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The Physiology and Pathophysiology of Pancreatic
Ductal Secretion

The Background for Clinicians
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Abstract: The human exocrine pancreas consists of 2 main cell types:
acinar and ductal cells. These exocrine cells interact closely to contribute
to the secretion of pancreatic juice. The most important ion in terms of
the pancreatic ductal secretion is HCO3

−. In fact, duct cells produce an alka-
line fluid that may contain up to 140 mM NaHCO3

−, which is essential for
normal digestion. This article provides an overview of the basics of pancre-
atic ductal physiology and pathophysiology. In the first part of the article,
we discuss the ductal electrolyte and fluid transporters and their regulation.
The central role of cystic fibrosis transmembrane conductance regulator
(CFTR) is highlighted, which is much more than just a Cl− channel. We
also review the role of pancreatic ducts in severe debilitating diseases such
as cystic fibrosis (caused by various genetic defects of cftr), pancreatitis,
and diabetes mellitus. Stimulation of ductal secretion in cystic fibrosis
and pancreatitis may have beneficial effects in their treatment.

Key Words: pancreas, ductal secretion, cystic fibrosis, CFTR, pancreatitis,
diabetes mellitus

(Pancreas 2015;44: 1211–1233)

T he human exocrine pancreas consists of 2 main cell types: ac-
inar and ductal cells. These exocrine cells interact closely to

contribute to the secretion of pancreatic juice.1 Acinar cells (which
make up >80% of the pancreatic mass) secrete an isotonic, NaCl-
and H+-rich fluid containing various digestive enzymes.2 The se-
creted Cl− is then exchanged to HCO3

− by duct cells to produce
an alkaline fluid that may contain up to 140 mMNaHCO3

−, which
is essential for normal digestion.3–5 Although volume-wise the
ducts cells account for approximately only 5% of the pancreas,
a large proportion of the secreted pancreatic fluid is due to the
duct cells. Under stimulated conditions, duct cells secrete a
large quantity of electrolytes, which is followed by fluid move-
ment. Ductal HCO3

− concentration in guinea pig (which is a
commonly used model animal to study pancreatic secretion)
can be as high as in humans; however, rats or mice can secrete
only 70 to 80 mM HCO3

−.5,6 Although the exact mechanism of
ductal HCO3

− and fluid secretion is only partially understood, it
is evident that the differences in HCO3

− concentration of the
various species are due to the different expression of apical
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and basolateral transporters involved in the secretory process.
In all cases, the physiological function of this alkaline fluid is
to neutralize the acidic content secreted by acinar cells, to pro-
vide an optimal pH for digestive enzymes, to flush down diges-
tive enzyme into the duodenum, and also to neutralize the
gastric acid entering the duodenum.7 Importantly, HCO3

− has
a crucial biochemical role in the physiological pH buffering
system and is a chaotropic agent that prevents the denaturing
of proteins such as digestive enzymes and mucins so it facili-
tates their solubilization in biological fluid.4,8

Investigating the mechanisms of pancreatic ductal HCO3
−

and fluid secretion also helps us to better understand pancreatic
diseases.4 Impaired ductal secretion can result in pancreatic
damage, as seen in cystic fibrosis (CF),3,9 and may contribute
to the development of other diseases such as acute and chronic
pancreatitis.10

The aim of this review is to summarize the physiology and
pathophysiology of pancreatic ductal epithelial cells (PDECs).
Wewill try to keep things simple and not go into too much molec-
ular detail. These have been discussed in recent reviews by distin-
guished experts in the field such as Argent et al,11 Ishiguro et al,3

Lee et al,6 group of Muallem,12 and Novak et al.13 With respect to
ductal pathophysiology, only CF, pancreatitis, and diabetes
mellitus are discussed, and wewill not dealwith pancreatic adeno-
carcinoma (mainly arising from ductal cells).

MECHANISM OF PANCREATIC
DUCTAL SECRETION

For a long time, it was believed that the main function of
PDECs is to ensure mechanical frame for acinar cells. In 1986,
Barry Argent and his colleagues14 have worked out a method that
made it possible to isolate intact pancreatic ducts and PDECs. This
was a landmark discovery, because until then, ductal function
could be investigated only in intact animals. From then on, it
was possible to separately study the function of duct cells, and nu-
merous publications proved that PDECs are responsible not only
for the formation of a mechanical frame for the acini, but also
for the HCO3

− and fluid secretion of the pancreatic juice.3 The de-
velopment of pancreatic ductal cell lines have also helped us in
understanding the secretory process, but as these are mainly de-
rived from adenocarcinomas, their function may be compromised.

Whereas acinar cells have a relatively uniform morphology,
the structure of duct cells is much more diverse. Perhaps the most
enigmatic cell type of the exocrine pancreas is the centroacinar
cells, which are localized at the junction of the acini and are
closely associated with the terminal ductal epithelium.15 Epithelia
are cuboidal along the proximal small ducts and are columnar in
the distal large ducts.16 Therefore, it is not surprising that proximal
and distal duct cells also differ in their function. HCO3

− secretion is
thought to occur primarily in the proximal part of the ducts.3

The Model of Pancreatic Ductal HCO3
− Secretion

The exact mechanism how the exocrine pancreas secretes a
large amount of the alkaline fluid has long been an enigma. Note
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that the HCO3
− concentration of the pancreatic juice in the stimu-

lated state is more than 5 times that found in the serum. Major
milestones in understanding the mechanism of pancreatic HCO3

−

secretion include the discovery of the acidic pancreatic juice
in patients with CF,17 the isolation of pancreatic ducts,14 and
the molecular identification of several ion channels and trans-
porters of PDECs, such as the CF transmembrane con-
ductance regulator (CFTR),18 the Na+/HCO3

− cotransporter
(NBCe1-B, also known as pNBC1),19 and the solute carrier
family 26 (SLC26) transporters.20,21 Our knowledge has also
expanded about how ductal secretion is regulated.6

Pancreatic ductal HCO3
− secretion is a complex process that

can be broadly divided into 2 separate steps. The first step of
HCO3

− secretion is the accumulation of HCO3
− inside the duct

cell across the basolateral membrane. This can be achieved via
a direct mechanism through Na+/HCO3

− cotransporters or indi-
rectly via the passive diffusion of CO2 through the cell mem-
brane and the conversion of CO2 to HCO3

− and H+ mediated
by carbonic anhydrase22 and backward transport of protons by
Na+/H+ exchangers (NHEs) and an H+-ATPase.3 The second
step of HCO3

− secretion across the apical membrane of PDECs
is thought to be mediated by anion channels and transporters
such as CFTR and SLC26 anion exchangers3 (Fig. 1).

How these transporters act in concert to produce a high
HCO3

− secretion in humans is controversial. One hypothesis is that
HCO3

− is secreted via the electroneutral Cl−/HCO3
− exchanger until

the luminal concentration reaches about 70 mM, after which the
additional HCO3

− required to raise the luminal concentration
to 140 mM is transported by CFTR.5 Another hypothesis sug-
gests that 2 electrogenic SLC26 anion exchangers with isoform-
specific stoichiometry mediate HCO3

− secretion at different sites
along the ductal tree, and CFTR functions to activate the ex-
changers and to provide the luminal Cl− required for anion ex-
change to occur.4,6,23

Electrolyte and Fluid Transporters of Pancreatic
Ductal Cells

Cystic Fibrosis Transmembrane
Conductance Regulator

Cystic fibrosis transmembrane conductance regulator, the
most critical player in HCO3

− secretion, was discovered 25 years
ago as the gene whose mutation is responsible for CF.18,24,25 It is
a cAMP-activated Cl− channel found in the plasma membrane,
is a member of the ATP-binding cassette transporter superfamily.
ATP-binding cassette transporters utilize the energy of ATP bind-
ing and hydrolysis to carry out certain biological processes.26 In
fact, ATP-binding cassette transporters have 2 distinct domains:
FIGURE 1. Schematic diagram of ion transport systems in
pancreatic ductal epihelial cells. AE, anion exchanger.
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nucleotide-binding domains and transmembrane domains, which
contain several membrane-spanning α-helices and a regulatory
(R) domain that is phosphorylated by protein kinase A and pro-
tein kinase C (PKC).27,28 In addition, CFTR contains several
other domains mediating protein-protein interactions, includ-
ing postsynaptic density 95/disc-large/zonula occludens 1
(PDZ)–interacting domains in the C terminus. Proteins that
contain PDZ domains often have other protein-interacting modules
(such as ezrin, radixin, moesin-binding domains, and coiled-coil
domains) and therefore can promote homotypic and heterotypic
protein-protein interactions.29

Cystic fibrosis transmembrane conductance regulator is
found in the epithelial cells of many organs including the pan-
creas, lung, liver, digestive tract, reproductive tract, and skin.
Although CFTR is predominantly a Cl− channel, it can also
conduct other anions. Gray et al30 provided clear evidence that
CFTR can transport HCO3

− in pancreatic duct cells, but CFTR
is 3 to 5 times more selective for Cl− over HCO3

−.31 Interestingly,
Cl−/HCO3

− selectivity of CFTR is dynamic and is regulated by ex-
ternal Cl−.32 According to these studies, when Cl− is present in
physiologic concentration in the lumen of proximal pancreatic
ducts, CFTR functions as a Cl− channel and does not carry
HCO3

−. However, when luminal [Cl−] and [Cl−]i are low at the
distal part of pancreatic ducts, CFTR secretes HCO3

− across
the apical membrane of the ductal cells.33,34 It has been shown
that CFTR Cl− currents were rapidly inhibited by HCO3

− in a
voltage-independent manner.35 Cystic fibrosis transmembrane
conductance regulator Cl− permeability is switched by the With-
No-Lysine (WNK)/STE20/SPS1-related proline/alanine-rich
kinase (SPAK) kinase pathway (which is regulated by [Cl−]i),
making CFTR an HCO3

−-permeable channel.34,36 Inositol 1,4,5-
trisphosphate (IP3) receptor (IP3R)–binding protein released with
IP3 (IRBIT), which is another recently described regulatory pro-
tein, also appears to play a fundemental role in the regulation of
HCO3

− secretion. In addition, IRBIT seems to mediate synergism
between intracellular Ca2+ and cAMP signaling.37

Another observation that highlighted the crucial role of
CFTR in pancreatic HCO3

− secretion is that CFTR mutations
associated with exocrine pancreatic insufficiency also show a
major deficiency in the apical CFTR-dependent Cl−/HCO3

− ex-
change activity.38,39 In addition to acting as a Cl− channel,
CFTR also directly or indirectly regulates several transport pro-
teins via formation of macromolecular complexes. Functional
interactions with CFTR were reported for the epithelial Na+

channel, K+ channels, SLC26 anion exchangers, Ca2+ activated
Cl− channel, Na+-HCO3

− transporters (NBCn1-A), NHEs, and
aquaporin (AQP) water channels.4,28,40,41 Ko et al42 provided
important evidence for the functional interaction between CFTR
and select SLC26 transporters (SLC26A3, SLC26A4, and
SLC26A6) and later localized the relevant interacting regions to
the R domain of CFTR and the carboxyl terminus (sulfate transporter
and anti-sigma factor antagonist [STAS] domain) of SLC26 trans-
porters.23 The interactions of CFTR and other transporters are me-
diated by protein-binding domains. In fact, the PDZ-interacting
domain of human CFTR mediates its binding to several PDZ
domain-containing proteins, includingNHE regulatory factor isoform
1-4 (NHERF-1 to NHERF-4) and CFTR-associated ligands.43–45

It has also been demonstrated that the regulation of transporters by
CFTR not only goes one way, but SLC26A6 can also modify
CFTR activity in both the resting and stimulated states.46

Cl−/HCO3
− Exchangers: Solute Carrier Families

4 and 26
Cl−/HCO3

− exchangers are encoded by the SLC4 and SLC26
gene superfamilies and function to regulate intracellular pH,
© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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[Cl−], and cell volume.47 The SLC4 family includes 4 distinct
Na-independent Cl−/HCO3

− exchangers known as AE1, AE2,
AE3, and AE4, with AE1-3 exclusively located on the basolateral
membrane of epithelial cells.48 Pancreatic duct cells express
the housekeeping AE2 exchanger (SLC4A2)49,50 that mediates
electroneural exchange of 1 Cl− (into the cell) and 1 HCO3

−

(from the cell to the interstitium).51 The activity of the latter
transporter is likely to be inhibited during stimulated secretion
(as it acts against it), which has been confirmed in guinea pig.51

The discovery of the SLC26 family of luminal Cl−/HCO3
− ex-

changers was a breakthrough in understanding the mechanism
of pancreatic HCO3

− secretion.52 SLC26 isoforms are large,
structurally well-conserved anion exchangers with highly re-
stricted and distinct tissue distribution. The C-terminal cytoplas-
mic region of all SLC26 proteins includes a “sulfate transporter
and anti-sigma factor antagonist (STAS) domain,”which contains
PDZ recognition motifs.53 To date, 10 SLC26 genes or iso-
forms (SLC26A1-SLC26A11) have been cloned (SLC26A10
is a pseudogene).48 The family members have diverse substrate
specificity. SLC26A1 and SLC26A2 were identified as SO4

2−

transporters,21 SLC26A3 and SLC26A6 function as Cl−/HCO3
−

exchangers.42,54 SLC26A4 is an electroneutral Cl−/HCO3
−/I−

exchanger,55 SLC26A5 functions as an anion regulated, voltage-
dependent motor protein.56 SLC26A7,57 SLC26A9,58 and
SLC26A1159 are Cl− channels.6 The function of SLC26A8 is un-
clear, but it exhibits modest transport of Cl−, SO4

2−, and oxalate.60

In pancreatic ducts, the expression of SLC26A2,61

SLC26A3,62 SLC26A6,50,62,63 and SLC26A1164 was detected.
SLC26A2 immunoreactivity was localized to the epithelia of
large pancreatic ducts in humans; however, no functional data
are available on its activity. SLC26A3 and SLC26A6 were lo-
calized to the apical membrane of human PDECs62,63 and are
thought to have important roles in the mechanism of pancreatic
ductal HCO3

− secretion.23,48,50 SLC26A3 was first identified as
a candidate tumor suppressor gene (down-regulated in adenoma
[DRA]),65 which has Cl− transporter activity and is highly expressed
at the luminal membrane of the intestinal epithelium.Mutations in
the DRA gene cause congenital Cl− diarrhea.66,67 Melvin et al68

showed that DRA functions as an electroneutral, Na+-independent
Cl−/HCO3

− exchanger in the colon. Similarly, the guinea pig
DRA protein was found to be electroneutral.64 In contrast, it has
been demonstrated by Ko et al42 and by Shcheynikov et al69 that
SLC26A3 functions as electrogenic 2Cl−/1HCO3

− exchanger in
transfected HEK293 cells. Putative anion transporter 1 (PAT-1)
was identified as a mouse kidney protein with Cl−/formate ex-
change activity.70 It is a major apical Cl−/HCO3

− exchanger in
the small intestine and mediates the majority of prostaglandin
E–stimulated HCO3

− secretion in the duodenum.71 On the basis
of its localization in the apical membrane of the pancreatic duct
and its function as a 1Cl−/2HCO3

− exchanger,42,69 PAT-1 has
been proposed to be a major contributor to apical HCO3

− secre-
tion in the pancreatic duct.50,62,63 The electrogenic nature of the
transporter could be species-dependent as Clark et al72 found that
although mouse SLC26A6 mediates bidirectional electrogenic
oxalate/Cl− exchange, human SLC26A6-mediated oxalate trans-
port appeared to be electroneutral. In microperfused guinea pig
ducts, measurements of membrane potential and Cl−/HCO3

− ex-
change activity suggested a probable stoichiometry of 1:2.73 It is
important to note that SLC26A3 and SLC26A6 expression and
function have been shown to be regulated by CFTR.62 Although
SLC26A11 expression has also been found in pancreatic ducts,
the guinea pig isoform exhibited only pH-dependent Cl−, oxa-
late, and sulfate transport, but it had no detectable Cl−/HCO3

−

exchange activity in Xenopus oocytes.64 Despite marked species
differences among mammalian SLC26 polypeptides present in
© 2015 Wolters Kluwer Health, Inc. All rights reserved.

Copyright © 2015 Wolters Kluwer 
the pancreatic duct, the anion selectivity and substrate affinity
of guinea pig SLC26 anion exchangers are generally similar to
those of their human orthologs, but they differ in some of their
pharmacological properties.64

Na+/HCO3
− Cotransporter

HCO3
− accumulation across the basolateral membrane of

PDECs is mainly mediated by NBC, a member of the SLC4
family. NBC activity was first identified in the salamander
Ambystoma tigrinum kidney74 and since has been demonstrated
functionally in numerous other cell types including pancreas,75–77

colon,78 liver,79,80 and heart.81 The crucial role of NBC in HCO3
−

secretion is based on studies of isolated rat and guinea pig pancre-
atic ducts.75–77 Ishiguro et al77 showed that NBC contributes to
approximately 75% of the HCO3

− uptake by guinea pig PDECs
during stimulation with secretin. Furthermore, it has been doc-
umented that under resting conditions NBC mediates cellular
HCO3

− efflux when the basolateral membrane potential is about
−70 mV82; however, under secretin-stimulated conditions, the
cotransporter mediates HCO3

− influx.83 The basolateral NBC
isoform cloned from human pancreas and named pNBC1 by
Abuladze et al19 transports 1 Na+ and 2 HCO3

− in pancreatic
ducts, but its stoichiometry is cell-type dependent84 and can
be altered by PKA phosphorylation.85 All members of the
superfamily of Na+-driven HCO3

− transporters were discov-
ered and classified by Boron et al,86 who renamed it to NBCe1-B
and identified 3 different splice variants (NBCe1-A, NBCe1-B,
and NBCe1-C).86

NBCe1-B, which is sometimes called pNBC1, is predomi-
nantly expressed in the pancreas.19 NBCe1-B is an electrogenic
transporter that uses the Na+ gradient more efficiently than NHE1
to accumulate cytosolic HCO3

−, and indeed, NBCe1-B transports
the bulk of basolateral HCO3

− entry during ductal fluid and HCO3
−

secretion.5,6,77,83 The activity of NBCe1-B is regulated by mul-
tiple inputs, including IRBIT87,88 and the WNK/SPAK path-
way.87 NBCe1-C variant is mainly expressed in the glial cells
of the brain.89,90

Electroneutral NBC (namedNBCn1-A or NBC3) is expressed
on the luminal membrane of PDECs and plays a major role in
HCO3

− salvage.19 In the resting state, secretory glands absorb Na+

and HCO3
−91; however, the transporters that play part in absorbing

mechanisms of these ions across the luminal membrane of the
pancreatic ducts have not been characterized in great detail.
Nevertheless, NBCn1-A seems to be regulated by CFTR in a
cAMP/PKA-dependent manner.91 Multiprotein complexes
are formed between NBCn1-A and CFTR by PDZ domain–
mediated interactions, which makes it possible for CFTR to
inhibit NBCn1-A activity during stimulated secretion.91 Ac-
tually inhibiting HCO3

− salvage transporters during secretion
is quite logical, because otherwise they would counteract
the effect of secretory transporters.

Na+/H+ Exchangers
Human NHEs are members of the SLC9 gene family, which

are a subgroup of the monovalent cation proton antiporter super-
family.92,93 NHEs are involved in numerous physiological pro-
cesses, such as regulation of pH homeostasis of the cytosol
and intracellular organelles. They ensure the major Na+-
absorbing mechanism in the kidney and gastrointestinal tract.94

NHE1 is ubiquitously expressed and is localized to the baso-
lateral membrane of epithelial cells including PDECs.95 NHE1 is
activated by acidic pHi levels and plays an indirect role in the
mechanism of pancreatic ductal HCO3

− secretion by the backward
transport of H+ across the basolateral membrane. In most species,
www.pancreasjournal.com 1213
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the inhibition of NHE1 by amiloride has minimal effect on
secretin-stimulated pancreatic ductal fluid and HCO3

− secretion.96,97

NHE2 and NHE3 are expressed in the luminal membrane
of interlobular and main mouse pancreatic ducts, which are re-
sponsible for a luminal H+ efflux (HCO3

− salvage) mechanism.98

In the resting state, the pH of pancreatic juice is acidic and con-
tains high level of CO2, which indicate an active H

+ secretory pro-
cess.6 To clarify the role of NHEs in this mechanism, Lee et al98

carried out experiments by using NHE2 and NHE3 knockout
mice. Approximately 45% of the luminal H+ efflux was mediated
by NHE3. Despite the expression of NHE2, its functional role
could not be established. Interestingly, they identified a novel,
HOE694 (amiloride analog)–sensitive, Na+-dependent H+ efflux
mechanism, which was responsible for the remaining (approx-
imately 55%) luminal H+ efflux. Importantly, CFTR is in close
interaction with NHE3 and also regulates its activity.40,91 It is
likely that the activity of NHE3 is inhibited during HCO3

− se-
cretion. The role of other potential NHE isoforms in ductal
secretion/absorption needs further investigation.

Aquaporins
It was believed for a long time that water flow from the baso-

lateral to the luminal side is solely driven by osmotic gradient via a
paracellular pathway. However, nowadays, it is evident that water
transport is also an actively mediated transcellular process. In
most organisms, AQP water channels account for transcellular
water permeability.99,100 Aquaporins are permeable not only to
water, but also to small solutes such as cations and glycerol.99,100

There are at least 13 AQP genes (AQP0-AQP12) in mammalian
cells101; Delporte102 gives a nice overview of pancreatic AQP ex-
pression in different mammalian species. Briefly, mouse PDECs ex-
press abundant AQP1 and AQP5 at the apical membrane and
AQP1 alone at the basolateral membrane.103 Marked expression
of AQP1 and small amount of AQP5 were detected in isolated rat
ductal cells by Ko et al.104 They also demonstrated that AQP1
was present in both luminal and basolateral membranes of interlob-
ular PDECs. Almost all of the secretin-evoked pancreatic fluid se-
cretion is thought to be mediated by AQP1.104 Similarly to that
found in rats, human pancreatic ducts also express AQP1 in the lu-
minal and basolateral membranes; however, AQP5 was detected
only in the luminal membrane.105,106 Interestingly, both AQP1
and AQP5 were colocalized with CFTR at the apical membrane
of intercalated duct cells.105 Thus, it is no wonder that guinea pig
CFTR gene silencing by RNA interference reduces both CFTR
and AQP1 expression in PDECs, which results in inhibition of pan-
creatic fluid secretion.107 Taken together, these observations sug-
gest that AQP1 and AQP5 are the most important water channels
in pancreatic ducts. The restoration of AQP expression by gene
transfer may be beneficial as this has already been demonstrated
in case of radiation-induced salivary hypofunction.108

Other Enzymes, Transporters, Pumps, and Channels

Carbonic Anhydrases
Carbonic anhydrases are a diverse group of intracellular and

extracellular enzymes involved in pancreatic HCO3
− secretion. In

fact, they are in close interaction and form complexes with other
transporters (eg, SLC26A6, pNBC) involved in secretion.109,110

The nonspecific carbonic anhydrase inhibitor acetazolamide has
been shown to significantly inhibit secretion.22 This may be due
to a partial inhibition of basolateral HCO3

− uptake as seen in hu-
man pancreatic duct cells.49 Reverse transcriptase–polymerase
chain reaction and immunohistochemistry confirmed the ex-
pression of carbonic anhydrase II, IV, IX, and XII in the human
pancreas and/or in pancreatic ducts.111–113 Interestingly, the
1214 www.pancreasjournal.com
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targeting of carbonic anhydrase IV to the apical plasma mem-
brane of duct cells seems to be CFTR dependent.114,115

Na+/K+-ATPase Pump and K+ Channels
The main driving forces for pancreatic electrolyte and

fluid secretion are the basolaterally expressed Na+/K+-ATPase
pump6,116,117 and K+ channels, which produce the negative
membrane potential that is essential for ductal anion secre-
tion.4,118 Numerous types of K+ channels are expressed in PDECs
(including KCNN4, KCNMA1, KCNQ1, KCNH2, KCNH5,
KCNT1, KCNT2, and KCNK5), which are discussed in detail
by Hayashi and Novak118 and Venglovecz et al.119 Not all of
these K+ channels may be functional in the ducts, and in some
cases, their localization is also a matter of question. Microelec-
trode and patch-clamp methods revealed functional maxi-K+

(BK) channels, intermediate-conductance Ca2+-activated K+

(IK) channels, and pH/HCO3
−-sensitive K+ channels in PDECs.118

Gray et al120 have identified a Ca2+-sensitive, voltage-dependent,
maxi-K+ channel on the basolateral membrane of rat pancreatic
duct cells. In contrast, Venglovecz et al121 demonstrated maxi-K+

channel expression on the luminal membrane of guinea pig
PDECs. Interestingly, it has recently been shown that gastric and
nongastric H+/K+ pumps (expressed on the luminal and basolateral
membranes) may also play part in the secretion by ducts.122 The ef-
fects of Na+/K+/Cl− cotransporter (NKCC) and H+ ATPase may
be important only in rodents (rat and mice) and pigs, respec-
tively, so they are not discussed in the current review.11

Ca2+-Activated Cl− Channels
Besides CFTR, other anion channels such as Ca2+-activated

Cl− channels (CaCCs) are localized on the luminal membrane of
duct cells.123,124 Ca2+-activated Cl− channels may play role in nu-
merous physiological processes including smoothmuscle contrac-
tion and fertilization and HCO3

− secretion in epithelial cells.125

The molecular identity of CaCCs in PDECs needs to be investi-
gated. A likely candidate of ductal CaCC is called ANO1 (also
called transmembrane member 16A, TMEM16A, or discovered
on gastrointestinal stromal tumours 1 [DOG1]), which was shown
to be expressed in the CAPAN-1 human PDECs line,126 and in
centroacinar cells and small ducts of human pancreatic tissue.127

Recent observations reported that ANO1 anion selectivity is dy-
namically regulated by the Ca2+/calmodulin complex.128 ANO1
becomes highly permeable to HCO3

− at high [Ca2+]i via Ca
2+-

dependent interaction between ANO1 and calmodulin.128 Other
CaCC candidates in PDECs belong to the bestrophin family mem-
bers. hBest1, hBest2, hBest3, and hBest4 have been identified
in the CF pancreatic duct cell line, CFPAC-1.129 hBest1 was ex-
pressed in the cell membrane and specific cytoplasmic domains
and during its biosynthesis followed the classic secretory path-
way.129 Knockdown of hBest1 expression significantly de-
creased Ca2+-activated anion efflux from CFPAC-1 cells.
REGULATION OF PANCREATIC
DUCTAL SECRETION

The exocrine pancreas secretes about 1 to 2.5 L of pancre-
atic juice daily. Body size, but not sex, influences the rate of
HCO3

− and fluid secretion.130,131 The volume of secreted pan-
creatic fluid decreases with age, which has been confirmed
by invasive131,132 and noninvasive techniques.133 In fact, both
the secretory volume and HCO3

− output showed relatively steep
decline after 20 years of age, so these need to be taken into con-
sideration when evaluating the exocrine function of patients.
The reduction in secretion may be due to age-related morpho-
logic and functional changes of the pancreas.
© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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The control of pancreatic secretion is divided into cephalic,
gastric, and intestinal phases, the latter of which is the most impor-
tant with respect to ductal secretion.4 Resting secretion accounts
for only a small fraction of the total secreted volume. The great
majority of ductal fluid is secreted in response to stimulation
(eg, that induced by a meal) and is regulated by both neural
(enteropancreatic vagovagal reflex) and hormonal (most im-
portantly by secretin) components. Obviously, it is evident that
pancreatic ductal secretion is very precisely regulated not only
by stimulatory (Fig. 2A), but also by inhibitory (Fig. 2B) path-
ways.134 Pancreatic ductal cells express many receptors for
hormones and neurotransmitters, the activation of which can
lead to either stimulation or inhibition of HCO3

− and fluid secre-
tion via intracellular signaling pathways detailed below. The
primary signaling systems are the cAMP/protein kinase A and
Ca2+ pathways that mediate almost all secretory gland func-
tions.135 An intimate interaction and crosstalk occur at multiple
FIGURE 2. Regulation of pancreatic ductal secretion. A, Agonists which s
cause inhibition of ductal secretion. Intracellular messengers mediating t
acethylcholine; ATII, Angiotensin II; CCK, cholecystokinin; SS, somatostatin
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levels between these 2 pathways to control and fine tune the ac-
tivity of each other.135

Stimulatory Pathways

cAMP and cGMP Signaling
Secretin, vasoactive intestinal peptide (VIP), and β-adrenergic

receptor agonists are all coupled to adenylyl cyclase activation.
Secretin is 1 of the most important physiological regulators of
ductal HCO3

− secretion. In response to the passage of food
(chyme) and to low duodenal pH (between 2 and 4.5), secretin
is released from enteroendocrine cells of the duodenum into the
circulation and intestinal lumen.136,137 Other factors involved
in the release of secretin include high concentration of bile salts
and fatty acids.138

The central role of secretin in stimulation of pancreatic
HCO3

− secretion was suggested by Chey et al,137 who found
timulate ductal secretion. B, Neurotransmitters and hormones which
heir actions are shown. A, adrenaline; NA, noradrenaline; ACh,
; 5-HT3, serotonin; AVP, arginine-vasopressin. Based on Argent et al.11
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an 80% inhibition of postprandial HCO3
− output by administer-

ing antisecretin antibodies. It has also been proposed that other
factors, such as CCK stimulation and cholinergic vagal output
via an enteropancreatic vagovagal reflex, contribute to the reg-
ulation of ductal secretion.4 This is based on the results of Gyr
et al,139 who demonstrated that ductal secretion evoked by ex-
ogenous application of secretin is significantly lower than the
extent observed during postprandial secretion. In fact, a num-
ber of publications point to the roles of CCK and vagal stimu-
lation in secretin-induced secretion.140–142 Secretin stimulates
pancreatic ductal fluid and HCO3

− secretion via increasing the
activity of adenylate cyclase and the level of cAMP. High intra-
cellular cAMP level consequently activates protein kinase
A,143 which phosphorylates the regulatory (R) domain of
CFTR. These events lead to the activation of CFTR and stimu-
lation of secretion.

The secretory effects of VIP and sympathomimetics acting
on β-adrenergic receptors are species dependent. Similarly to
secretin, VIP increases the level of cAMP in guinea pig pancre-
atic ducts.144 In contrast, VIP exerts weak effects on cAMP ac-
cumulation145 and fluid secretion in rats.146 The nonselective
β-adrenergic receptor agonist isoprenaline stimulates fluid se-
cretion in rat pancreatic ducts,147 but it has no effect on cAMP
concentrations in guinea pig ducts.144

The intestinal peptide hormones guanylin and uroguanylin
play role in the regulation of electrolyte and fluid secretion of pan-
creatic ducts via stimulation of guanylate cyclase C (GC-C).148,149

Guanylin, uroguanylin, and GC-C are expressed on the apical
membrane of human and rat pancreatic ducts.148–150 Activation
of GC-C by these peptides causes elevation of intracellular cGMP
concentration.151 The increase in cGMP level stimulates cGMP-
dependent protein kinase II,152 which mediates stimulation of
CFTR153 and finally elevates fluid and HCO3

− secretion.148,154

Ca2+ Signaling
Regulation of pancreatic ductal intracellular Ca2+ concen-

tration ([Ca2+]i) is mediated by various pumps and channels.36

Acetylcholine (the main neurotransmitter of the parasympa-
thetic nervous system), ATP, angiotensin II,155 and hista-
mine156 effectively stimulate ductal HCO3

− secretion via
elevation of [Ca2+]i.

157,158 Furthermore, it has been shown that
the Ca2+ ionophore ionomycin also activates ductal fluid se-
cretion, suggesting that elevation of [Ca2+]i alone is sufficient
to evoke the stimulatory response.157 It has been demon-
strated that Ca2+-sensing receptor was highly expressed on
the rat pancreatic duct and the luminal membrane of CAPAN-1
cells.159,160 Furthermore, it was also confirmed that HCO3

− secre-
tion is stimulated by luminal administration of Ca2+-sensing re-
ceptor agonist gadolinium (Gd3+) via elevation of [Ca2+]i.

159

Pancreatic ducts are innervated by both peptidergic and
cholinergic neurons, so it is not surprising that acetylcholine
plays a role in the regulation of ductal secretion. It was shown
that M2 and M3 subtypes of muscarinic receptors are present
in pancreatic ducts of guinea pig, and their density is 7 times
greater than that found in acinar cells.161 Acetylcholine directly
stimulates HCO3

− secretion in guinea pig and in rat, which is
abolished by atropine and removal of extracellular Ca2+, and
the maximal secretory response is similar to that caused by se-
cretin.157,158 The [Ca2+]i response evoked by acetylcholine re-
sulted from both mobilization of Ca2+i stores and influx of Ca2+

from the extracellular space.157 In addition, the cholinergic
neurotransmitter potentiates the effect of secretin on secretion
in isolated rat pancreatic ducts.162

Several purines and pyrimidines found in the extracellular
fluid (ie, ATP, ADP, adenosine, UTP, and UDP) can activate
1216 www.pancreasjournal.com
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intracellular Ca2+ signaling via purinergic receptors (P2Rs).
Purinergic receptors are classified into metabotropic P2Y and
ionotropic P2X receptors.163 P2Y2, P2Y4, P2X1, P2X4, P2X7,
and probably other P2Rs such as P2Y1 and P2Y11 are
expressed in pancreatic ducts.164 The distribution of different
receptor subtypes in pancreatic duct cells is controversial but
is probably species dependent. P2Y receptors are likely local-
ized to both apical and basolateral membranes, whereas P2X
receptors are expressed only on the apical membrane.164,165

Ishiguro et al166 demonstrated that apical and also basolateral
administration of ATP evokes elevation of [Ca2+]i. They also
showed that luminal application of ATP stimulated fluid and
HCO3

− secretion. This stimulatory effect of ATP is based on
evidence that apical administration of ATP/UTP activates
CFTR, Cl−/HCO3

− exchangers, and CaCCs and also regulates K+

channels on CAPAN-1 cells.126,167 In contrast, when ATP was
added from the basolateral side, the result was inhibition of either
spontaneous or secretin-stimulated secretion in guinea pig pancre-
atic duct.166 This finding was confirmed by Szűcs et al168 on the
human CAPAN-1 duct cells. Purinergic ligands released from
nerve terminal at the basolateral membrane or from zymogen
granules of acinar cells can also stimulate P2Rs.165,169

The systemic renin-angiotensin system is essential for the
regulation of blood pressure and electrolyte and fluid balance.
In pancreatic duct cells, angiotensin II regulates anion secre-
tion via activation of angiotensin II type 1 receptors.155 It has
been documented that angiotensin II dose-dependently in-
creases short-circuit current of CFPAC-1 cell line, the effect
of which is completely abolished by losartan, an angiotensin
II type 1 receptor blocker and depletion of Ca2+i .170

Several other agonists (bombesin, neurotensin) can influ-
ence ductal [Ca2+]i and can stimulate pancreatic secretion.
For example, bombesin directly stimulates ductal HCO3

− and
fluid secretion in guinea pig via activation of gastrin-releasing,
peptide-preferring bombesin receptor.158 A number of publica-
tions proved that CCK increases HCO3

− and water secretion and
potentiates the effects of secretin on pancreatic ducts.140,158 The
direct effect of CCKon guinea pig PDECs has been demonstrated
by Szalmay et al,158 who showed that the secreted fluid stimulated
by CCK is rich in HCO3

− and is mediated by CCK1 receptor sub-
types. The effect of CCK on [Ca2+]i is controversial. It has been
demonstrated that CCK significantly increased cytosolic Ca2+

concentration up to 50-fold over baseline in rat.171 In another
study, CCK did not cause any marked and reproducible increases
in [Ca2+]i on rat and guinea pig pancreatic ducts.172
Unknown Signaling
Besides other gastrointestinal hormones, insulin also

plays an important role in the regulation of ductal secretion.
Initially, Hasegawa et al173 demonstrated a potentiating effect
of insulin on pancreatic juice secretion in an isolated perfused
rat pancreas model. In contrast, Berry and Fink174 and Howard-
McNatt et al175 showed that the exogenous administration of insu-
lin inhibited secretin-stimulated pancreatic HCO3

− secretion via
a neurally mediated mechanism in dogs. The results of some
other studies actually suggest that endogenous insulin promotes
pancreatic secretion. Intravenous administration of glucose
(resulting in elevated endogenous plasma insulin concentration)
seems to increase secretin-stimulated pancreatic exocrine secre-
tion in humans.176 In accord with the latter results, stimulated pan-
creatic secretion was markedly blocked by treatment with rabbit
anti-insulin serum, whereas it was not influenced by normal rabbit
serum in rats177 and dogs.178 Because exogenous glucose adminis-
tration (used to create systemic hyperinsulinemia via endogenous
© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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pancreatic insulin production) did not inhibit secretin-induced
pancreatic HCO3

− secretion, Simon et al179 proposed that because
exogenous insulin exerts feedback regulation on the pancreas, it
likely suppresses endogenous insulin secretion (which likely
mediates the inhibitory response reported by Berry and Fink,174

and Howard-McNatt et al.175 Taken together, although exogenous
insulin administration may have an inhibitory effect on ductal se-
cretion, endogenous insulin exerts a stimulatory effect. The effect
of insulin seems to be independent of changes in intracellular
cAMP concentrations.144

Inhibitory Pathways
The inhibitory regulation of pancreatic secretion is medi-

ated via direct (on the ductal cells) or indirect mechanisms.
The inhibition of secretion may be physiologically important
in reducing secretion back to the basal level after a meal and
also in maintaining the integrity of the pancreas via limiting hy-
drostatic pressure within the duct lumen.180 This is crucial in
case of ductal obstruction as the elevated pressure may seri-
ously damage the pancreas. Unfortunately, the authors’ knowl-
edge of inhibitory mediators is scarce, especially concerning
their molecular mechanisms of inhibition, but numerous sub-
stances have been shown to negatively regulate secretion,
which are discussed below. For a more detailed overview of in-
hibitory substances, refer to the authors’ earlier publication.180

Substance P
The neuropeptide substance P (SP) is a potent inhibitor

of pancreatic ductal HCO3
− and fluid secretion. Substance P

strongly inhibits in vivo pancreatic fluid secretion in multiple
species such as the dog,181,182 rat, and mouse.183 Moreover,
SP inhibits both basal- and secretin-stimulated fluid secretion
of isolated rat and guinea pig pancreatic ducts in vitro,146,184

suggesting a direct action of SP on pancreatic duct cells. The
inhibitory effect of SP is dose dependent in rat and was par-
tially reversed by spantide, a neurokinin (NK) receptor antago-
nist.146 Accordingly SP exerts its inhibitory effect via the
activation of G protein–coupled NK receptors. Kemény et al185

demonstrated that all 3 NK receptors are expressed in the lumi-
nal membrane, whereas NK2 and NK3 receptors were also de-
tected on the lateral membranes of guinea pig pancreatic ductal
cells. Furthermore, both of the laterally expressed NK recep-
tors mediate the inhibitory effect of SP on isolated guinea pig
pancreatic duct.185 Substance P binding to NK receptors acti-
vates PKC isoforms, which are expressed in PDECs and medi-
ate the inhibition of HCO3

− secretion by modulating an SLC26
Cl−/HCO3

− exchanger.184,186 To confirm that the effect of SP is
indeed mediated by PKC, the highly selective, cell-permeable
PKC inhibitor bisindolylmaleimide was used.186

Serotonin
5-Hydroxytryptamine (5-HT)–reactive cells with morpho-

logical characteristics of enterochromaffin cells are present
throughout the duct system, that is, the main, intralobular, and in-
terlobular ducts of guinea pigs.187 In isolated interlobular ducts,
basolateral administration of 5-HT strongly but reversibly
inhibited secretin- and ACh-stimulated fluid secretion as well
as spontaneous (HCO3

−-dependent) secretion.187 The inhibition
is mediated by the 5-HT3 receptor, a ligand-gated, nonselective
cation channel. Luminal administration of 5-HT failed to affect
basal and secretin-stimulated fluid secretion, suggesting that
only basolateral, but not luminal, 5-HT receptors mediate the
inhibition of fluid secretion.187 The inhibition is probably due
to the reduced uptake of HCO3

− via Na+-HCO3
− cotransport across
© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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the basolateral membrane. The enterochromaffin cells in the pan-
creatic duct may function as intraductal pressure sensors and
regulate ductal fluid secretion. When the intraluminal pressure
of pancreatic ducts increases, 5-HT is released into the intersti-
tium from the ductal enterochromaffin cells, and the released
5-HT binds to 5-HT3 receptors on the basolateral membrane
of duct cells and inhibits fluid secretion.187 This may be a key
mechanism in maintaining the integrity of the pancreatic tissue.

Arginine Vasopressin
Arginine vasopressin plays a key role in the fluid homeo-

stasis of mammals. In the pancreas, 2 early publications sug-
gested that arginine vasopressin inhibits pancreatic secretion
in an indirect manner.188,189 Beijer et al188 demonstrated that the
vasoconstriction caused by arginine vasopressin decreases blood
flow and reduces the oxygen consumption of the pancreas in
anesthetized dogs. Few years later, Kitagawa et al189 showed
that exogenous administration of vasopressin caused dose-
dependent inhibition of pancreatic juice flow and HCO3

− output
by elevation of plasma osmolality in conscious dog. Further-
more, arginine vasopressin also inhibits secretin-stimulated
fluid secretion in isolated guinea pig pancreatic ducts via eleva-
tion of [Ca2+]i from intracellular Ca2+ stores.190

Somatostatin
Somatostatin is secreted from several locations including

the gastrointestinal tract (eg, the stomach, the intestine, and
the delta cells of pancreas) and the central nervous system. So-
matostatin was first identified in the brain by Brazeau et al191

in 1973, and its function was related to inhibition of growth
hormone secretion; thus, this peptide is also known as a growth
hormone–inhibiting hormone. Since then, it has been demon-
strated that somatostatin has a wide range of inhibitory func-
tions. The exogenous administration of somatostatin inhibited
pancreatic HCO3

− secretion induced by meal and also reduced
the secretin-stimulated pancreatic HCO3

− secretion.173,192–196

Konturek et al195 demonstrated that the somatostatin analog
cyclosomatostatin caused dose-dependent inhibition of pancre-
atic HCO3

− secretion via partially direct inhibitory effect on
exocrine pancreas and the reduction of secretin release in dogs.
The indirect inhibitory mechanism of somatostatin was con-
firmed by the observations of Kuvshinoff et al,197 who demon-
strated the role of intrapancreatic cholinergic mechanism in the
inhibitory effect of somatostatin on secretin-stimulated HCO3

−

secretion. Furthermore, somatostatin significantly reduced the
effects of secretin on cyclic AMP level of pancreatic duct cells
via inhibition of adenylyl cyclase activity.144

Pancreatic Polypeptide and Peptide YY
Pancreatic polypeptide (PP) and peptide YY (PYY) are

structurally related peptide hormones. In fact, PP is derived from
duplication of the PYY gene.198 Both PP and PYY are released
in response to intake of food.199 Pancreatic polypeptide is secreted
by PP cells of the Langerhans islets.200 It has been shown that the
physiologic function of PP is to inhibit pancreatic HCO3

− secretion
in response to meal and secretin.201–203 Konturek et al201

demonstrated marked differences in the effect of PP on the exo-
crine pancreas of man and dog. Pancreatic polypeptide adminis-
tration caused dose-dependent inhibition of secretin-stimulated
pancreatic fluid and HCO3

− secretion in dog, but not in human.
Similarly to this observation, Lonovics et al202 have also shown
that PP reduced the endogenously stimulated pancreatic secretion
in a dose-dependent manner, whereas the release of CCK and se-
cretin was not affected. Based on these results, they suggested that
www.pancreasjournal.com 1217
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the inhibitory effect of PP is probably direct and that it is not
mediated via inhibition of CCK or secretin release.202

Peptide YY is secreted by L cells localized in the mucosa
of gastrointestinal tract, especially in ileum and colon.204 It
plays fundamental roles is numerous physiological processes,
including inhibition of gastric acid and meal-stimulated pan-
creatic fluid and HCO3

− secretion; furthermore, it increases wa-
ter and electrolyte absorption in the colon.205,206 Exogenous
application of PYYalso reduced secretin- and CCK-stimulated se-
cretion in dog.207 The inhibitory action of PYYon pancreatic se-
cretion is likely to be indirect; thus, it is fully mediated by the
vagal efferent nerve.208

Glucagon
Glucagon is secreted by alpha cells of the Langerhans is-

lets and is known to have an essential role in the regulation of
glucose metabolism. Besides this important function, the exog-
enous administration of glucagon also inhibits stimulated
pancreatic HCO3

− secretion in rats,173 dogs,209–212 cats,213 and
humans.214,215 Generally speaking, the inhibitory effect of glu-
cagon on digestive enzyme output is greater than that on pan-
creatic secretory volume and bicarbonate output. Glucagon
had no effect on the levels of endogenously released secre-
tin.211 This observation suggests that the inhibitory effect of glu-
cagon on pancreatic secretion is not mediated via inhibition of
secretin release. In addition, glucagon did not significantly al-
ter resting or secretin-stimulated cyclic AMP levels in isolated
guinea pig pancreatic duct segments.144

Regulatory Proteins Involved in Epithelial Fluid and
HCO3

− Secretion

PDZ-Based Adaptors
Numerous PDZ domain-containing transporters play a fun-

damental role in the HCO3
− transport mechanism of pancreatic

ducts via formation of protein complexes. PDZ stands for the first
letters of 3 proteins that were initially shown to possess such do-
mains: postsynaptic density protein (PSD95),Drosophila disc large
tumor suppressor (Dlg1), and zonula occludens 1 protein (ZO-1).
PDZ domain is a common structural unit of 80 to 90 amino acids
that mediates protein-protein interactions by binding to short pep-
tide sequences, most often in the C termini of target proteins.216

PDZ domains are responsible for targeting and trafficking of sev-
eral membrane proteins such as receptors, transporters, channels,
and adhesion proteins, through their PDZ-binding motifs.217

Furthermore, they bind to the PDZ domains of other proteins
and develop multiprotein scaffolding networks.217

One of the PDZ proteins that is important in epithelial
transport is the NHERF family. NHERF-1 (also known as
ezrin-binding protein of 50 kd [EBP50]) is a scaffolding pro-
tein, which tethers several membrane protein to apical actin
cytoskeleton in polarized epithelia via ezrin.28 The adapter
protein has been shown to bind to the PDZ-binding motifs of
CFTR Cl− channel, NHE3, β2-adrenoreceptor,

218,219 and
Slc26 family anion exchangers DRA (Slc26A3)220 and PAT-1
(Slc26A6).63 In addition, NHERF-1 facilitates the formation
of multiprotein complexes, which is fundamental for the adequate
function of transporters, channels, and receptors.43 Therefore, it is
not surprising that NHERF-1 is involved in numerous physio-
logical processes such as the regulation of phosphate transport
in the kidney,221 hepatic Mrp2 expression and function,222 pro-
tein kinase D activity,223 or trafficking of β2-adrenergic
receptors.224 To confirm the role of NHERF-1 in the pancreas,
we demonstrated that the genetic deletion of NHERF-1 greatly
reduced the translocation of CFTR to the luminal pancreatic
1218 www.pancreasjournal.com
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ductal cell membrane and also decreased both in vitro and in
vivo pancreatic HCO3

− and fluid secretion.225 Other studies
have identified the fundamental role of NHERF1 and NHERF2
in the regulation of the luminal HCO3

− salvage transporters
NHE3 and NBCn1-Avia formation of multiprotein complexes
with CFTR.40,91,226 This interaction may also be important in
inhibition of these salvage transporters during secretion.

Moreover, pancreatic duct cells express several other scaffold
proteins with PDZ domains, such as Shank2, S-SCAM, SAP97,
and PSD-95.6,216,217 Shank2 is localized to the apical pole of pan-
creatic duct cells and is involved in the regulation of the expres-
sion and activities of CFTR and NHE36,216,227

With-No-Lysine and Sterile 20-Like Kinases
Recent publications suggest that WNK and SPAK have essen-

tial roles in the regulation of salt homeostasis and blood pressure
via modulation of the activity of diverse ion transporters.228–230 In
fact, the main function ofWNKs is the regulation of Na+, K+, Cl−,
HCO3

−, and Ca2+ transporters in epithelia231–233 either by modu-
lating their surface expression via promoting their endocytosis
or by regulating their activity.12,234 It is likely that WNKs do not
act directly on the ion transporters, but they activate downstream
kinases SPAK and OSR1.6 The activated SPAK/OSR1 phosphor-
ylates the ion transporters and evokes their endocytosis.230

In pancreatic ducts, WNKs act through SPAK to control the
activities of NBCe1-B and CFTR, and knockdown of WNKs and
SPAK increases pancreatic ductal secretion.235 The WNK/SPAK
pathway appears to have dual function in pancreatic ducts in the
resting and stimulated states.6 Under resting conditions, WNK/
SPAK pathway reduces surface expression and activity of trans-
porters (such as CFTR, SLC26 anion exchangers, and NBCe-1B),
which will overall reduce pancreatic ductal fluid and HCO3

−

secretion.34,87,235,236 In the stimulated state, when [Cl−]i is low
(in the distal ducts), the WNK/SPAK pathway has an opposite
effect. In this case, the activation of the WNK1/SPAK resulted
in increased HCO3

− permeability of CFTR (making it primarily
an HCO3

− channel) and inhibited apical Cl−/HCO3
− exchange ac-

tivity (that may reabsorb HCO3
− from the lumen).6,34

IP3 Receptor–Binding Protein Released With IP3
IRBITwas identified as a protein that interacts with the IP3-

binding domain of IP3 receptors (IP3R).
237 It suppresses the acti-

vation of IP3R and inhibits IP3-induced Ca
2+ release by competing

with IP3 binding on the NH2-terminal domain of the IP3 recep-
tor.238,239 Besides its other diverse functions, accumulating ev-
idence from the groups of Muallem and Mikoshiba suggests
that IRBIT has an essential role in the regulation of epithelial
HCO3

− secretion.37,87,88,240,241 IRBIT aggregates at the apical
pole of the pancreatic duct,87 where expression of IP3Rs is also
high. IRBIT antagonizes the effect of the WNK/SPAK pathway
and stimulates ductal secretion in 2 ways: it increases the cell
surface expression and also the activities of Cl− and HCO3

−

transporters.12,235 It has been reported that IRBIT interacts
with and regulates the activities of CFTR, SLC26A6 and possi-
bly NHE3 on the apical pole, and NBCe1-B on the basal part
of the ductal cells. The exact regulatory mechanism mediated
by IRBIT is only partly understood, but it seems that IRBIT
activates basolateral and apical transporters by different mech-
anisms. Shirakabe et al88 demonstrated that IRBIT induces con-
formational changes in pNBCe1-B, which results in dissociation
of its autoinhibitory domain. In contrast, IRBIT activates CFTR
by direct interaction and reduces the close-duration time of CFTR
and thus increases CFTR open probability.6,87 Importantly, IRBIT
also acts as a conductor to mediate synergism between Ca2+ and
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cAMP signaling pathways in regulating the activation of CFTR
and SLC26A6.37

PATHOPHYSIOLOGICAL ROLE OF PANCREATIC
DUCTAL SECRETION

Cystic Fibrosis
The secretory function of the pancreatic ductal system is

rather markedly affected by CF, which is the most common fatal
autosomal recessive disease in white population. Cystic fibrosis
is caused by the absence or dysfunction of CFTR, a critical regu-
lator of HCO3

− secretion. Almost 2000 CF-causing mutations have
been identified in the cftr gene.242 Mutations are divided into 6
different classes according to mechanisms of CFTR dysfunction:
defective protein production (I), defective protein processing (II),
defective channel regulation (III), defective channel conduction
(IV), reduced protein synthesis (V), and reduced protein stability
(VI). The most common cftr mutation, the deletion of phenylala-
nine at position 508 (delF508-CFTR), was identified in 1989.24

This mutation primarily results in CFTR misfolding and degra-
dation (class II), but it also shows other defects of classes III
and VI.27,28,242–244 Although the life expectancy of individuals
with CF has increased dramatically in the past decades, the av-
erage age of death (caused by respiratory failure) is still about
40 years.245 The disorder affects all epithelia expressing CFTR
and presents with exocrine pancreatic insufficiency, an in-
crease in sweat NaCl concentration, male infertility, and airway
disorder.28 The major defect in CF is the inability to maintain
luminal hydration of the lung, pancreas, and epididymis, which
leads to thick and viscous fluid formation plugging the affected
organs that will cause massive damage.246,247 The deficient
ductal electrolyte and fluid secretion causes the pancreatic
juice of CF patients to become acidic.4 This will contribute to
precipitation of mucins and premature digestive enzyme activa-
tion inside the ductal lumen, resulting in the characteristic pancre-
atic cyst formation and scarring (fibrosis).248 The destruction of
acinar cells eventually leads to pancreatic insufficiency, the degree
of which can range from mild to severe depending on the
cftr mutation.249,250

Because at least part of HCO3
− secretion is coupled to Cl−

transport, it is no wonder that cftr mutations resulting in re-
duced Cl− conductance can markedly impact the secretory pro-
cess. However, a number of disease-causing cftr mutations
were found that support normal or even elevated Cl− channel
activity, but had no (in pancreatic insufficient patients) or
TABLE 1. Disease Phenotypes of the Pig and Ferret Cystic Fibrosis M

Pig

Lung histology Normal

Pancreatic destruction Very severe
Meconium ileus 100%
Liver Focal biliary cirrhosis

Gallbladder Mucus- and bile-filled
microgallbladder

Vas deferens Intact

Newborn pigs and ferrets lacking CFTR exhibit defective chloride transport
fibrosis. Notably, tissue damage progresses throughout the life of the diseased a

LFT indicates liver function tests.
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reduced (in pancreatic sufficient patients) HCO3
− transport.39

This may be due to defective activation of SLC26 anion ex-
changers catalizing HCO3

− secretion by mutant CFTR.42 These
results also suggest that in some cases correction of Cl− trans-
port may not necessarily be enough to restore HCO3

− secretion.
Recently, small-molecule drug-like CFTR correctors and

potentiators have been utilized in clinical trials involving CF
patients to compensate for trafficking and gating defects, re-
spectively.251,252 Cystic fibrosis transmembrane conductance
regulator correctors (eg, 4–phenyl-butyrate or VX-809) are targeted
at protein misprocessing, whereas potentiators (eg, ivacaftor) are
used to restore Cl− channel activity. Some compounds have both
corrector and potentiator effects, which could be especially useful
in treating the most common form (F508del) of cftrmutation. Gene
transfer–based therapies (to introduce wild-type CFTR into cells
expressing defective CFTR) have also offered hopeful perspectives
in resolving the problem of CF. Because the majority of the morbid-
ity andmortality in CF is a result of lung disease, most efforts in this
field have focused on gene transfer to the airway. We have shown
that wild-type cftr transfer using a recombinant Sendai vector
significantly increased the apical Cl−/HCO3

− exchange activity
of CFPAC-1 duct cells derived from the adenocarcinoma of a
CF patient.50 Therefore, restoration of pancreatic ductal secre-
tion by wild-type CFTR should be beneficial in CF patients.
Because the receptor for the Sendai virus is localized to the
apical membrane of PDECs, a retrograde injection of this vec-
tor into the pancreatic duct would be necessary in vivo. This is
not necessarily ideal, so other vectors may be more appropriate
in patients. For example, Griffin et al253 have successfully trans-
duced PDECs of newborn pigs through the umbilical artery
with an adenoassociated virus serotype 9 vector.

To study the pathogenesis and therapy of CF, most com-
monly murine models are used. Although we have learned a lot
from using CFTR knockout mice, the utilization of these animals
has numerous limitations such as anatomic, immunologic, and
disease phenotypic differences between human and mice.254–256

Importantly, CF mice exhibit milder pancreatic pathology com-
pared with patients.255 This may be due to residual CFTR activity
and/or the presence of alternate Cl− secretory pathways such as
Ca2+-activated Cl− channels. In fact, patch clamp experiments
have shown that Ca2+-activated Cl− conductance is much greater
than that caused by CFTR in mouse duct cells.124 Human pancre-
atic duct cells also express Ca2+-activated Cl− channels at high
levels,257 which makes them a potential therapeutic target in CF
patients. To complicate things further, pancreatic ducts isolated
from CFTR-null mice still secreted electrolytes and fluid, which
odels Compared With the Human Disease in Newborns

Ferret Human

Infected by streptococci
and staphylococci

Normal

Mild Mild
75% 15%

Histologically normal,
but elevated LFT

Histologically normal,
but elevated LFT

Normal 30% Microgallbladder

Absent or degenerate Intact

which leads to numerous alterations in different organs affected by cystic
nimals/humans.
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could not be attributed to Ca2+-activated Cl− channels.258 Chela-
tion of intracellular Ca2+ did not influence stimulated fluid secre-
tion in CF versus wild-type ducts. Further studies are needed to
identify the mechanism responsible for the CFTR-independent
fluid transport.

The recent development of CF pigs259 and CF ferrets260 pro-
vides better disease models as they show more similarities to the
human CF phenotype. Newborn pigs and ferrets lacking CFTR
exhibited defective chloride transport and develop meconium il-
eus, pancreatic pathology, and liver involvement (focal biliary cir-
rhosis or elevated liver function tests), mimicking abnormalities
seen in newborn humans with CF (Table 1). Meconium ileus is
potentially lethal unless treated by surgery. Seventy-five percent
of the CFTR-deficient ferrets failed to pass meconium and died
within 48 hours of life because of intestinal perforation and sep-
sis.260 Similarly, CF pigs required ileostomy to relieve meconium
ileus to live beyond the first few days after birth.259 Fetal and new-
born CF pigs had very severe pancreatic destruction (whereas
most CF patients at this stage have only mild lesions) and ex-
hibited significantly lower volume and pH of pancreatic fluid,
whereas protein concentration was more than 5-fold higher ver-
sus the control.261 They also had significantly increased expres-
sion of proinflammatory, complement cascade, and profibrotic
genes versus non-CF pigs.262 Furthermore, their acinar cells ex-
hibited a higher apoptosis rate. Newborn ferrets have only mild
pancreatic pathology of duct dilations with inspissated secretions
(Table 1). Juvenile and adult CF ferrets develop more severe pan-
creatic pathology, which is similar to CF patients, but 15% of the
animals retain predominantly normal pancreatic histology at the
time of death.263 This suggests that additional factors may be nec-
essary for the manifestation of the disease. Although CF pigs and
ferrets seem to be more useful and promising models compared
with mice, the problems with these animals include limited access
for most researchers and the severe intestinal phenotypes.

It is known that pancreatic sufficient patients with CF have
the greater risk of developing pancreatitis.264,265 Not surprisingly,
the type of CFTR mutation determines the risk of pancreatitis265:
CF patients with mild CFTR genotypes have a greater risk of
developing pancreatitis compared with patients with moderate-
severe genotypes. Pancreatitis occurred in 20% of the patients,
with a quarter presenting with pancreatitis prior to the diagnosis
of CF, typically in late childhood and adulthood.265 The majority
(60%) of affected CF patients experienced recurrent attacks of
acute pancreatitis; 18% had a single episode of acute pancreatitis,
and 22% showed signs of chronic pancreatitis. Furthermore and
importantly, patients with pancreatitis received a diagnosis of
CFat a significantly older age and had lower sweat chloride levels
than did patients without pancreatitis.265

Acute Pancreatitis
Acute pancreatitis is a sudden inflammation of the pancreas

without any reliable treatment. There are several diverse causative
factors for pancreatitis, including biliary disease, excessive ethanol
intake, and metabolic causes such as hypertriglyceridemia.266–268

The severity of acute pancreatitis can vary from mild to severe.269

The exact pathomechanism of acute pancreatitis is not well un-
derstood; however, animal models provide an opportunity for
the investigation of pathophysiological processes and for the
development of new therapeutic possibilities.270 Almost all types
of acute pancreatitis seem to share a common mechanism of ab-
normal inhibition of pancreatic zymogen secretion and premature
activation of these digestive enzymes.271 In addition or alterna-
tively, stressors inducing pancreatitis can also activate nuclear
factor κB,272 a transcription factor responsible for regulating
the expression of numerous proinflammatory mediators.
1220 www.pancreasjournal.com
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Although acute pancreatitis has long been considered as a
disease of the acinar cells, recent evidence has proved the role
of pancreatic ducts in the pathogenesis of the disease. In fact,
they may be primary targets of toxic factors. Bile acids and eth-
anol dose dependently affect pancreatic ductal HCO3

− and fluid
secretion (Figs. 3 and 4).273–275 When nonconjugated bile
acids are administered luminally to isolated guinea pig ductal
cells in low concentration (100 μM), they activate luminal
Cl−/HCO3

− exchange activity and thus stimulate HCO3
− secre-

tion via inducing oscillatory elevation of intracellular Ca2+ concen-
tration (Fig. 3A).274 This stimulatory effect of chenodeoxycholate
was also confirmed in human CFPAC-1 cell line and was shown
to be dependent on CFTR expression, but not CFTR Cl− channel
activity.276 We believe that the stimulation of pancreatic secretion
may serve as a defense mechanism of ductal cells, so toxic bile
acids are washed out from the ductal tree to protect acinar cells. If
this process is inefficient, bile acids will reach the ductal cells in
high concentration and cause sustained (eventually toxic) elevation
of intracellular Ca2+ signaling, damage the mitochondria, deplete
intracellular ATP levels, and consequently block basolateral and
apical ion transport mechanisms (Fig. 3B).36,273,274,277 The re-
sults of the authors’ recent preliminary experiments have sug-
gested that there is also reduction of pancreatic ductal HCO3

−

secretion in patients with biliary acute pancreatitis.278 Intra-
ductal pH was significantly lower in these patients versus con-
trol subjects.

One of the most common causes of acute pancreatitis is
excessive ethanol consumption. Interestingly, ethanol adminis-
tration itself does not induce experimental acute pancreatitis in
rodents.279,280 Ethanol exerts only modest effects on acinar cell
Ca2+ homeostasis, even in very high concentrations, whereas a
combination of alcohol and fatty acids causes massive intracellu-
lar Ca2+ release and intracellular trypsinogen activation.279–283

There are fewer data available concerning the effects of ethanol
and their metabolites on pancreatic ductal cells. Similarly to
nonconjugated bile acids, ethanol has a dual effect on pancre-
atic HCO3

− secretion. Yamamoto et al275 showed that ethanol
in low concentration augments the stimulatory effect of secre-
tin (Fig. 4A), whereas in high concentration, it inhibits the secre-
tory rate (Fig. 4B). This dual effect may be partly mediated by
CFTR. Electrophysiological studies on native guinea pig pancre-
atic ductal cells showed that 10 and 100 mM ethanol increases
basal, but reversibly blocks, forskolin-stimulated CFTR currents
via depletion of ATPi.

284

There is evidence that the premature activation of trypsin-
ogen to trypsin inside the acinar cell285,286 or in the ductal
lumen287,288 is a key event in the development of pancreatitis.
A number of publications proved that trypsin activates enzyme
secretion from acinar cells via proteinase-activated receptor 2
(PAR-2),289,290 but the effect of trypsin on PDECs is somewhat
different depending on the species and also on the localization
of PAR-2 (Fig. 5). Nguyen et al291 suggest that trypsin activates
CFTR and Ca2+-activated Cl− channel in dog PDECs and stim-
ulates HCO3

− secretion in the CAPAN-1 human pancreatic ade-
nocarcinoma cell line.167 In contrast, HCO3

− efflux is inhibited
by trypsin in a dose-dependent manner in bovine PDECs.292

We demonstrated that PAR-2 activation by trypsin inhibits both
the SLC26 anion exchanger(s) and CFTR Cl− channel in guinea
pig PDECs.293 Trypsin stimulates HCO3

− secretion via PAR-2
activation, when the receptor is localized to the basolateral
membrane.167,291 In contrast, the effect is inhibition when the
receptor is localized to the luminal membrane.292,293

The role of PAR-2 in experimental acute pancreatitis is
controversial and is greatly dependent on the utilized disease
model. Numerous studies have confirmed that PAR-2 has a
© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 3. Effects of nonconjugated bile acids on pancreatic ductal HCO3
− secretion. Bile acids may enter the pancreatic duct in case of

distal biliary obstruction. A, Low doses of bile acids induce dose-dependent Ca2+ release from intracellular Ca2+ stores, and stimulate HCO3
−

secretion via activation of luminal Cl−/HCO3
− exchanger. B, High concentration of bile acids induce a toxic, sustained [Ca2+]i elevation and ATPi

depletion, which inhibit the acid-base transporters on the basolateral and luminal membrane of ductal cells. ER, endoplasmic reticulum;M,
mitochondrion; +, stimulation; −, inhibition.
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protective role in secretagogue-induced pancreatitis in mice294–296

and rats.297 Based on results obtained in transgenic mice, Singh
et al290 have hypothesized that PAR-2 activation may decrease
secretagogue-induced pancreatic damage by promoting zymogen
secretion from acinar cells. Namkung et al298 demonstrated that
down-regulation of MAP kinase signaling pathway may be in-
volved in the protective effects of PAR-2 activation. However,
in contrast to that found in the cerulein-induced acute pancrea-
titis model, deletion or pharmacological inhibition of PAR-2
markedly reduced the severity of pancreatitis evoked by intra-
ductal infusion of taurocholate in mice,295,299 which implies a
detrimental role of this receptor. The previously mentioned dis-
crepancies may be due to differential local and systemic effects
of PAR-2 activation.297 Interestingly, we have demonstrated that
PAR-2 is also localized to the apical membrane of human and
guinea pig PDECs. Furthermore, PAR-2 activation reduced pan-
creatic ductal HCO3

− secretion by inhibition of the apical anion ex-
changer and CFTR.293 The reduction in ductal secretion can
facilitate the development of pancreatitis by decreasing luminal
pH and promoting premature activation of trypsinogen inside
the pancreatic ducts.
© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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Recently, it has been demonstrated that smoking is an impor-
tant risk factor for non–gallstone-related acute pancreatitis.300 The
risk is even higher in individuals with associated monthly ethanol
consumption of 400 g or greater. The effect of cigarette smoke
may be partly mediated by impairment of CFTR function.301–303

Clunes et al304 proposed that cigarette smoke exposure rapidly re-
duces CFTR function by internalizing CFTR protein, leading to
airway dehydration. Similar mechanisms of CFTR inhibition are
suspected in the pancreas; however, no detailed investigations
have been performed in this research field. The detrimental effect
of cigarette smoke is potentially caused by the combined ef-
fects of several thousand chemicals, and it is difficult to pin-
point individual compounds. Nevertheless, some studies have
attempted to investigate the effects of major cigarette compo-
nents. Nicotine was found to inhibit pancreatic HCO3

− secretion
in the dog,305 but others could not confirm these findings.306

Notably, some recent publications have identified the role of
CFTR in the pathogenesis of acute pancreatitis, which provide
strong evidence for the involvement of pancreatic ducts.
DiMagno et al307,308 found that CFTR knockout mice exhib-
ited more severe acute pancreatitis than did wild-type mice.
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FIGURE 4. Effects of ethanol on pancreatic ductal HCO3
− secretion. A, Ethanol and secretin together cause elevation of [Ca2+]i and cAMP level.

Ethanol in low concentration enhances secretin-stimulated HCO3
− secretion. B, Ethanol in high concentration inhibits secretin- and

forskolin- stimulated HCO3
− secretion by releasing Ca2+i and depletion of ATPi. ER, endoplasmic reticulum; M, mitochondrion; −, inhibition;

+, stimulation.
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However, CFTR knockout animals are also characterized by
exuberant pancreatic inflammation, impaired acinar apoptosis,
and mild pancreatic insufficiency,307,308 which could poten-
tially confound the obtained results. Furthermore, only the
secretagogue-induced acute pancreatitis model was tested, so
model-specific effects cannot be excluded. Recently, we have
demonstrated that NHERF-1 knockout mice, which have mark-
edly lower pancreatic ductal HCO3

− and fluid secretory rates
due to a reduction of apical CFTR expression, also show signs
of more severe acute pancreatitis in 2 disease models versus
wild-type mice.225 Furthermore, Cavestro et al309 identified
statistically significant association of CFTR mutations with
acute recurrent pancreatitis, which may be due to insufficient
pancreatic electrolyte and fluid secretion.310

Chronic Pancreatitis
Chronic pancreatitis is a progressive inflammatory disor-

der that leads to irreversible destruction of the pancreas.
1222 www.pancreasjournal.com
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Pancreatic damage may result from repeated attacks of acute
pancreatitis,311,312 but some doubt that this is in fact the case.
On histology, the defining triad of chronic pancreatitis (irre-
spective of the cause or location) is acinar loss, mononuclear
cell infiltration, and interlobular/intralobular/periductal fibro-
sis.313 The inflammatory milieu also leads to alteration of en-
docrine functions.314 Overall, these changes eventually lead
to exocrine and endocrine pancreatic insufficiency, which man-
ifest in steatorrhea, malnutrition, and type 3c diabetes mellitus.

The pancreatic ductal tree is affected both morphologically
and functionally in chronic pancreatitis. These changes are essen-
tial in the diagnosis of the disease and can be nicely followed by
pancreatic imaging and function tests. Ducts become dilated with
concretions, and the epithelium shows signs of atrophy or hyper-
plasia or undergoes squamous metaplasia. It is no wonder that
chronic pancreatitis greatly increases the risk of pancreatic ductal
adenocarcinoma.315 It has long been known that age at diagnosis,
smoking, and drinking are major predictors of progression and
© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 5. The effect of trypsin on pancreatic ductal epithelial cells.
Trypsinogen can be prematurely activated to trypsin inside the
ductal lumen during pancreatitis. Consequently, trypsin induces
dose-dependent [Ca2+]i elevation from intracellular Ca2+ stores via
activation of protease-activated receptor 2. This causes reduction
of ductal HCO3

− secretion by ductal cells via inhibition of luminal
Cl−/HCO3

− exchangers and CFTR Cl- channel; −, inhibition.
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mortality of patients with chronic pancreatitis.316,317 In fact, the
detrimental effect of smoking on pancreatitis may be at least
partly due to alteration of pancreatic ductal function. An inter-
esting study by Kadiyala et al318 showed that HCO3

− concentra-
tion of pancreatic fluid in smokers is significantly reduced
(indicating decreased ductal function) compared with non-
smokers. The consequent reduction of ductal luminal pH, fluid
secretion, and increased pancreatic protein secretion lead to
protein plug and stone formation.

Pancreatic function tests can be used to determine the re-
serve of the pancreas in the clinical setting, although quite often
these are not readily available. Most tests (eg, fecal elastase, fecal
fat quantification, Lundh, and the 13C-mixed triglycerides breath
tests) are used to evaluate the acinar reserve, whereas the se-
cretin test is used to measure secretory volume and HCO3

− flow.319

Nevertheless, pancreatic function/reserve can also be roughly
estimated based on imaging such as endoscopic retrograde
pancreatography, computed tomography, endoscopic ultrasound,
and secretin-enhanced magnetic resonance cholangiopancreatog-
raphy (MRCP).320 Magnetic resonance cholangiopancreatography
has a fundamental role in visualization of the hepatobiliary ductal
system. The technique is commonly performed with heavily T2-
weighted sequences to highlight static or slow-moving fluids.321

In the last 15 to 20 years, stimulation of pancreatic and biliary secre-
tion by intravenous administration of secretin has been utilized
for enhancingMRCP.322 This allows the radiologist to better vi-
sualize the ductal system compared with MRCP without secretin
stimulation. The diagnostic potential of secretin-enhanced MRCP
is equivalent to the more conventional endoscopic retrograde
cholangiopancreatography.323 Secretin-enhanced MRCP allows
us to noninvasively estimate the pancreatic secretory volume and
thus can be useful for quantification of exocrine function.324 The
advantage of secretin-enhanced MRCP versus endoscopic retro-
grade cholangiopancreatography is that the former has no risk of
iatrogenic acute pancreatitis. Indications of this technique include
the detection and characterization of pancreatic ductal anomalies
and strictures, evaluation of the integrity of the pancreatic duct,
characterization of any communication between the pancreatic duct
and pseudocysts/pancreatic fistulas, and the assessment of pancre-
atic function and sphincter of Oddi dysfunction.321 Although re-
duction of HCO3

− secretion is 1 of the earliest features of chronic
pancreatitis, the availability and price of secretin limit the use of
this gastrointestinal hormone for functional and imaging tests.
© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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Autoimmune pancreatitis is a rare disease of the pancreas that
can be cured by administration of steroids.325,326 Ito et al327 found
that 11 of 12 patients with autoimmune pancreatitis showed
reduction in pancreatic volume and amylase output, whereas reduc-
tion in HCO3

− secretion was observed in only 5 of 12 patients. An
elegant study by Ko et al328 confirmed the role of pancreatic ducts
in this unique form of pancreatitis. They showed that mislocalized
CFTR inside the cytoplasm of duct cells was a characteristic fea-
ture of autoimmune pancreatitis, which was associated with a
reduction of secretin-induced pancreatic HCO3

− secretion. Be-
cause CFTR mislocalization was also detected in a small num-
ber of patients with alcoholic pancreatitis and with obstructive
pancreatitis, this may be the case in all forms of chronic pancre-
atitis (although this needs to be confirmed on a larger popula-
tion of patients). Treatment of autoimmune pancreatitis with
corticosteroids not only corrected the localization of CFTR to
the apical membrane, but also reversed the impaired HCO3

− se-
cretion. Ko et al329 have also shown that pancreatic ductal dys-
function in alcoholic chronic pancreatitis does not recover within
a year without active anti-inflammatory therapy.

The importance of intracellular Ca2+ signaling in the patho-
genesis of chronic pancreatitis is highlighted by the fact that poly-
morphisms in the Ca2+-sensing receptor gene increase the risk of
the disease.330,331 The role of CFTR in the pathogenesis of idio-
pathic pancreatitis has also been supported by results of genetic
studies.332,333 The first articles on CFTR mutations linked to a
higher frequency of the disease were published in the New
England Journal of Medicine,334,335 but these findings have been
confirmed by numerous other investigators. Although 2 copies
of severe CFTR mutations lead to CF, combinations of a severe
CFTR mutation and a mild CFTR mutation lead to atypical CF
and high pancreatitis risk, a severe CFTR mutation combined
with pancreas divisum or SPINK1 mutation can result in in-
creased susceptibility to sporadic chronic pancreatitis.336 Fur-
thermore, it has recently been demonstrated that functional
CFTR variants with impaired HCO3

− (but not Cl−) permeability
increase the risk of pancreatitis but not for CF.38,337

Diabetes Mellitus
There is close interaction of the exocrine and endocrine pan-

creatic parenchyma,338 so it is not surprising that ductal function is
affected in diabetes mellitus, and vice versa, alteration of ductal
function can also contribute to the development of diabetes. In
fact, it is well known that a number of pancreatic diseases (CF,
pancreatitis, and pancreatic adenocarcinoma) can cause diabetes,
which always has to be kept in mind.

Many animal and human studies have demonstrated re-
duced pancreatic exocrine secretion (including total secretory
volume pancreatic enzyme activity and HCO3

− concentration)
in both insulin-dependent and non–insulin-dependent diabetes
mellitus, but the clinical relevance of these findings remains
uncertain.338,339 Secretin-stimulated pancreatic secretion including
volume and HCO3

− output was decreased in patients with insulin-
dependent340,341 and non–insulin-dependent diabetes mellitus342

when compared with control subjects. The prevalence of exocrine
insufficiency (which is usually mild to moderate, without clinical
signs of exocrine pancreatic insufficiency) is somewhat lower in
non–insulin-dependent (30%–50%) versus insulin-dependent
(50%) diabetes mellitus,339 although in certain subgroups of pa-
tients, this rate may be much higher.343 Exocrine insufficiency
seems to be correlated to the early onset of endocrine failure,
long-lasting diabetes mellitus, and low body mass index levels.344

So how is pancreatic ductal secretion affected in diabetes
mellitus? Importantly, diabetes inevitably causes imbalance of
islet cell hormone levels. Given the stimulatory effect of
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endogenous insulin on ductal secretion, one would expect to
find decreased rates of secretion due to abnormal insulin secre-
tion and/or insulin resistance. Indeed, this is actually the case,
but not in all patients, so the involvement of other factors is
likely. Nevertheless, insulin may be a vital trophic factor for
not only acinar, but also for ductal cells. The reduced ductal se-
cretion may be partly due to morphological alterations of the
pancreas in patients with diabetes, such as smaller tissue size
(atrophy), especially in insulin-dependent cases.345 Furthermore,
duct morphology on endoscopic retrograde cholangiopancreato-
graphy in patients with diabetes is similar to the changes ob-
served in chronic pancreatitis.346,347 Autoantibodies (eg, against
carbonic anhydrase) found in patients with insulin-dependent dia-
betes may damage the ducts and cause compromised cellular
function. Because ductal secretion is regulated by the nervous
system, one cannot exclude the detrimental effects of autonomic
neuropathy in diabetes mellitus.339 In addition, high glucose con-
centrations were found to inhibit rat pancreatic interlobular ductal
HCO3

− secretion.348 To explain the mechanism of reduced secre-
tion, the authors hypothesized that glucose enters the cell via
the sodium-dependent glucose transporter, and the consequent
increase in [Na+]i causes depolarization, which will reduce the
driving force for HCO3

− secretion.348 Incubation of ducts iso-
lated from streptozotocin-treated diabetic animals in normal
glucose solutions reversed the defect in secretion. Another pos-
sible explanation of decreased ductal secretion was proposed
by Hootman et al.349 The increases in cyclic AMP levels evoked
by exposure to secretin were not significantly different in pancre-
atic ducts isolated from healthy and diabetic guinea pigs, nor were
levels of CFTR or Na+/K+-ATPase expression.349 However, Na+/
K+-ATPase activity in pancreatic ducts isolated from diabetic an-
imals was markedly decreased, suggesting a change in the en-
zyme’s catalytic properties in the diabetic tissues. Notably, in a
vicious cycle, reduced ductal secretion can also lead to a further
impairment of exocrine pancreatic function in diabetic conditions.
CONCLUSIONS AND FUTURE DIRECTIONS
It is without a doubt that the most important ion in terms

of pancreatic ductal secretion is HCO3
−. The majority of pancreatic

fluid originates from duct cells; secretion is mediated via
paracellular and transcellular pathways. We have learned much
in recent decades about the mechanism and regulation of
pancreatic ductal HCO3

− and fluid secretion, yet our knowledge
is still incomplete. Without a doubt, secretion is mediated by a
complex interaction of different transporters. The most impor-
tant transporters involved in ductal secretion have been identi-
fied; however, it is still unclear how the luminal 140 mMHCO3

−

concentration is reached during stimulated conditions in
humans. There is ample evidence that CFTR has a central role
in pancreatic ductal HCO3

− and fluid secretion. Cystic fibrosis
transmembrane conductance regulator not only conducts anions
such as Cl− and HCO3

−, but it also interacts with numerous trans-
porters involved in secretion. Studying the distribution and inter-
action of transporters in/within different segments of the ductal
tree may shed further light on the exact mechanism of HCO3

−

secretion.
The localization and function of CFTR are also affected by

severe diseases such as CF and pancreatitis. The resulting alter-
ations of pancreatic HCO3

− and fluid secretion are characteristic
features of these diseases. Cystic fibrosis causes a marked reduc-
tion in ductal secretion, eventually leading to the destruction of
the gland. The utilization of newly developed pig and ferret CF
models (which better mimic the human disease compared with
rodents) will help us in better understanding the disease.
1224 www.pancreasjournal.com
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However, for most researchers, these models remain inaccessi-
ble. Possible therapeutic targets in restoring defective ductal se-
cretion in CF include the Ca2+-activated Cl− channels and the
restoration of CFTR activity by correctors, potentiators, and
gene transfer. Pancreatitis-inducing agents (such as bile acids
and ethanol) have a dose-dependent effect on ductal secretion;
low concentrations stimulate secretion, whereas high concentra-
tions inhibit secretion. The modulation of ductal secretion may
have beneficial effects in the prevention and/or treatment of pan-
creatitis that is thought to be primarily a disease of the acinar cells.

Despite some marked differences between pancreatic acinar
and ductal cells, they both seem to be damaged by toxic factors
in a similar way. Therefore, therapeutic options are likely to help
acinar and ductal cells. In fact, we have quite a few therapeutic tar-
gets such as intracellular ATP depletion and toxic Ca2+ signaling
that need to be investigated further and taken from the bench
to bedside. For example, the latter is already on its way, by test-
ing the effect of the “Ca2+ antagonist”MgSO4 in the prevention
of post–endoscopic retrograde cholangiopancreatography pan-
creatitis.350 More such randomized clinical trials are desperately
needed in evaluating treatments of pancreatic diseases.

Notably, our current understanding of the physiology and
pathophysiology of pancreatic secretion mainly comes from
animal studies. Asmentioned previously, marked differences exist
in the secretory and disease mechanisms of various species.
Therefore, the results obtained from animal experiments need to
be interpreted with caution and cannot necessarily be directly
adapted to the human situation. This is especially true when we
take a look at the low number of therapeutic interventions that
have made it to clinical practice. Hopefully, the situation will im-
prove by finding/using better disease models.
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