourceforge.net/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 10, 728 - 736, 2015, ISSN: 2319–8656

www.ijcat.com 735

3.5 Time Complexity
Suppose two programs have n1 and n2 source lines and L1 and

L2 control statements. Note that number of control statements

in a program will be far less than number of source lines

(L<< n). Table 12 shows the detail of major steps in the

computation of similarity and the corresponding complexities.

 Table 12. Time complexity table

Hence total time complexity is maximum (θ(n) and

O(L2)) which is a polynomial time complexity.

3.6 Performance Evaluation

The experiments are done with three available tools

Duplo (uses string matching technique), PMD (uses

tokens to compare) and CloneDR (AST based) and the

results obtained on data set 1 is shown in table 13.

PMD tool shows similarity with user defined function

call and inbuilt function. Control lines for and while,

from figure 1 are not shown as similar. CloneDR is

sometimes sensitive to change in the type of loop

statement.

We divided data set 2 which is used in section 3.4 into

two data sets. First data set has 15 distinct programs and

50 variants. This data set has variation in sequence of

control statements (independent control lines only) in

versions of the same program. Second data set has 11

distinct programs and 50 variants. In this data set

contents of control lines are replaced by function calls

(refer fig 1).

Experiments are conducted on two data sets using two

approaches. Tables 14a and 14b show performance

analysis for proposed methods.

Table 13. Performance analysis table

Sl.

no
Method Error Remarks

1 Duplo 1.8666

All versions of

beam search

show some

similarity with

all versions of

minmax and

bubble sort

programs are not

shown as similar

programs.

2 PMD 1.6

All versions of

beam search

show some

similarity with

all versions of

minmax and

queue programs

are not shown as

similar

programs.

3 Clone DR 1.8666

All versions of

beam search

show some

similarity with

all versions of

minmax and

queue programs

are not shown as

similar

programs.

4
Proposed

Approaches

Only

CST
0.14658

Linear search

and beam search

programs show

similarity with

versions of other

programs

Only

EFCST
0.04

Linear search

program shows

similarity with

bubble sort

programs

CST &

CMT
0 Similarity exists

with its versions

only
EFCST

& CMT
0

Steps Complexity

Preprocessing θ(n1) + θ(n2)

CST / EFCST θ(n1) + θ(n2)

Difference matrix θ (L1 x L2)

Similarity computation O(L1 x L2)

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 10, 728 - 736, 2015, ISSN: 2319–8656

www.ijcat.com 736

Table 14a. Performance analysis table (without

considering CMT)Without CMT

Data

structure

and

similarity

measure

used

Data set1 Data set 2 Data set 3

CST &

s=n/d
0.14658 0.34 0.292727

CST &

s=n/|r1-r2|
0.0375 0.0866 0.092727

EFCST &

s=n/|r1-r2|
0.0375 0.0373 0.049

Fig 4: Error graph for proposed approaches without

considering CMT

Table 14b. Performance analysis table (considering

CMT)

With CMT

Data structure and

similarity measure used

Data

set1

Data set

2

Data set

3

CST & s=n/d 0 0.0133 0.0436

CST & s=n/|r1-r2| 0 0.00933 0.02

EFCST & s=n/|r1-r2| 0 0 0

Fig 5: Error graph for proposed approaches without

considering CMT

4. CONCLUSION AND FUTURE WORK

We have proposed two approaches Control Structure Table

(CST) and Execution Flow Control Structure Table (EFCST)

to detect duplicate code detection. We also suggested Control

Metric Table (CMT) before computation of similarity

measure. Performance with the addition of CMT has shown

tremendous improvements.

The time complexity is max (θ(n) and O(L2)) where 'n' is total

number of source lines and 'L' is total number of control

statements in the program. Time complexity is far less when

compared to methods based on AST and PDG. The method

also identifies all four types of clones.

The proposed algorithms do not take into consideration of

statements inside control structures. The current similarity

measure can be corrected to consider the statements together

with operators and operands. Perhaps errors that are observed

currently may decrease significantly.

5. REFERENCES
[1] Baker S., “A Program for Identifying Duplicated Code,

“Computing Science and Statistics, vol. 24, 1992.

[2] Johnson J H., “Substring matching for clone detection and

change tracking,” in Proceedings of the International

Conference on software Maintenance, 1994.

[3] Ducasse, S., Rieger M., and Demeyer S., “A Language

Independent Approach for Detecting Duplicated Code.” In

Proceedings; IEEE International Conference on Software

Maintenanace, 1999.

[4] Zhang Q., et . al., “Efficient Partial-Duplicate Based on

Sequence Matching,” 2010.

[5] Sadowski C., and Levin G., “SimHash: Hash-Based

Similarity Detection,” 2007.

[6]Jiang L., and Glondu S., “Deckard: Scalable and Accurate

Tree-Based Detection of Code Clones”.

[7] Baxter I D., Yahin I., Moura L., Anna M S., and Bier L.,

“Clone Detection Using Abstract Syntax Trees,” in

proceedings of ICSM. IEEE, 1998.

[8] krinke J., “Identifying Similar Code with Program

Dependency Graphs,” Proc. Eighth Working Conference .,

Reverse Engineering., 2001.

[9] Vidya K and Thirukumar K, “Identifying Functional

Clones between Java Directory using Metric Based Systems”

International journal of Computer Communication and

Information System (IJCCI)-Vol3, ISSN:2277-128x August

2013.

[10] Mayrand J, Leblanc C and Ettore Merlo M. “Experiment

on the Automatic Detection of Function Clones in a Software

System Using Metrics”, proc of ICSM conference 1996.

[11]Sudhamani M and Rangarajan L, Structural Similarity

Detection using Structure of Control Statements, proc. of

International Conference on Information and Communication

Technology, vol 46 (2015) 892-899.

[12] kodhai E, Perumal A, and Kanmani S, "Clone Detection

using Textual and metric Analysis to figure out all Types of

Clones" International journal of Computer Communication

and Information System (IJCCI)- Vol2. No1.ISSN:0976-1349

July-Dec 2010.

[13] www.research.cs.queensu.ca.

[14] Bellon S., Koschke R., Antoniol G., Krinke J., and Merlo

E., “Comparison and evaluation of clone detection tools,”

IEEE Transactions on.Software Engineering, September 2007.

[15]. Roy C K and Cordy J R. "A survey on software clone

detection research". Tech. rep., 2007. TR 2007-541 School of

Computing Queen’s University at Kingston Ontario, Canada.

[16] Roy C K, Cordy J R and Koschke R, “Comparison and

Evaluation of Code Clone Detection Techniques and Tools: A

Qualitative Approach”, Science of Computr Programming,

74(2009) 470-495, 2009.

[17] Kostas Kontogiannis. "Evaluation Experiments on the

Detection of Programming Patterns using Software Metrics".

In Proceedings of the 3rd Working Conference on Reverse

Engineering (WCRE'97), pp. 44-54, Amsterdam, the

Netherlands, October 1997.

http://www.ijcat.com/

