data reports

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Crystal structure of (1E,1'E)-N,N'-(ethane-1,2-diyl)bis[(pyridin-2-yl)methanimine]

Provided by University of Mysore - Digital Repository of Research, Innovation and Scholarship (ePrints@UoM)

Muneer Abdoh,^a* Ismail Warad,^b S. Naveen,^c N. K. Lokanath^d and Rachid Salghi^e

^aDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, Palestinian Territories, ^bDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, Palestinian Territories, ^cInstitution of Excellence, University of Mysore, Manasagangotri, Mysore 570 006, India, ^dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^eLaboratory of Environmental Engineering and Biotechnology, Science College, An-Najah National University, ENSA, Universite Ibn Zohr, PO Box 1136, 80000 Agadir, Morocco. *Correspondence e-mail: muneer@najah.edu

Received 21 May 2015; accepted 24 May 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

The whole molecule of the title compound, $C_{14}H_{14}N_4$, is generated by twofold rotation symmetry. The twofold axis bisects the central -CH2-CH2- bond and the planes of the pyridine rings are inclined to one another by $65.60 (7)^{\circ}$. In the crystal, there are no significant intermolecular interactions present.

Keywords: crystal structure; pyridinecarbaldehydes; 1,2-diaminopyridine; Schiff base; chelating ligands.

CCDC reference: 1402701

1. Related literature

For the use of Schiff bases, derived from pyridinecarbaldehydes, in synthetic chemistry, see: Marjani et al. (2009). For 1,2-diaminopyridine-derived Schiff bases as bidentate or polydentate chelating ligands and their possible medical applications, see: Warad et al. (2014).

2. Experimental

OPEN a ACCESS

2.1. Crystal data

$C_{14}H_{14}N_4$	
$M_r = 238.29$	
Monoclinic, C2/c	
a = 19.347 (5) Å	
<i>b</i> = 5.9339 (12) Å	
c = 13.165 (2) Å	
$\beta = 122.266 \ (8)^{\circ}$	

2.2. Data collection

Bruker X8 Proteum diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2013) $T_{\min} = 0.837, \ T_{\max} = 0.862$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.120$ S = 1.05933 reflections

V = 1278.0 (5) Å³ Z = 4Cu $K\alpha$ radiation $\mu = 0.61 \text{ mm}^{-1}$ T = 296 K $0.30 \times 0.27 \times 0.25 \ \mathrm{mm}$

1539 measured reflections 933 independent reflections 881 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.015$

82 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.10 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.10 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Acknowledgements

The authors are thankful to IOE, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction facility. IW is grateful to An-Najah National University and Zamala (fellowship program for the development of university education) for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5142).

References

- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Marjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633-1637.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Warad, I., Khan, A., Azam, M., Al-Resayes, S. I. & Haddad, S. (2014). J. Mol. Struct. 1062, 167-173.

supporting information

Acta Cryst. (2015). E71, o431 [doi:10.1107/S2056989015010087]

Crystal structure of (1*E*,1'*E*)-*N*,*N*'-(ethane-1,2-diyl)bis[(pyridin-2-yl)methanimine]

Muneer Abdoh, Ismail Warad, S. Naveen, N. K. Lokanath and Rachid Salghi

S1. Structural commentary

Schiff bases derived from pyridinecarbaldehydes have received considerable interest in synthetic chemistry (Marjani *et al.*, 2009). 1,2-diamine-pyridine derived Schiff base bidentate or polydentate chelating ligand towards metal centers draw major attraction towards synthesis and medical application (Warad *et al.*, 2014). It is still challenging to design and rationally synthesize ligands with unique structures and functions.

S2. Synthesis and crystallization

To a solution of pyridine-2-carbaldehyde (1 mmol) dissolved in 10 ml of absolute ethanol was added drop wise ethane-1,2-diamine (1 mmol) in 5 ml of absolute ethanol under constant stirring for 10 min. The mixture was refluxed for 4 h and then concentrated under reduced pressure. The title compound was precipitated by the addition of 50 ml of n-hexane. It was filtered off, washed three times with 80 ml of distilled water then with diethyl ether to give the title compound (yield: 86%). Single crystals suitable for X-ray analysis were obtained within two days by slow evaporation of a solution in dichloromethane.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were fixed geometrically (C—H = 0.93 - 0.97 Å) and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

View of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to the labelled atoms by twofold rotation symmetry (symmetry code: -x + 1, *y*, -z - 1/2).

(1*E*,1'*E*)-*N*,*N*'-(Ethane-1,2-diyl)bis[(pyridin-2-yl)methanimine]

Crystal data	
$C_{14}H_{14}N_4$	F(000) = 504
$M_r = 238.29$	$D_{\rm x} = 1.238 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, C2/c	Cu $K\alpha$ radiation, $\lambda = 1.54178$ Å
Hall symbol: -C 2yc	Cell parameters from 881 reflections
a = 19.347 (5) Å	$\theta = 5.4 - 63.8^{\circ}$
$b = 5.9339 (12) \text{\AA}$	$\mu = 0.61 \text{ mm}^{-1}$
c = 13.165 (2) Å	T = 296 K
$\beta = 122.266 \ (8)^{\circ}$	Block, colourless
$V = 1278.0 (5) Å^3$	$0.30 \times 0.27 \times 0.25 \text{ mm}$
Z = 4	
Data collection	
Bruker X8 Proteum	1539 measured reflections
diffractometer	933 independent reflections
Radiation source: Rotating Anode	881 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.015$
Detector resolution: 18.4 pixels mm ⁻¹	$\theta_{\rm max} = 63.8^\circ, \theta_{\rm min} = 5.4^\circ$
φ and ω scans	$h = -8 \rightarrow 21$
Absorption correction: multi-scan	$k = -6 \rightarrow 5$
(SADABS; Bruker, 2013)	$l = -15 \rightarrow 12$
$T_{\min} = 0.837, \ T_{\max} = 0.862$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
$wR(F^2) = 0.120$	neighbouring sites
S = 1.05	H-atom parameters constrained
933 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0763P)^2 + 0.2763P]$
82 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\text{max}} = 0.10 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.10 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
N3	0.69126 (7)	0.50665 (18)	0.02615 (10)	0.0576 (4)
N6	0.55349 (7)	0.05345 (19)	-0.11311 (9)	0.0542 (4)
C1	0.67191 (10)	0.7085 (3)	0.16610 (14)	0.0703 (6)
C2	0.70819 (9)	0.6792 (2)	0.10143 (14)	0.0634 (5)
C4	0.63482 (8)	0.3583 (2)	0.01373 (11)	0.0478 (4)
C5	0.61592 (8)	0.1747 (2)	-0.07264 (11)	0.0495 (4)
C7	0.54261 (9)	-0.1287 (2)	-0.19397 (13)	0.0585 (5)
C8	0.59615 (9)	0.3750 (2)	0.07686 (12)	0.0591 (5)
C9	0.61501 (11)	0.5541 (3)	0.15343 (14)	0.0728 (6)
H1	0.68570	0.83080	0.21760	0.0840*
H2	0.55830	0.26720	0.06750	0.0710*
H4	0.74660	0.78490	0.11040	0.0760*
Н5	0.65170	0.14760	-0.09810	0.0590*
H7	0.58250	-0.11360	-0.21680	0.0700*
H8	0.55230	-0.27160	-0.15260	0.0700*
Н9	0.58950	0.57050	0.19620	0.0870*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N3	0.0509 (8)	0.0571 (7)	0.0602 (7)	0.0007 (5)	0.0265 (6)	0.0064 (5)
N6	0.0501 (8)	0.0609 (7)	0.0466 (6)	0.0031 (5)	0.0225 (5)	0.0005 (5)
C1	0.0714 (11)	0.0636 (9)	0.0601 (9)	-0.0011 (7)	0.0246 (8)	-0.0102 (7)
C2	0.0554 (10)	0.0564 (9)	0.0628 (9)	-0.0038 (6)	0.0212 (7)	0.0035 (6)
C4	0.0410 (8)	0.0514 (7)	0.0430 (7)	0.0068 (5)	0.0171 (6)	0.0090 (5)

supporting information

C5	0.0463 (8)	0.0551 (8)	0.0473 (7)	0.0085 (6)	0.0251 (6)	0.0079 (5)	
C7	0.0600 (9)	0.0532 (8)	0.0540 (8)	0.0048 (6)	0.0249 (7)	-0.0001 (6)	
C8	0.0561 (9)	0.0674 (9)	0.0542 (8)	-0.0052 (7)	0.0298 (7)	-0.0034 (6)	
C9	0.0743 (12)	0.0866 (11)	0.0628 (9)	-0.0047 (8)	0.0401 (9)	-0.0136 (8)	

Geometric parameters (Å, °)

N3—C2	1.3384 (18)	С8—С9	1.373 (2)
N3—C4	1.343 (2)	C1—H1	0.9300
N6—C5	1.254 (2)	C2—H4	0.9300
N6—C7	1.4514 (18)	С5—Н5	0.9300
C1—C2	1.373 (3)	С7—Н7	0.9700
C1—C9	1.372 (3)	С7—Н8	0.9700
C4—C5	1.4730 (18)	C8—H2	0.9300
C4—C8	1.387 (2)	С9—Н9	0.9300
C7—C7 ⁱ	1.516 (2)		
C2—N3—C4	116.96 (15)	N3—C2—H4	118.00
C5—N6—C7	117.93 (15)	C1—C2—H4	118.00
C2—C1—C9	118.85 (16)	N6—C5—H5	119.00
N3—C2—C1	123.50 (16)	C4—C5—H5	119.00
N3—C4—C5	115.43 (14)	N6—C7—H7	109.00
N3—C4—C8	122.94 (12)	N6—C7—H8	109.00
C5—C4—C8	121.62 (13)	H7—C7—H8	108.00
N6-C5-C4	122.55 (15)	$C7^{i}$ — $C7$ — $H7$	109.00
$N6-C7-C7^{i}$	111.74 (13)	C7 ⁱ —C7—H8	109.00
C4—C8—C9	118.56 (16)	C4—C8—H2	121.00
C1—C9—C8	119.17 (19)	C9—C8—H2	121.00
C2-C1-H1	121.00	С1—С9—Н9	120.00
C9—C1—H1	121.00	С8—С9—Н9	120.00
C2—N3—C4—C5	178.17 (12)	N3—C4—C5—N6	-164.26 (12)
C2—N3—C4—C8	-1.6 (2)	C5—C4—C8—C9	-178.16 (14)
C4—N3—C2—C1	0.9 (2)	C8—C4—C5—N6	15.5 (2)
C7—N6—C5—C4	-177.50 (11)	N3—C4—C8—C9	1.6 (2)
$C5-N6-C7-C7^{i}$	-131.18 (14)	$N6-C7-C7^{i}-N6^{i}$	73.41 (17)
C9-C1-C2-N3	-0.2 (3)	C4—C8—C9—C1	-0.8 (2)
C2—C1—C9—C8	0.1 (3)		

Symmetry code: (i) -x+1, *y*, -z-1/2.