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Abstract 

Accuracy of the gas permeability parameters (GPPs), i.e. solubility, diffusivity and 

permeability deduced from permeation measurements is investigated in case of homogeneous 

polymer sheet samples. The widely used time-lag method (TLM) and the recently introduced 

full curve-fitting method (FCFM) are compared on simulated and on measured permeation 

curves artificially distorted in various ways in order to mimic potential deficiencies of 

permeation measurements. Accuracy of the methods is defined as the relative deviation 

between the calculated and the real GPPs, i.e. those which are deduced from the distorted and 

the original, non-distorted curves, respectively. The following distortions have been applied: 

temporal truncation of the permeation curves, increasing the noise level of the measurement 

and shifting the permeation curve either along the concentration or the time axis. (The latter 

two transformations correspond to an unnoticed background shift in the readings of the 

concentration detection unit and an uncertainty in the actual inception of the permeation 

process, respectively). While all these distortions mimic realistic deficiencies of permeation 

measurements, the last one is relevant only in case of fast permeation processes through 

highly permeable membranes. For all but the last transformation FCFM has been found to 

yield more accurate GPPs than TLM.  
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1. Introduction 

Gas permeation parameters (GPPs), i.e. diffusivity (D), solubility (S) and permeability 

(P) of rubber and polymer membranes are crucial material properties whenever thin flexible 

materials are used to isolate gases from their environment (e.g. rubber tyres, flexible gas 

pipes, etc.). There are four mathematical equations describing the gas permeation process in 

case of typical experimental arrangements. Two of them are the Fick's laws [1]: 
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where ( )t,xC
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 is the concentration and ( )t,xJ
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 is the current density of the permeating 

molecules. The third equation is Henry's law: if the partial pressure of the analysed 

component in the gaseous phase is ( )t,xp
�

, then: 
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where x0 denotes the coordinates of the contact points between the sample and the gaseous 

phase. The fourth equation gives the correlation between the GPPs [1]: 

SD=P ⋅  (4) 

In one of the simplest experimental arrangements a homogeneous plane membrane 

sample isolates the two chambers of the permeation cell. One of them (the so called source 

chamber) contains the permeating gas with a constant and high concentration (typically 

C = 100%), while in the other one (in the so called receiving chamber) the concentration of 

the permeating molecules is zero at the start of the permeation process. In this case all 

equations are one-dimensional, the current density vector is perpendicular to the surface of the 

membrane, and if the thickness of the membrane is l, then the time dependent magnitude of 

the flux through the membrane (hereinafter referred to as permeation curve) can be given as 

[1]: 
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In this experimental arrangement the solution of the inverse problem, i.e. the 

determination of the GPPs from the measured permeation curve, is relatively simple at least 

under ideal measurement conditions by using curve-fitting methods described in detail in the 
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Appendix. One of these methods is the time-lag method (TLM), in which only the late, 

steady-state part of the permeation curve is fitted by a line and GPPs are calculated from the 

parameters of this line. It is a simple method which can be used even without a computer. 

However, it is not robust enough against measurement uncertainties and it does not indicate 

the possible unreliability of the deduced permeation parameters. Recently a full curve-fitting 

method (FCFM) was shown to be an alternative of TLM [2]. Here we use a slightly modified 

version of this method, by fitting the flux curve itself (see Appendix) rather than the 

concentration (i.e. the integrated flux). Up to now these two methods have not yet been 

compared systematically. Obviously, in the ideal case, when Equation 5 accurately describes 

the permeation process, both methods yield the GPPs characteristic for the studied sample. 

However, when the permeation curve is distorted, i.e. Equation 5 can be used only as an 

approximation, the deduced GPPs can deviate from the true material parameters. Some 

possible causes of the distortion of the permeation curves are:  

• A permeation measurement always has a finite measurement time, which must be kept 

as short as possible for the sake of saving time and costs. For TLM the measurement 

can be terminated only after the steady-state part of the permeation process is reached 

(typically after a period of five times the characteristic “time-lag” time). On the other 

hand, FCFM offers the possibility of reducing measurement time by terminating the 

measurement sooner than in case of TLM. However, a method is needed to verify that 

the measurement is not finished prematurely, i.e. GPPs deduced from the truncated 

measurement curve are sufficiently close to the real GPPs values. 

• During permeation experiments the concentration measurement is always loaded with 

noise. The standard deviation of this noise depends on many factors such as the type 

of the concentration measuring instrument, the permeation properties of the measured 

sample, etc. One can expect an increase in the difference between the real and the 

estimated GPPs with decreasing signal to noise ratio.  

• Even when it is properly calibrated initially, there might be a temporal variation in the 

calibration parameters of the concentration measuring instrument. In most cases the 

offset (i.e. the signal in case of zero concentration) is subject to change, which can 

falsify the results of the measurement. This offset variation can be caused, for 

example, by spontaneous gas or vapour emission from the sample. One typical 

example is the emission of the plasticizing component. 
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• Due to the finite response time of the permeation measuring system there is some 

uncertainty in the exact inception of the permeation process. The relevance of this 

uncertainty increases as the permeation process becomes faster (i.e. for highly 

permeable membranes). 

Obviously there are other possible reasons why the permeation curves can be 

distorted, and consequently the deduced GPPs can deviate from their true values. In order to 

compare the robustness of the two curve-fitting methods, accuracy of the deduced GPPs is 

investigated at various degrees of different distortions for the cases listed above.  

 

2. The permeation curves 

2.1. Measured permeation curves 

The experimental curves are the results of our earlier works where the concentration of 

the molecules permeating through the membrane is measured by using the laser based 

photoacoustic detection system in a carrier gas flow arrangement [3]. Fluxes through the 

membrane are calculated by multiplying the measured concentrations with the carrier gas 

flow rate and by dividing the results with the area of the measured membrane sample. Table 1 

lists the measurement conditions and the results of the numerical evaluation of the measured 

curves, i.e. the fitted D, S and P parameters. It must be noted that for these permeation curves 

the numerical values of the GPPs are practically the same regardless of using TLM or FCFM. 

 Experimental parameters Results of curve-fitting 

Material 
Thickness 

[mm] 
Carrier gas flow 
rate [cm3/min] 

SNR 
D 

[10-12 m2/s] 
S 

[10-6 1/Pa] 
P 

[10-17 m2/s/Pa] 

Polyethylene 0.14 400 19 0.31 58 1.8 

Natural rubber 0.70 250 50 39 2.4 9.5 
Table 1. Experimental parameters and results of curve-fitting for photoacoustically measured 

samples. Measurements are performed at 23°C with a sample area of 38 cm2 and the 
permeating gas is methane. SNR stands for signal to noise ratio of the measurement 

determined at the plateau of the permeation curve.  
 

2.2. Simulated permeation curves 

As a first step, noiseless permeation curves with various D and S values are generated 

by using Equation 5 in the time interval between t = 0 and t = 15 TL (TL stands for the time-

lag parameter, see Appendix). Next, randomly generated noises having an average value of 0 

and a standard deviation which is 0.005 times the maximum flux value (i.e. the steady-state 
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flux which is reached at the late part of the permeation process) are added to each permeation 

curve. The main parameters of these simulated permeation curves are listed in Table 2. In 

order to improve the reliability of the statistical analysis, for each D and S values three 

permeation curves are generated by repeating the noise generation process three times. 

 

D 
[10-11 m2/s] 

S 
[10-6 1/Pa] 

P 
[10-17 m2/s/Pa] 

Time-lag 
[s] 

Maximal flux 
[10-15 m3/s] 

Noise  
[10-15 m3/s] 

10 0.5 5.0 1667 19200 96 

3.0 0.8 2.4 5556 9200 46 

1.0 1.0 1.0 16670 3800 19 

0.3 1.5 0.45 55560 1740 8.7 

0.1 2.0 0.20 166700 760 3.8 
Table 2. List of GPPs of the simulated permeation curves, the calculated time-lag parameters, 
the maximum flux at the late part of the permeation curve (i.e. at its plateau) and the standard 

deviation of the added noises (which is 0.005 times the flux value at the plateau of the 
permeation curve). 

 

2.3. Artificial distortion of the permeation curves 

In order to mimic possible discrepancies of the permeation measurements the 

following transformations were performed on measured and simulated permeation curves. 

Transformation parameters (TPs) representing the degree of distortion have been introduced 

as follows: 

• Truncation: Distorted permeation curves are generated by removing the late parts of 

the permeation curves in various lengths. TP is defined as the duration of the non-

truncated part of the permeation curve normalized with the time-lag parameter (i.e. 

tmax/TL, for the definition of the time-lag parameter see Appendix).  

• Added noise: Random noises having a normal distribution with an average value of 0 

and various standard deviations are added to both the measured and the simulated 

curves. TP is defined as the standard deviation of the added noise divided by the 

maximum flux value reached at the plateau of the permeation curve (i.e. 1/SNR, the 

inverse of the signal-to-noise-ratio). 

• Vertical shift: Permeation curves are shifted along the vertical (flux) axis into positive 

direction. TP is defined as the vertical shift (∆J) normalized by the maximum flux 

value (i.e. ∆J/Jmax). 
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• Horizontal shift: Permeation curves are shifted along the horizontal (time) axis. TP is 

defined as the horizontal shift (∆t) normalized with the time-lag parameter (i.e. ∆t/TL). 

 

2.4. Evaluation of the numerical fitting methods 

The accuracy of the diffusivity and permeability parameters (∆D and ∆P, respectively) 

deduced by either of the fitting methods is defined as: 

o

od

o

od

S

SS
=S

D

DD
=D

−− ∆∆  (6) 

where d and o are the subscripts of GPPs which have been calculated either from the distorted 

or the original, undistorted curves, respectively.  

 
3. Results 

Figures 1 to 4 show the accuracy of the deduced D parameters as a function of the 

various TP values. Parameters deduced by the TLM and the FCFM methods are marked with 

squares and triangles, respectively. Open and closed symbols represent the results of the 

evaluation of measured and simulated curves, respectively. 

 

Figure 1. Accuracy of the diffusivity parameter at various degrees of truncation of the 

permeation curve. 
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Figure 2. Accuracy of the diffusivity parameter at various degrees of noise added to the 
permeation curve.  

 

 

Figure 3. Accuracy of the diffusivity parameter at various degrees of vertical shift (i.e. along 
the flux axis) of the permeation curve. 
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Figure 4. Accuracy of the diffusivity parameter at various degrees of horizontal shift (i.e. 
along the time axis) of the permeation curve. 

 

4. Discussion 

In order to judge the practical usefulness of the results presented above one has to first 

specify the maximum value of acceptable inaccuracy in the deduced GPPs and then 

investigate whether the transformation corresponding to this inaccuracy is feasible under 

realistic measurement conditions. In the following the largest acceptable inaccuracy in GPPs 

is assumed to be 20%. However, by using Figures 1 to 4, different tolerance levels can be 

examined too.  

Truncation of the permeation curves is a transformation worth studying as one can 

save considerable measurement time and thus money by finishing the permeation 

measurement sooner, even if a certain level of inaccuracy may result in the deduced GPPs. As 

it can be seen in Figure 1, by using FCFM on measurements with high SNR, diffusivity 

parameters can be calculated with acceptable accuracy even when the length of the 

permeation curves is only twice that of the TL parameter. Furthermore, at the same degree of 

truncation FCFM always yields more accurate diffusivity parameters than TLM, for which 

there are at least two reasons. First, TLM heavily relies on the late part of the permeation 

curve, and truncation makes this part of the curve disappear. However, for FCFM the early 

and the late parts of the permeation curve have equal importance. Secondly, before 

performing TLM the flux curve has to be integrated, and this integration actually transforms 



9 

measurement noises into low frequency fluctuations typically with increased amplitude. 

Therefore, the truncation of these large fluctuations might generate large uncertainties in the 

TLM results. This latter effect of the integrated noise is more emphasized for permeation 

curves with only moderate signal to noise ratios, as it can be seen in Figure 1 for diffusivity 

parameters calculated by TLM from the experimental curves. Indeed, in this case relatively 

large inaccuracies appear already at large tmax/TL values, i.e. with minor degrees of 

truncation. Furthermore, S and P have also been found to follow similar curves (not shown). 

The only difference is that at a low value of the ∆t/TL parameter TLM systematically 

underestimates the true S and P values.  

In case of measurements with increased noise levels FCFM again outperforms TLM 

(see Figure 2). Since permeation curves with low signal to noise ratios are measured quite 

often, this result has its importance too. Furthermore, as it can be seen in Figure 2, the 

diffusivity parameter can be reliably determined by using FCFM even if SNR = 10. For the S 

and P parameters similar curves are measured (not shown). 

Similarly to both transformations discussed above, uncontrolled and uncorrected 

background shift has a similar effect on the deduced diffusivity parameter, i.e. once again 

those calculated by FCFM is less affected by this discrepancy. Based on our general 

measurement experience, background shifts as high as 20% of the plateau value of the 

permeation curve can easily occur in case of thick samples with low permeability, so all data 

points shown in Figure 3 are relevant. As far as solubility is concerned, unfortunately it is 

hard to deduce any conclusion from our results, because for some reason in this case there is a 

considerably deviation between simulation and measurement. 

Finally, regarding the temporal shift of the permeation curve it is worth examining 

what constitutes a realistic uncertainty in the inception of the permeation process. Depending 

on the experimental conditions (i.e. the flow rate of the feed and the carrier gas, the volume of 

the source and the receiving chamber of the permeation cell and the volume of the gas 

concentration measuring unit) this uncertainty can be in the 10 seconds range, while the time-

lag for thin samples with high diffusivity can be one minute or less, i.e. ∆t/TL can be as high 

as 0.2. In Figure 4 it can be seen that the error of the diffusivity value, which corresponds to 

this value is more than 20% whenever FCFM is applied. Consequently the application of 

TLM is advantageous for highly permeable membranes. 
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Based on all the discussions above it is evident that with the exception of fast 

permeation processes (i.e. whenever the time-lag is in the sub-minute range) it is always 

preferable to use FCFM for determining the GPPs rather than the widely used TLM. 

 

5. Conclusion 

Although permeability measurements are routinely applied in various laboratories, the 

accuracy of the deduced GPPs is not yet in the focus of research. The goal of the presented 

study is to show that improper data evaluation can lead to GPPs values showing considerable 

deviation from the actual material parameters on the studied sample, and that with a proper 

numerical method (which is FCFM in most cases) accurate GPPs can be deduced even from 

very noisy or truncated permeation curves. Due to the mathematical tools detailed in the 

Appendix, FCFM is actually as easy to perform as the routinely applied TLM.  

Obviously, not only the four examined transformations may introduce inaccuracies in 

the permeation measurement. There are several other experimental factors too [4] such as the 

feed and carrier flow pattern distribution within the permeation cell, the temperature 

distribution within the measured sample, etc. We plan to investigate the effect of these factors 

on the accuracy of the deduced GPPs in a forthcoming publication. 
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Appendix 

 

A.1. Transforming the permeation curve into a dimensionless form 

In order to rewrite the permeation curve into a form which is easy to handle (i.e. can 

be repeatedly calculated many times with a short execution time, which is required during the 

execution of a curve-fitting algorithm) it is subservient to introduce the so called base 

function: 

( ) ( ) ( )tnt

n

n e,=e+=tf −⋅−
∞

=
∑ − 0121 4

2

1

ϑ  (A.1.) 

where ( )t
4 e0, −ϑ  is Jacobi's elliptical theta-function [5]. The base function has an inflection 

point at t ≈ 0.9, and for large t values it converges to a plateau value of one (Figure A.1.). 

With the help of this base function Equation 5 can be rewritten as: 

( ) 







⋅⋅⋅⋅
tD

l

π
f

l

pP
=tJ

2

2

 (A.2.) 

which corresponds to expressing time and flux in the unit of ti and Jp, respectively, where: 

l

pP
=J,

πD

l0.9
=t p2

2

i

⋅
⋅
⋅

 (A.3.) 

(Note that at the inflexion point the flux is J(ti) = 0.24·Jp). 

In this representation each permeation curve is identical regardless of the actual D and 

P parameter values. This considerably simplifies the numerical fitting procedure (in case of 

FCFM) as it will be shown below. 
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Figure A.1. The base function. See text for details. 

 

A.2. Non-linear permeation curve-fitting methods 

The model curve can be fitted numerically to the measured permeation curve by using 

a non-linear curve-fitting method as follows. In case the permeation curve is measured in N 

points, and N=j …1,2,  is the counting index of the measurement points, then the coordinates 

of the data points in the permeation curve can be denoted with ( )jj y,x . Pearson's standard 

chi-square can be defined, which is the sum of the squared errors (between the measured and 

the model curve) divided by the independently determined standard deviation of the errors 

[6], [7]: 

(� 	�)*+ � ���+�,- 	./

-&0

�
 (A.4.) 

This quantity follows the "chi-square" distribution with 2−N=ν  degree of freedom 

(because in our case there are 2 fitting parameters). The mean of this distribution also has a 

value of ν . Thus the reduced chi-square quantity can be defined as: 

ν

χ
=χ r

2
2  (A.5) 
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In case the model curve is valid for the permeation process, the permeation parameters 

can be determined by using an algorithm which minimizes the value of 2
rχ , and if the noise of 

the measurement is accurately estimated, 2
rχ  has the value of approximately 1 at its minima. 

For general non-linear functions the Levenberg-Marquardt algorithm is used for the 

minimization of 2
rχ . Furthermore, if the minimization procedure results in a 2

rχ  value which 

differs significantly from 1, this is an indication that the permeation parameters determined by 

curve-fitting are not valid for the measured sample.  

 

A.2.1.The time-lag method 

In order to apply the time-lag method the amount of the molecules permeated through 

the membrane must either be directly measured or it has to be calculated from the measured 

molecular current by integration. For these quantities the following equation applies [1], [8]: 

���� 	 1�2 ��	 �
��� � 16 � 24� ⋅ � ��1��5� ⋅ ��� ! "#$ 
%

�&0
' (A.6) 

It can be seen that C(t) is the sum of a linear function and a series function quickly 

approaching 0 as time increases. The linear component can be written in the form of:  

( ) 






 −⋅⋅⋅⋅
6

1
2l

tD
Sp

V

lA
=tC2  (A.7.) 

This is a straight line with a slope of P
lV

Ap
, i.e. proportional to P. 

In order to evaluate the diffusion coefficient, the interception of the time-axis is used. 

This point is called the time-lag (tTL), and it gives the second parameter of the fitted line with 

the equation below [1], [8] 

6D/2l=tTL  (A.8.) 

This facilitates the assessment of the parameters because after a sufficiently long 

measurement the only operation required to be performed is line-fitting on the latest part of 

the integrated permeation curve. 
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A.2.2. The full curve-fitting method 

In our research we used the Levenberg-Marquardt algorithm to find the least-square 

estimator of the permeation parameters. This algorithm is a powerful tool but its drawback is 

that it requires the re-evaluation of J(t) for every iteration to minimize the value of 2rχ . This 

makes the minimum calculation procedure prohibitively long if J(t) is evaluated in the form 

given by Equation 5. Therefore, we prefer using the base function, which has to be calculated 

only once, and by using the relation given in Equation A.2 it can always be transformed to 

J(t). Furthermore, it is sufficient to calculate the base function only once at discrete x values 

(however with a sufficiently high resolution) and in between these values it can be linearly 

interpolated, which substantially decreases the execution time of the non-linear curve-fitting 

algorithm [6]. FCFM requires an initial guess for the P and D parameters. For P it is the 

average of the last 10% of the data points of the permeation curve, while the initial D is 

calculated through it  by finding the time where pII 0.24≈ . 


