

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,5-Dimethylphenyl quinoline-2carboxylate

E. Fazal,^a Manpreet Kaur,^b Jerry P. Jasinski,^{c*} S. Nagarajan^d and B. S. Sudha^a

^aDepartment of Chemistry, Yuvaraja's College, Mysore 570 005, India, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and ^dP.P.S.F.T. Department, Central Food Technplogy Research institute, Mysore 570 005, India Correspondence e-mail: jjasinski@keene.edu

Received 7 January 2014; accepted 8 January 2014

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.101; data-to-parameter ratio = 14.1.

In the title compound, $C_{18}H_{15}NO_2$, the dihedral angle between the mean planes of the quinoline ring system and the phenyl ring is 78.8 (1)°. The mean plane of the carboxylate group is twisted from the mean planes of the quinoline ring system and phenyl ring by 1.5 (9) and 77.6 (4)°, respectively. In the crystal, molecules are linked by weak C-H···O interactions, generating *C*(8) chains along [001]. Weak π - π stacking interactions are also observed [centroid–centroid separation = 3.6238 (12) Å].

Related literature

For related structures and background to quinoline derivatives, see: Fazal *et al.* (2014); Jasinski *et al.* (2010).

Experimental

Crystal data C₁₈H₁₅NO₂

 $M_r = 277.31$

Orthorhombic, $P2_12_12_1$ a = 8.2261 (3) Å b = 11.6007 (5) Å c = 14.5738 (5) Å V = 1390.76 (9) Å³

Data collection

Agilent Gemini EOS diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) $T_{min} = 0.711, T_{max} = 1.000$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.035 \\ wR(F^2) &= 0.101 \\ S &= 1.05 \\ 2721 \text{ reflections} \\ 193 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta\rho_{\text{max}} &= 0.18 \text{ e } \text{ Å}^{-3} \end{split}$$

Z = 4Cu $K\alpha$ radiation

organic compounds

Cu Ka radiation $\mu = 0.69 \text{ mm}^{-1}$ T = 173 K $0.46 \times 0.34 \times 0.18 \text{ mm}$

8332 measured reflections 2721 independent reflections 2585 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$

 $\begin{array}{l} \Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Absolute \ structure: \ Flack} \\ {\rm parameter \ determined \ using \ 1049} \\ {\rm quotients \ } [(I^+) - (I^-)]/[(I^+) + (I^-)] \\ ({\rm Parsons \ et \ al., \ 2013}) \\ {\rm Absolute \ structure \ parameter:} \\ -0.04 \ (16) \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

 $\frac{D - H \cdots A}{C17 - H17B \cdots O1^{i}} \frac{D - H}{0.98} + \frac{H \cdots A}{2.49} + \frac{D \cdots A}{3.389} + \frac{D - H \cdots A}{152}$ Symmetry code: (i) $-x + \frac{1}{2}, -y, z - \frac{1}{2}$

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Agilent, 2012); program(s) used to solve structure: *SUPERFLIP* (Palatinus & Chapuis, 2007); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

EF thanks the CFTRI, Mysore and Yuvaraja's College, UOM, for providing research facilities. EF is grateful to Mr J. R. Manjunatha, PPSFT, CFTRI for the NMR spectra. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7183).

References

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Fazal, E., Jasinski, J. P., Anderson, B. J., Sudha, B. S. & Nagarajan, S. (2014). *Acta Cryst.* E70, 035–036.

Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172–181.

Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.

Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o147 [doi:10.1107/S160053681400052X]

2,5-Dimethylphenyl quinoline-2-carboxylate

E. Fazal, Manpreet Kaur, Jerry P. Jasinski, S. Nagarajan and B. S. Sudha

S1. Comment

Following our recent report on 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate (Fazal *et al.*, 2014), we now describe the crystal structure of the title compound, (I), The synthesis, crystal structures and theoretical studies of four Schiff bases derived from 4-hydrazinyl-8-(trifluoromethyl) quinoline (Jasinski *et al.*, 2010) have also been reported.

The dihedral angle between the mean planes of the quinoline ring and the phenyl ring is 78.8 (1)° (Fig. 1). The mean plane of the carboxylate group is twisted from the mean planes of the quinoline ring and phenyl ring by 1.5 (9)° and 77.6 (4)°, respectively. The crystal packing is influenced by weak C17—H17B···O1 interactions making chains along [0 0 1](Fig. 2). In addition, weak Cg2–Cg3 π – π interactions are observed (Cg2–Cg3 = 3.6238 (12)Å; Cg2 = C5–C10; Cg3 = C11–C16; 1/2 + x, 1/2 - y, 1 - z).

S2. Experimental

To a mixture of 1.73 g (10 mmole) of quinaldic acid and 1.56 g (10 mmole) of 2,5-dimethylphenol in a round-bottomed flask fitted with a reflux condenser with a drying tube was added 0.15 g (10 mmole) of phosphorous oxychloride. The mixture was heated with occasional swirling, and temperature maintained at 348-353 K. At the end of eight hours the reaction mixture was poured in to a solution of 2 g of sodium bicarbonate in 25 ml of water. The precipitated ester was collected on a filter and washed with water. The yield of crude, air dried 2,5-dimethylphenyl quinoline-2-carboxylate was 1.71 to 1.85 g (65-70 %). Irregular colourless chunks were obtained by recrystallization from absolute ethanol solution by slow evaporation.

S3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH) or 0.98Å (CH₃). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH₃) times U_{eq} of the parent atom. Idealised Me refined as rotating group.

Figure 1

ORTEP drawing of (I) (C₁₈H₁₅NO₂) showing 30% probability displacement ellipsoids.

Figure 2

Molecular packing for (I) viewed along the b axis. Dashed lines indicate weak C17—H17B···O1 intermolecular interactions making chains along [0 0 1] and influence the crystal packing. The remaining H atoms have been removed for clarity.

2,5-Dimethylphenyl quinoline-2-carboxylate

Crystal data

$C_{18}H_{15}NO_2$
$M_r = 277.31$
Orthorhombic, P21212
a = 8.2261 (3) Å
<i>b</i> = 11.6007 (5) Å
<i>c</i> = 14.5738 (5) Å
$V = 1390.76(9) \text{ Å}^3$
Z = 4
F(000) = 584

Data collection

Agilent Gemini EOS diffractometer Radiation source: Enhance (Cu) X-ray Source $D_x = 1.324 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 3982 reflections $\theta = 3.0-72.4^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$ T = 173 KIrregular, colourless $0.46 \times 0.34 \times 0.18 \text{ mm}$

Detector resolution: 16.0416 pixels mm⁻¹ ω scans

Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2012) $T_{\min} = 0.711, T_{\max} = 1.000$ 8332 measured reflections 2721 independent reflections 2585 reflections with $I > 2\sigma(I)$

Refinement

negmenten	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0609P)^2 + 0.1748P]$
Least-squares matrix: full	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$R[F^2 > 2\sigma(F^2)] = 0.035$	$(\Delta/\sigma)_{\rm max} = 0.008$
$wR(F^2) = 0.101$	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
S = 1.05	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
2721 reflections	Extinction correction: SHELXL2012 (Sheldrick,
193 parameters	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
0 restraints	Extinction coefficient: 0.0027 (7)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack parameter determined using 1049 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
Hydrogen site location: inferred from	(Parsons <i>et al.</i> , 2013)
neighbouring sites	Absolute structure parameter: -0.04 (16)
H-atom parameters constrained	

 $R_{\rm int} = 0.031$

 $k = -14 \rightarrow 13$

 $l = -17 \rightarrow 17$

 $\theta_{\text{max}} = 72.6^{\circ}, \ \theta_{\text{min}} = 4.9^{\circ}$ $h = -6 \rightarrow 10$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	v	Z	U_{iso}^*/U_{eq}	
01	0.4090 (2)	0.00776 (14)	0.45505 (11)	0.0439 (4)	
02	0.5803 (2)	0.13777 (12)	0.39481 (9)	0.0330 (4)	
N1	0.3984 (2)	0.13265 (14)	0.61466 (11)	0.0259 (4)	
C1	0.4863 (2)	0.09441 (16)	0.46254 (13)	0.0274 (4)	
C2	0.4902 (2)	0.16990 (15)	0.54669 (12)	0.0248 (4)	
C3	0.5847 (2)	0.27162 (16)	0.54988 (13)	0.0276 (4)	
H3	0.6468	0.2956	0.4984	0.033*	
C4	0.5840 (3)	0.33438 (17)	0.62920 (14)	0.0292 (4)	
H4	0.6464	0.4031	0.6334	0.035*	
C5	0.4907 (3)	0.29728 (16)	0.70485 (13)	0.0265 (4)	
C6	0.4872 (3)	0.35546 (17)	0.79056 (14)	0.0321 (4)	
H6	0.5502	0.4232	0.7992	0.038*	
C7	0.3934 (3)	0.31404 (19)	0.86066 (14)	0.0349 (5)	
H7	0.3927	0.3529	0.9180	0.042*	
C8	0.2979 (3)	0.21456 (19)	0.84884 (14)	0.0334 (5)	
H8	0.2323	0.1877	0.8981	0.040*	
C9	0.2982 (3)	0.15600 (17)	0.76741 (14)	0.0296 (4)	
H9	0.2325	0.0893	0.7601	0.035*	
C10	0.3968 (2)	0.19518 (16)	0.69387 (13)	0.0252 (4)	
C11	0.5828 (2)	0.07494 (17)	0.31151 (12)	0.0271 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C12	0.6794 (2)	-0.02221 (17)	0.30398 (14)	0.0286 (4)	
C13	0.6803 (3)	-0.07618 (18)	0.21885 (14)	0.0318 (4)	
H13	0.7445	-0.1435	0.2107	0.038*	
C14	0.5903 (3)	-0.03456 (18)	0.14550 (14)	0.0326 (5)	
H14	0.5932	-0.0740	0.0884	0.039*	
C15	0.4960 (2)	0.06388 (18)	0.15446 (13)	0.0313 (4)	
C16	0.4932 (3)	0.11850 (17)	0.23933 (14)	0.0294 (4)	
H16	0.4294	0.1860	0.2477	0.035*	
C17	0.4019 (3)	0.1117 (2)	0.07440 (16)	0.0452 (6)	
H17A	0.3427	0.1809	0.0938	0.068*	
H17B	0.3245	0.0537	0.0525	0.068*	
H17C	0.4772	0.1318	0.0248	0.068*	
C18	0.7792 (3)	-0.0662 (2)	0.38316 (16)	0.0400 (5)	
H18A	0.8297	-0.0011	0.4151	0.060*	
H18B	0.8640	-0.1180	0.3601	0.060*	
H18C	0.7088	-0.1083	0.4258	0.060*	

Atomic displacement parameters (\mathring{A}^2)

U^{11}	1 /22	T 72.2	1 2	10	
	U	U ³³	U^{12}	U^{13}	U^{23}
0.0543 (10)	0.0445 (9)	0.0330 (8)	-0.0212 (8)	0.0128 (8)	-0.0122 (7)
0.0444 (8)	0.0311 (7)	0.0235 (7)	-0.0073 (6)	0.0076 (6)	-0.0061 (5)
0.0281 (8)	0.0265 (8)	0.0232 (8)	0.0012 (7)	0.0003 (7)	-0.0005 (6)
0.0283 (9)	0.0294 (9)	0.0246 (9)	-0.0001 (8)	0.0006 (8)	-0.0011 (7)
0.0270 (8)	0.0262 (9)	0.0211 (8)	0.0032 (8)	-0.0015 (8)	-0.0008 (7)
0.0305 (9)	0.0273 (9)	0.0251 (9)	0.0009 (8)	0.0008 (8)	0.0019 (7)
0.0327 (9)	0.0237 (9)	0.0311 (10)	-0.0010 (8)	-0.0015 (8)	-0.0002 (8)
0.0308 (9)	0.0238 (9)	0.0248 (9)	0.0061 (8)	-0.0032 (8)	-0.0015 (7)
0.0415 (11)	0.0251 (9)	0.0296 (10)	0.0033 (9)	-0.0039 (9)	-0.0041 (7)
0.0453 (11)	0.0359 (11)	0.0234 (9)	0.0113 (10)	-0.0012 (9)	-0.0056 (8)
0.0372 (10)	0.0397 (11)	0.0232 (9)	0.0093 (9)	0.0029 (9)	0.0028 (8)
0.0302 (9)	0.0321 (10)	0.0264 (10)	0.0025 (8)	-0.0001 (8)	0.0021 (8)
0.0269 (9)	0.0255 (9)	0.0234 (8)	0.0052 (8)	-0.0015 (7)	0.0004 (7)
0.0336 (10)	0.0254 (9)	0.0222 (8)	-0.0067 (8)	0.0048 (8)	-0.0033 (7)
0.0289 (9)	0.0281 (9)	0.0288 (10)	-0.0035 (8)	0.0038 (8)	0.0017 (8)
0.0338 (10)	0.0272 (9)	0.0344 (10)	-0.0004 (9)	0.0087 (9)	-0.0026 (8)
0.0377 (10)	0.0345 (11)	0.0256 (9)	-0.0093 (9)	0.0046 (9)	-0.0091 (8)
0.0300 (9)	0.0375 (10)	0.0263 (9)	-0.0080 (9)	0.0015 (9)	0.0012 (8)
0.0316 (9)	0.0271 (9)	0.0296 (10)	0.0012 (9)	0.0056 (8)	0.0005 (7)
0.0443 (12)	0.0608 (15)	0.0306 (11)	-0.0007 (12)	-0.0047 (10)	0.0035 (10)
0.0411 (12)	0.0450 (12)	0.0338 (11)	0.0028 (10)	0.0004 (10)	0.0049 (10)
	0.0343 (10) 0.0444 (8) 0.0281 (8) 0.0283 (9) 0.0270 (8) 0.0305 (9) 0.0305 (9) 0.03027 (9) 0.0308 (9) 0.0415 (11) 0.0453 (11) 0.0372 (10) 0.0302 (9) 0.036 (10) 0.0289 (9) 0.0338 (10) 0.0377 (10) 0.0300 (9) 0.0316 (9) 0.0443 (12) 0.0411 (12)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

01—C1	1.194 (2)	С9—Н9	0.9500
O2—C1	1.351 (2)	C9—C10	1.419 (3)
O2—C11	1.416 (2)	C11—C12	1.383 (3)
N1—C2	1.319 (2)	C11—C16	1.380 (3)

N1—C10	1.363 (2)	C12—C13	1.390 (3)
C1—C2	1.507 (2)	C12—C18	1.505 (3)
C2—C3	1.414 (3)	С13—Н13	0.9500
С3—Н3	0.9500	C13—C14	1.387 (3)
C3—C4	1.366 (3)	C14—H14	0.9500
C4—H4	0.9500	C14—C15	1.387 (3)
C4—C5	1.411 (3)	C15—C16	1.390 (3)
C5—C6	1.420 (2)	C15—C17	1.507 (3)
C5—C10	1.423 (3)	C16—H16	0.9500
С6—Н6	0.9500	C17—H17A	0.9800
C6—C7	1.368 (3)	C17—H17B	0.9800
С7—Н7	0.9500	C17—H17C	0.9800
C7—C8	1.407 (3)	C18—H18A	0.9800
С8—Н8	0.9500	C18—H18B	0.9800
C8—C9	1.367 (3)	C18—H18C	0.9800
C1—O2—C11	116.31 (15)	C9—C10—C5	119.47 (17)
C2—N1—C10	117.84 (16)	C12—C11—O2	119.72 (17)
O1—C1—O2	123.44 (18)	C16—C11—O2	117.19 (17)
O1—C1—C2	125.08 (18)	C16—C11—C12	123.00 (17)
O2—C1—C2	111.47 (16)	C11—C12—C13	116.18 (18)
N1—C2—C1	114.13 (16)	C11—C12—C18	121.93 (18)
N1—C2—C3	124.32 (17)	C13—C12—C18	121.89 (19)
C3—C2—C1	121.55 (17)	С12—С13—Н13	119.1
С2—С3—Н3	121.0	C14—C13—C12	121.88 (19)
C4—C3—C2	118.05 (18)	C14—C13—H13	119.1
С4—С3—Н3	121.0	C13—C14—H14	119.6
C3—C4—H4	120.0	C15—C14—C13	120.84 (18)
C3—C4—C5	120.07 (18)	C15—C14—H14	119.6
C5—C4—H4	120.0	C14—C15—C16	117.95 (19)
C4—C5—C6	123.59 (18)	C14—C15—C17	121.20 (19)
C4—C5—C10	117.47 (16)	C16—C15—C17	120.8 (2)
C6—C5—C10	118.93 (17)	C11—C16—C15	120.15 (19)
С5—С6—Н6	120.0	C11—C16—H16	119.9
C7—C6—C5	120.08 (19)	C15—C16—H16	119.9
С7—С6—Н6	120.0	С15—С17—Н17А	109.5
С6—С7—Н7	119.6	C15—C17—H17B	109.5
C6—C7—C8	120.80 (18)	C15—C17—H17C	109.5
С8—С7—Н7	119.6	H17A—C17—H17B	109.5
С7—С8—Н8	119.6	H17A—C17—H17C	109.5
C9—C8—C7	120.9 (2)	H17B—C17—H17C	109.5
С9—С8—Н8	119.6	C12—C18—H18A	109.5
С8—С9—Н9	120.1	C12—C18—H18B	109.5
C8—C9—C10	119.82 (19)	C12—C18—H18C	109.5
С10—С9—Н9	120.1	H18A—C18—H18B	109.5
N1—C10—C5	122.21 (17)	H18A—C18—H18C	109.5
N1—C10—C9	118.32 (17)	H18B—C18—H18C	109.5

O1—C1—C2—N1	-0.1 (3)	C6—C5—C10—C9	2.1 (3)
O1—C1—C2—C3	-179.8 (2)	C6—C7—C8—C9	0.9 (3)
O2-C1-C2-N1	178.98 (16)	C7—C8—C9—C10	0.5 (3)
O2—C1—C2—C3	-0.7 (3)	C8—C9—C10—N1	177.87 (18)
O2-C11-C12-C13	-177.39 (17)	C8—C9—C10—C5	-1.9 (3)
O2—C11—C12—C18	2.0 (3)	C10-N1-C2-C1	179.07 (16)
O2-C11-C16-C15	177.19 (17)	C10—N1—C2—C3	-1.3 (3)
N1-C2-C3-C4	1.5 (3)	C10—C5—C6—C7	-0.8 (3)
C1-O2-C11-C12	-79.9 (2)	C11—O2—C1—O1	0.5 (3)
C1	103.4 (2)	C11—O2—C1—C2	-178.63 (15)
C1—C2—C3—C4	-178.88 (17)	C11—C12—C13—C14	0.3 (3)
C2-N1-C10-C5	-0.3 (3)	C12—C11—C16—C15	0.6 (3)
C2—N1—C10—C9	179.87 (17)	C12—C13—C14—C15	0.5 (3)
C2—C3—C4—C5	-0.1 (3)	C13-C14-C15-C16	-0.8 (3)
C3—C4—C5—C6	177.96 (18)	C13—C14—C15—C17	178.1 (2)
C3—C4—C5—C10	-1.4 (3)	C14-C15-C16-C11	0.2 (3)
C4—C5—C6—C7	179.9 (2)	C16—C11—C12—C13	-0.9 (3)
C4—C5—C10—N1	1.6 (3)	C16—C11—C12—C18	178.5 (2)
C4—C5—C10—C9	-178.58 (18)	C17—C15—C16—C11	-178.65 (19)
C5—C6—C7—C8	-0.7 (3)	C18—C12—C13—C14	-179.00 (19)
C6—C5—C10—N1	-177.74 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C17—H17 <i>B</i> ···O1 ⁱ	0.98	2.49	3.389 (3)	152

Symmetry code: (i) -x+1/2, -y, z-1/2.