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Uncovering mechanisms that regulate ecdysone production is an important step toward understanding
the regulation of insect metamorphosis and processes in steroid-related pathologies. We report here the
transcriptome analysis of Drosophila melanogaster dAda2a and dAda3 mutants, in which subunits of the
ATAC acetyltransferase complex are affected. In agreement with the fact that these mutations lead to
lethality at the start of metamorphosis, both the ecdysone levels and the ecdysone receptor binding to
polytene chromosomes are reduced in these flies. The cytochrome genes (spookier, phantom, disembodied,
and shadow) involved in steroid conversion in the ring gland are downregulated, while the gene shade,
which is involved in converting ecdysone into its active form in the periphery, is upregulated in these
dATAC subunit mutants. Moreover, driven expression of d4da3 at the site of ecdysone synthesis partially
rescues d4Ada3 mutants. Mutants of d4da2b, a subunit of the dSAGA histone acetyltransferase complex, do
not share phenotype characteristics and RNA profile alterations with d4da2a mutants, indicating that the
ecdysone biosynthesis genes are regulated by dATAC, but not by dSAGA. Thus, we provide one of the first
examples of the coordinated regulation of a functionally linked set of genes by the metazoan-specific ATAC

complex.

The steroid hormone ecdysone (E) controls insect molting
and metamorphosis through its timely release into the circu-
lating hemolymph from the prothoracic gland. It is thought
that circulating E is converted to the active form, 20-hydroxy-
ecdysone (20E), at the target tissues, where it binds its nuclear
receptor (EcR) to elicit specific changes in gene transcription
(14, 18, 29, 33). The biosynthesis of 20E from cholesterol is
mediated by the P450 cytochrome enzymes (CYPs) encoded by
members of the Halloween gene family: spook/Cyp307A1 (spo),
spookier/Cyp307A2 (spok), phantom/Cyp306A1 (phm), disem-
bodied/Cyp302A1 (dib), shadow/Cyp315A1 (sad), and shade/
Cyp314A1 (shd) (10, 31). The transcriptional changes elicited
by EcR require its ligand-dependent dimerization with another
nuclear receptor, USP, encoded by ultraspiracle, and lead to
the upregulation of the so-called ecdysone-induced genes,
most of which encode transcription factors (15, 33). The wide-
spread effects of 20E and steroid hormone signaling in general,
including their pathological consequences, justify the search
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for regulatory mechanisms that could coordinate the multiple
transcriptional events resulting from changes in their titers
during development (1, 30).

Histone acetyltransferase (HAT) complexes are suitable
candidates to mediate this coordination because of their
role in the chromatin structural changes required to activate
gene transcription (6). HAT complexes acetylate specific
lysine (K) residues at the N termini of histones. The recog-
nition that tagging specific residues by acetylation and other
types of posttranslational covalent modifications results in
changes in transcription has led to the concept of “histone
code” as a mechanism to determine specific gene activation
(3, 19, 28). Furthermore, some HAT components are also
present in transcription factors (TFs), reflecting what is
thought to be a sequential transformation of HATs into TFs
(11). One class of shared components in several HAT com-
plexes is the ADA (alteration/deficiency in activation) adap-
tor proteins (2). In Drosophila melanogaster, the HAT com-
plexes dATAC and dSAGA appear to be specific for
histones H4 and H3, respectively. dSAGA contains
dADAZ2b, which is required for the acetylation of H3K9 and
H3K14, while dATAC contains dADA2a, which is required
for the correct acetylation of H4K5 and H4K12 (7, 25). Both
HAT complexes, however, share dADA3, and mutants in
this adaptor protein show deficient acetylation of H3KO,
H3K14, and H4K12, but not H4K5 (12). This suggests that
the functional role of dADA3 in the context of acetylation
targeting may be different in each HAT complex. Thus, it is
important to identify which genes belong to the domain of
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action of each HAT complex as a function of its ADA
components. Studies at this level of gene expression control
are particularly relevant because of their pathological im-
plications. In this context, it is significant that mammalian
ADA3 binds to the estrogen receptor (ER), recruiting other
HAT components, which leads to excessive estrogen-depen-
dent cell proliferation in breast cancer (22). ADA3 also
binds to the retinoid X receptor (RXR), where it can be
targeted by an oncoprotein of papillomavirus, leading to
cervical cancer (9, 20, 35). Indeed, mammalian ADA3 can
bind nuclear (ER and RXR), as well as nonnuclear (p53),
receptors (24).

In addition to defective acetylation of specific lysines in
H3 and H4 histones, loss-of-function mutations in dAda2a
and dAda3 cause a sharp lethal phase at the L3/prepupa
transition (7, 12, 25). These traits are also exhibited by
mutations in dGcn5, the common catalytic subunit of the
dATAC and dSAGA HAT complexes, providing the first
indication that defective metamorphosis could result from
the loss of acetyltransferase activity (5). In contrast, muta-
tions in dAda2b, encoding a component of dSAGA, are able
to initiate metamorphosis and show a later lethality phase in
pupal stages P4 and P5 (25). Here, we characterize the
transcriptional profile of dAda2a, dAda2b, and dAda3 mu-
tants and focus on the experimental analysis of the “Hal-
loween” genes implicated in E biosynthesis. The transcrip-
tional effects of d4da3 are very similar to those of dAda2a
and very different from those of d4Ada2b, indicating that the
dATAC, but not the dSAGA, complex regulates this set of
genes. While dATAC is indispensable for the transcriptional
activation of all genes that are involved in the synthesis of E
in the prothoracic gland, it plays a role in the downregula-
tion of the gene that converts E into 20E in the peripheral
tissues. This represents an insight into the coordination be-
tween production of the prohormone E and its active form,
20E, whose regulated equilibrium determines the normalcy
of metamorphosis.

MATERIALS AND METHODS

Fly strains. Cultures were raised at 25°C on standard Drosophila medium. The
lethal allele dAda3? has been referred to previously (12) as /(1)7688. The addi-
tional dAda3 mutant alleles A6 and A9 were kindly provided by Pilar Carrera
(IGBMC, Strasbourg, France). They were generated by imprecise excision of
P{Mae-UAS.6.11}CG7536GG01344, which is located 5" in the dAda3 coding
sequence. Both deletions remove the 5" end of d4da3 and parts of the second
exon of the gene CG7536, within which dAda3 is nested. The alleles d4da2a’’
and dAda2b%*? have been described previously (25). All mutant alleles were
maintained using balancers with markers visible in larval stages. The coding
sequence of dAda3 was cloned in the pUAST vector and injected into y w
embryos to obtain transgenic lines (UAS-dAda3). Primer sequences used for
cDNA cloning are available upon request. The driver phantom-Gal4 was used to
overexpress dAda3 in the prothoracic gland. Other fly lines used were obtained
from the Drosophila stock center in Bloomington (Fly Base [http://flybase.bio
.indiana.edu]). Animals from each genotype (w'!!%, dAda2a’®’, dAda2b®*, and
dAda3?) were synchronized for spiracle eversion at the third-instar larval stage
before pupariation. For this, 100 larvae were selected at L2-L3 molting within a
narrow 30-min interval and kept at 25°C for approximately 45 h. Ten larvae were
collected within a 15-min period during spiracle eversion and used for RNA
isolation.

Animal harvesting and quantification of ecdysteroid levels. Eggs of mutant or
control fly strains or crosses were collected on agar plates with yeast and kept
in an incubator at 25°C and 75% humidity in batches of 2-h egg-laying
periods. For the 20E quantitative assays, larvae from either 112 h or 120 h
after egg laying (AEL) were classified as mutant or sibling control according
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to the marker of the balancer chromosomes (either GFP or Tb), washed,
shock frozen in liquid nitrogen, and stored in high-performance liquid chro-
matography (HPLC) grade methanol for further investigation. For pupae,
careful staging was achieved by collecting white prepupae hourly for 12
consecutive hours. Each harvest included experimental and control genotypes
in order to ensure an objective developmental age. Ecdysteroid levels were
quantified by enzyme-linked immunosorbent assay (ELISA), following the
procedure previously described (26) and further adapted (27). 20E (Sigma)
and 20E-acetylcholinesterase (Cayman Chemical) were used as the standard
and enzymatic tracer, respectively. The ecdysteroid antiserum (Cayman
Chemical) was used at a dilution of 1:50,000. Absorbance was read at 450 nm
using a Multiscan Plus II Spectrophotometer (Labsystems). The antiserum
has the same affinity for ecdysone as for 20E (26), but because the standard
curve was obtained with the latter compound, the results are expressed as 20E
equivalents. For sample preparation, 15 to 20 staged larvae and pupae were
weighed and preserved in 600 wl of methanol. Prior to the assay, samples
were homogenized and centrifuged (10 min at 18,000 X g) twice, and the
resulting methanol supernatants were combined and dried. Samples were
resuspended in 50 pl of enzyme immunoassay (EIA) buffer (0.4 M NaCl, 1
mM EDTA, 0.1% bovine serum albumin [BSA] in 0.1 M phosphate buffer).

DNA microarrays. Total RNA was isolated from groups of 10 larvae using an
RNeasy Mini Kit (Qiagen). Hybridization was performed on a Drosophila 2
microarray plate, and scanning was performed at the Institut de Génétique et de
Biologie Moléculaire et Cellulaire (IGBMC) DNA CHIP Facility following the
recommended standard Affymetrix protocols. Three biological replicates for
each genotype (w''*8, dAda2a’’, dAda3?, and dAda2b'®’) were analyzed. The
genes with a “present” call in at least two samples were included in the statistical
analysis.

QRT-PCR assays. For the quantitative determination of transcripts of the
early-response ecdysone genes w//’8 and dAda3, larvae were staged at late
third-instar stage, and total RNAs were isolated with an RNeasy Mini Kit
(Qiagen) according to the manufacturer’s instructions. First-strand cDNA
was synthesized from 1 pg RNA using a First Strand ¢cDNA Synthesis Kit
(Amersham Bioscience). Quantitative real-time PCR (QRT-PCR) was per-
formed (ABI7500 RT-PCR System) using primers specific for the respective
c¢DNAs and 18S rRNA as an internal control, following the incorporation of
SYBR green or using TagMan probes (Table 1). C; values were set against
a calibration curve. The AAC; method was used for the calculation of the
relative abundances (32). Primers were designed using Primer Express soft-
ware (ABI). The sequences of primers BR-C, Eig74A, and Eig 75B have been
described previously (7).

To measure the responses of ecdysone-induced genes to 20E treatment in
matched larval samples, salivary glands were dissected from homozygous
dAda2a’®, dAda3?, or heterozygous control larvae 36 h after the L2-L3 molt.
The two glands were separated and incubated for 2 h at 25°C in Schneider’s
insect medium (Sigma) containing either 20 uM 20E (Sigma) or ethanol vehicle
only. Total RNA was prepared using Trizol reagent (Invitrogen). First-strand
c¢DNA was synthesized with TagMan Reverse Transcription Reagent (ABI)
using random hexamer primers after DNase I (Fermentas) treatment of the
RNA samples. Quantitative real-time PCR was performed with gene-specific
primers (E74-ex8 and E75-ex8) (Table 1) in an ABI 7500 RT-PCR System using
Power SYBR green PCR Mastermix (ABI). Transcript levels of ecdysone re-
sponse genes were quantitated by setting the C;, values against a calibration
curve and normalizing to the expression level of the Rp49 housekeeping gene.
The level of induction upon 20E treatment was determined by comparing the
matched samples.

The primer sequences used to detect transcript levels of Halloween genes are
shown in Table 1. For validation of microarray data, QRT-PCRs were performed
in duplicate on three independent samples using primers specific for the respec-
tive cDNAs (21) and 18S rRNA as an internal control. C;values were set against
a calibration curve. The AAC; method was used for the calculation of the relative
abundances.

Ecdysone and cholesterol feeding assay. For ecdysone treatment, larvae were
synchronized at the second to third larval molting, collected 24 h later at the
middle L3 stage, and transferred into new vials. A 5-mg/ml 20E stock was diluted
with 60% ethanol and added to standard medium at 0.5 mM 20E final concen-
tration. The control contained solvent only. For cholesterol feeding, 30 staged
larvae were collected and placed into glass vials containing either standard food
or food plus cholesterol at a final concentration of 0.14 mg/g (16). The experi-
ments were conducted blind; larval development was monitored at 25°C, and the
lethal phase was noted.

Cholesterol transport assay. For Filipin staining, tissues were fixed in 4%
paraformaldehyde for 30 min at room temperature (RT), washed 3 times in
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TABLE 1. Oligonucleotides used as PCR primers for plasmid

construction and for the determination of

RNA levels by QRT-PCR

Primer Direction Sequence (5'—3")
spo Forward TATCTCTTGGGCACACTCGCTG
Reverse GCCGAGCTAAATTTCTCCGCTT
phm Forward GGATTTCTTTCGGCGCGATGTG
Reverse TGCCTCAGTATCGAAAAGCCGT
dib Forward TGCCCTCAATCCCTATCTGGTC
Reverse ACAGGGTCTTCACACCCATCTC
sad Forward CCGCATTCAGCAGTCAGTGG
Reverse ACCTGCCGTGTACAAGGAGAG
shd Forward CGGGCTACTCGCTTAATGCAG
Reverse AGCAGCACCACCTCCATTTC
mld Forward AGCAGCGATAATGCCGTCGACT
Reverse ACACATTTCCGCCGGAACTTGG
ptth Forward CACTCCACATCCCACAGAGATGGC
GATG
Reverse GTAACTGCCGGCTGCTTCTGC
ACAA
nvd Forward GGAAGCGTTGCTGACGACTGTG
Reverse TAAAGCCGTCCACTTCCTGCGA
usp Forward CAGTATCCGCCTAACCATCC
Reverse TTCCTCTGCCGCTTGTCTAT
ecd Forward CTGGCGGAGTTCTTAGATCG
Reverse GCATGGAGGGATTCTTCTTG
BR-C Forward GCCCTGGTGGAGTTCATCTA
Reverse CAGATGGCTGTGTGTGTCCT
Eig74A Forward GTTGCCGGAACATTATGGAT
Reverse ATCAGCCGAACATTATGGAT
Eig75B Forward GCGGTCCAGAATCAGCAG
Reverse GAGGATGTGGAGGAGGATGA
RplI 140 Forward ACTGAAATCATGATGTACGACA
ACGA
Reverse TGAGAGATCTCCTCGGCATTCT
TagMan TCCTCGTACAGTTCTTCC
Eig78C Forward GCGCCAGCAGCTTGAG
Reverse CGTGTTGGCAAAGTTCAGCAA
TagMan ACTCTACGATTCTGACTTTGTC
Eig71EA Forward CTACAATAATGCGCCTGAAAA
CAGT
Reverse GATCTTGACCAGCAACCAGAGT
TagMan CATCTTTTTCGCCATATCGC
EcRA Forward CGAACAAAAGACCGCGACTT
Reverse GCCTGGACTAGGAGTGGACAT
TagMan CAGTCCTCGGTAACATC
E74-ex8 Forward TGTCCGCGTTTCATCAAGT
Reverse GTTCATGTCCGGCTTGTTCT
E75-ex8 Forward CAACTGCACCACCACTTGAC
Reverse GCCTTGCACTCGTTCTTCTC
Rp49 Forward AGCGCACCAAGCACTTCATC
Reverse GACGCACTCTGTTGTCGATACC

MoL. CELL. BIOL.

phosphate-buffered saline (PBS), and stained with 50 wg/ml Filipin (Sigma) for
45 min at RT, followed by 2 washes in PBS (17). The samples were mounted on
Vectashield mounting medium, and pictures were taken using an Olympus
FV1000 confocal microscope.

Ring gland staining and quantification of polytene cells. Synchronized larvae
at the middle of L3 stage were collected, and the brains, together with the
ring gland, were dissected in PBS. The samples were fixed in 4% paraformal-
dehyde for 20 min at RT, followed by 2 washes in PBS supplemented with
0.3% Tween 20. 4’,6-Diamidino-2-phenylindole (DAPI) was added to the
samples for 10 min at RT, followed by 2 washes in PBS. The samples were
mounted on Vectashield mounting medium, and pictures were taken using an
Olympus FV1000 confocal microscope. The polytene cells were counted in 10
ring glands for each genotype.

RESULTS

Ecdysone levels are reduced in dATAC mutants. The ecdys-
teroid hormone 20E acts as a major regulator of Drosophila
development, controlling almost all developmental transi-
tions. Thus, at the end of larval development, a pulse of 20E
induces puparium formation, and a second peak, approxi-
mately 10 h after the formation of the puparium, signals the
prepupal-pupal transition. Since d4da2a and dAda3 mutants
have their lethal phase at metamorphosis, we decided to
measure the ecdysteroid levels in these mutants (Fig. 1A).
The data show that at 112 h AEL, the ecdysteroid titers in
dAda3 and dAda2a mutants were significantly reduced com-
pared to their respective sibling controls. In contrast, no
significant differences were observed between dAda2b het-
erozygotes and null mutants. Ecdysteroid levels of dAda2a
and dAda3 mutants were maintained slightly lower than
their controls at 120 h AEL and during pupation (data not
shown). To further analyze the molecular mechanism that
causes the phenotype of either the dAda2a or the dAda3
mutant, we analyzed the binding of the 20E nuclear recep-
tor, EcR, to DNA by immunostaining polytene chromo-
somes with an antibody that recognizes all EcR isoforms.
We found that the in situ localization of EcR to chromo-
somes is severely reduced in both dAda2a and dAda3 mu-
tants (Fig. 1B; see also Fig. 4E in reference 7).

Mutations in several subunits of dATAC change the expres-
sion of ecdysone-regulated genes. Decreased levels of ecdys-
teroids and EcR binding to chromosomes can cause tran-
scription failures in a number of vital genes. Lethality at the
initiation of metamorphosis, however, could also be a sec-
ondary effect of defective regulation of genes positioned
anywhere along the 20E-mediated gene regulatory hierar-
chy. In order to gain information on the complete set of
dATAC targets, we analyzed total transcriptional profiles in
several dAda mutants.

For gene expression profile comparisons, we performed
microarray hybridization of total RNA samples obtained
from dAda2a’®’, dAda3?, dAda2b%**, and w'?’® late third-
instar larvae to Affymetrix Drosophila total genome mi-
croarrays. All hybridizations were performed in triplicate
using RNA samples obtained from groups of 10 L3 stage
larvae synchronized to spiracle eversion (microarray data
are available at http://www.ebi.ac.uk/microarray-as/ae/, re-
ferred to as E-MEXP-2765 [dAda3? and dAda2a'®] or E-
MEXP-2125 and E-MEXP-2126 [dAda2b®*?]). The analysis
of dAda2b samples has been described recently (37). In
dAda2a and dAda3 mutants, we found a very high fraction of
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FIG. 1. dJATAC mutants have reduced ecdysteroid levels. (A)
Ecdysteroid titers measured for different mutant genotypes (dAda3,
dAda2a, and dAda2b) and their corresponding sex-matched sibling
controls (FM7i, and TM6 and 7b) at 112 h AEL, as determined by
ELISA. The values are expressed as the means of 20E equivalents per
mg of larvae. The error bars indicate the standard errors of the mean
(SEM) (n = 3 samples of 15 larvae each). The asterisks indicate
statistically significant differences at P =< 0.006 (¢ test). (B) EcR im-
munostaining of polytene chromosomes from dAda3” and control lar-
vae. Note the reduction of EcR signal in the mutant (similarly reduced
EcR binding to chromosomes can be observed in d4da2a mutants [7]).

genes either down- or upregulated. Out of the 18,000 tran-
scripts detected at late L3, the levels of 4,737 and 2,912 were
decreased to less than 50% of the control in dAda2a and
dAda3 mutants, respectively (Fig. 2A). Somewhat fewer, but
still a very high number of genes (2,569 and 2,653 RNAs)
were upregulated at least 2-fold in dAda2a and dAda3 mu-
tants, respectively, compared to controls. In contrast, the
number of affected genes in the dSAGA-specific d4da2b
mutants was lower by an order of magnitude. Although a
large number of genes were affected in dAda2a and dAda3
mutants, the two large sets of genes correlated in both the
types of genes affected and the magnitude of the expression
changes (Fig. 2B).
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The expression changes of genes affected by dAda2a and
dAda3 mutations revealed coregulation with either increased
or decreased levels, as shown among the genes involved in
cuticle formation or among those activated by ecdysone (Fig.
3A and B). Some of these changes clearly resulted from, and
reflected, a delay in mutant development. This could explain
the overall increased level of messages of larval cuticle pro-
teins. Similar changes were observable in the levels of genes
encoding proteins involved in chitin metabolic processes and to
a lesser extent in the levels of mRNAs of ribosomal, mitochon-
drial, and cytochrome enzymes (Fig. 3C and data not shown).
On the other hand, genes involved in compound-eye develop-
ment were downregulated, and similarly, but for a less obvious
reason, a decrease in the levels of most of the genes of pro-
teasome subunits was detectable in the mutants (Fig. 3D and
data not shown). Significantly, most of the genes known to be
under the control of 20E were downregulated in d4da2a and
dAda3 mutants (Fig. 3B and Table 2). The microarray data also
indicated drastic changes—up to 1,000-fold decrease—in the
levels of 20E primary and secondary response genes. A less
dramatic, but significant, decrease was observable in the level
of EcR expression and, significantly, that of a number of genes
involved in 20E metabolism. In view of these suggestive indi-
cations from the microarray data, we focused on the genes
belonging to the 20E-regulated pathway to validate the appar-
ent transcriptional effects.

Genes of the ecdysone biosynthesis pathway are downregu-
lated in dATAC mutants. We carried out QRT-PCR assays to
validate the microarray data. The assays were focused on
genes related to 20E signaling and biosynthesis in order to
analyze the role of dATAC in metamorphosis. In dATAC
mutants, the three isoforms of EcR and the coreceptor usp
appeared somewhat downregulated (Fig. 4A). This moder-
ate decrease in their corresponding mRNAs is not compa-
rable to the almost complete absence of binding of the EcR
protein to the polytene chromosomes (Fig. 1B). Thus, the
observed reduction of EcR binding is most likely a com-
bined effect of (i) the nonavailability of the EcR ligand, 20E;
(i) an average of approximately 50% reduction of EcR
subunit levels; and (iii) a reduction of the level of EcR
coreceptor, USP. In addition, the expression of several ec-
dysone-induced genes (Eig) was downregulated by several-
fold (Fig. 4B and Table 2). These effects further indicate
that most of the transcriptome changes could originate from
the observed reduction of 20E levels in the mutants. Thus,
we tested the genes involved in 20E biosynthesis.

The microarray data had indicated a reduced level of
mRNAs corresponding to the Halloween genes spookier,
phantom, disembodied, and shadow, while some increase in
the shade mRNA level was evident. In contrast to the Hal-
loween genes, many other members of the large cytochrome
gene family (Cyp450) showed an increase or no change in
their expression (Fig. 3C). QRT-PCR analysis confirmed
these data, showing a strong reduction in the levels of those
Halloween genes, which are expressed in the prothoracic
gland, in both dAda2a and dAda3 mutants (Fig. 5A). In
contrast, the expression of shade, the product of which
transforms E into 20E at the peripheral tissues, but not in
the prothoracic gland, was increased in both dAATAC mu-
tants. Significantly, neither of the prothoracic gland-specific
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FIG. 2. Transcriptional changes in dADA mutants. (A) Venn diagrams showing the numbers of activated or repressed genes in dAda2b, dAda3,
or dAda2a mutant larva. (B) Distribution of genes with different expression patterns compared to the control in the absence of d4da2a and dAda3.
The genes were categorized based on the level of changes (in log, scale) in their expression.

Halloween genes showed reduced expression in the dAda2b
mutant, nor was the expression of shade significantly
changed in the d4Ada2b mutant (Fig. 5B). This differential
effect of dATAC on all known E biosynthesis genes versus
the E-to-20E transforming gene may indicate a role of
dATAC in the fine regulation of the equilibrium between
the inactive and active forms of the hormone. In this con-
text, we analyzed by QRT-PCR two additional genes whose
mutants showed reduced levels or activity of 20E, although
their precise enzymatic substrates are not yet known: molt-
ing defective (mld) and neverland (nvd) (Fig. 5C). Both genes
are severely downregulated in the two dATAC mutants,
consistent with the other Halloween genes. Only in the case
of nvd, however, did the dSAGA mutant dAda2b also show
downregulation of its expression. The similar effects of
dATAC and dSAGA on the regulation of this gene may
reflect its peculiar role in the biosynthesis of E. Indeed, the

gene nvd does not participate in E production during
midembryogenesis, while all other Halloween genes do (34).
Thus, all the genes known to play a role in E biosynthesis
require dATAC for their proper expression. On the other
hand, the gene transforming E to 20E seems to be repressed
in the presence of dATAC subunits.

To further support the hypothesis that the defect of ecdys-
one biosynthesis in ATAC mutants is at least partially respon-
sible for the reduced expression of ecdysone-induced genes, we
investigated whether induction of ecdysone response genes
could be rescued by 20E treatment. We dissected salivary
glands from dAda2a’®’, dAda3?, and heterozygous control lar-
vae; separated the two glands; and incubated them with 20E or
vehicle control. We compared the mRNA level of the Eig74
(Fig. 6A) and Eig75 (Fig. 6B) genes in the matched 20E/mock-
treated sample pairs and found that both genes could be in-
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FIG. 3. Gene expression changes in ATAC mutants show tight coordination. The scatter plots show gene expression changes in d4da2a- and
dAda3-null animals as detected by microarray hybridization. The mRNA levels (log,) of genes involved in cuticle formation (A), regulated by
ecdysone (B), and encoding cytochrome enzymes (C) and proteasome subunits (D) are plotted.

duced in the dAda2a mutant and that Eig75 could be induced
in the d4Ada3 mutant, although the rescue was not complete.

dATAC mutants do not alter prothoracic gland structure or
cholesterol transport. The transcriptional features observed in
the dATAC mutants could result from structural defects in the
ring gland, the organ from which E is synthesized and secreted.
To test this possibility, we compared the morphologies of ring
glands of dAda2a and dAda3 mutants and the w’/* control.
Within the ring gland, the hormone is produced by a subset of
cells constituting the prothoracic gland, whose large polytene
cells can be identified easily. The general morphology of the
gland and the numbers of polytene cells were comparable in
all four genotypes investigated (data not shown). Further
evidence of the normal condition of the ring gland in the
mutants is the fact that the transcription levels of the cal-
modulin gene, which is expressed exclusively in this tissue at
this stage of development, was not affected in the microarray
data set.

Ecdysone is synthesized in the prothoracic gland from di-
etary cholesterol in response to the prothoracicotropic hor-
mone (PTTH) signal produced by specific brain cells. Thus, the
failure to activate the E-synthesizing genes could originate
from the lack of either its metabolic precursor or the signal
itself. Indeed, a failure in the transport of cholesterol has been
reported in start, NPCI, and NPC2 mutants, and the mRNA
levels of all three genes are decreased in dAda2a and dAda3
mutants (Table 2). We addressed these possibilities in several
experimental assays. First, we fed cholesterol to dAda2a and
dAda3 mutants, aiming for a potential rescue. No rescue oc-
curred. On the contrary, addition of 20E to the medium of
dAda2a or dAda3 larvae extended their development by more
than doubling the number of larvae initiating pupariation (Fig.
6C). Second, we stained the mutant tissue samples with Filipin,
searching for the possible accumulation of cholesterol gran-
ules. No accumulation was detected (data not shown). Finally,
the mRNA levels of PTTH were analyzed in the microarray
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583358555858583388598553888283 data and found to be normal in the mutants (Table 2). Thus,

03 1 (0 e o el R e e el o g ) R R i e e g e g g we conclude that the mutant transcriptional phenotypes of the

8RS E®RRemSennSnneIAT S SR8 T .. .

R R e e R e e A K R E-synthesizing genes do not result from defective cholesterol
transport or PTTH signaling.

‘c‘% ‘?‘:‘ EF $ '§ 8‘ 8‘ § $ 2":” 8‘1 oT "cla E‘ﬁ § $ ‘f:' "cla ‘of $ EF § %’ f‘:' § “c‘> $ $ f‘:' ‘c‘% Directed expression of dADA3 in the prothoracic gland res-

o e e e e e e R e o P tage cues metamorphosis. In order to validate the role of dADA3 in

the regulation of E-synthesizing genes, we restored dAda3 ex-
pression specifically in the prothoracic gland on a d4da3? mu-
2 tant background. To that end, we used the Gal4/UAS system
with phantom-Gal4 as the driver (23). Similarly to the native
phantom gene, this driver is selectively expressed in the pro-
thoracic gland. The transgenic expression of dADA3 resulted
....................... S25322 in a partial rescue of the null mutant (Fig. 7). In this genotype,

the mutant progressed through metamorphosis, reaching the
stage of pharate adults. Fully viable adults are not to be ex-
pected, since the dADA3 function is not restored in other
el e tissues. Thus, this result provides in vivo evidence that dAADA3
is required in the cells in which E is biosynthesized.

RAE RN DISCUSSION

HAT complexes as regulators of gene ensembles across spe-
cies. Drosophila and Arabidopsis cells, and mammalian cells as

SEEREERETCTSBINIENERN I LR3L0EER well, contain SAGA-type complexes, which harbor ADA2b,
i il - and at least one functionally distinct ADA2a-containing com-

plex, ATAC. This diversity of GCN5-containing complexes in

YL BREIRREEEYIE PSR RERARSE multicellular eukaryotes raises questions about their functional

) = diversity. Mutations of the Drosophila dAda2 and dAda3 genes
result in striking differences in phenotypes and in alterations in
histone acetylation. Recently, we have shown that in the
= dSAGA-specific d4da2b mutants the expression of a relatively
small number of genes is affected (37). Here, we show the
expression profiles of mutants in the other GCNS5-containing
S§zg2gey complex, dATAC. A comparison of GenS, Nurf301, and the

al ATAC-specific Ada2a mutant transcriptomes was published
previously by Carré et al. (4). In sharp contrast to dSAGA,
mutations in dATAC-specific subunits have a profound effect
on the expression of a large number of genes. It is intriguing
that apparently similar extents of reductions in H3 and H4
acetylation levels in dSAGA and dATAC mutants, respec-
tively, give rise to such different effects on transcription (7, 12,
13, 25). The coordinated decreases and increases of mRNA
levels representing sets of functionally related genes might
indicate that histone modifications by dATAC play a direct
role in the transcription of these sets of genes or a master
switch placed higher up in the regulatory hierarchy. While
some of the genes that play a role in cholesterol transport and
those coding for subunits of ecdysone receptors are negatively
affected by dATAC mutations, the extent of the expression
changes in these genes can hardly explain the dramatic de-
creases observed in the mRNA levels of many E-regulated
genes. On the contrary, (i) the decreased ecdysteroid levels
observed; (ii) the partial rescue of phenotypes resulting from
20E, but not cholesterol, feeding of mutants; and, most rele-
vant, (iii) the QRT-PCR-validated downregulation of Hallow-
een Cyp450 mRNA levels in contrast to the unchanged or
slightly elevated levels of other Cyp450 mRNAs strongly indi-
cate a failure of E synthesis in dATAC mutants. The un-
changed PTTH level and prothoracic gland morphology do not
indicate that either the signal for E synthesis or a lack of
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FIG. 4. mRNA levels of ecdysone (ecd)- related genes in d4Ada3 mutants. The mRNA levels were determined by QRT-PCR using TaqgMan
probes. The results of three independent experiments are shown as ratios between mutant (dAda3?) and control (w’/’®). In addition to the
EcR isoforms and USP (A), representative early ecdysone-induced genes (Eig) (B) were included in these sets of assays. The error bars

indicate the SEM.

development of the gland is the cause of E synthesis failure.
Rather, a coordinated downregulation of those Halloween
genes participating in E synthesis in the prothoracic gland is
characteristic of dATAC mutants. In sharp contrast with the
low mRNA level of spookier/Cyp307A42, phantom/Cyp306A1,
disembodied/Cyp302A1, and shadow/Cyp315A1, the gene trans-
forming E into its active form in the peripheries (shade/
Cyp314A1) is upregulated in dATAC mutants. This might re-
flect either a compensatory effect or a lack of feedback
inhibition of shd expression. In accord with this, ectopic ex-
pression of dADA3 under the control of a prothoracic gland-
specific promoter partially rescued d4da3 mutants. Thus, our
data provide an example of coordinated regulation of a set of
functionally linked genes by a metazoan GCNS-containing
HAT complex. These data also demonstrate that, in this func-
tion, the two GCNS5-containing HAT complexes dATAC and
dSAGA play strikingly different roles. GCNS5 association with
dADA2a and other components of the dATAC complex

N Ada2a'™®
[ Ada3’
B Ada2b®®

) >

(4,
o
L

100 -

50

expression level (%

spok ptm dib sad

makes it highly specific in regulating the expression of Hallow-
een genes in the prothoracic gland. At present, our data do not
resolve whether dATAC affects the expression of Halloween
genes directly by modifying the chromatin structure in the
regulatory region(s) of these transcription units or by modu-
lating the level or activity of a master transcriptional regulator
acting on these genes. Results demonstrating ATAC subunits
localized at actively transcribed regions and in interaction with
transcription activators on one hand and transcription induc-
tion in the lack of a functional ATAC complex on the other
hand suggest that at different genes ATAC might function by
different, or more than one, mechanism. This might be true for
the Halloween genes, as well. These data are highly significant,
since, combined with our earlier data on the effect of ASAGA
on the transcription profile (37), they represent one of the first
demonstrations of the very different effects of two HAT com-
plexes sharing the same catalytic subunit in gene expression
regulation.
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FIG. 5. Expression of Halloween genes in dATAC mutants. The mRNA levels were determined by QRT-PCR in three independent experi-
ments and are shown as ratios between mutant and control (w//*%). (A) The four Halloween genes show consistent downregulation in d4da3* and
dAda2a™®, in contrast to dAda2b®*, mutants. (B) The gene responsible for the E-to-20E conversion, shade, exhibits effects opposite to those of
the genes in panel A. (C) The expression levels of two relatively uncharacterized genes of the ecdysone-synthesizing pathway, molting defective and
neverland, in dATAC mutants are similar to those of the prothoracic gland-specific Halloween genes. The error bars indicate the SEM.
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FIG. 6. Effects of 20E treatment on gene expression and puparia-
tion in dATAC mutants. Dissected salivary glands of dAda2a’®,
dAda3?, or heterozygous control L3 larvae were separated, and the two
parts were incubated with 20E or vehicle control, respectively. The
transcript levels of the ecdysone response genes Eig74 (A) and Eig75
(B) were measured by QRT-PCR, and the average and standard error
of the induction in 20E- versus mock-treated matched samples were
plotted. At least four matched samples were measured per genotype.
(C) The chart shows the ratio of d4da2a’®’, dAda3?, or heterozygous
control larvae in which pupariation was initiated after feeding on 20E
or vehicle control containing food in mid-L3 stage. The averages and
standard errors of four feeding experiments with a sum of 30 larvae in
each category are shown.

dATAC on metamorphosis. It is interesting that dATAC
mutants arrest development at the larval-prepupal transition
and that they do not present any evident defect during larval
development. Given that in Drosophila pulses of 20E signal
arise in all developmental transitions, including larval molting
and puparium formation (30), our results suggest that the
mechanisms coordinating the production of ecdysteroids in
larval-larval and larval-pupal transitions are different. Our data
highlight the fact that dADA2a and dADA3 are necessary for
stage-specific control of ecdysteroid production through the
induction of the Halloween Cyp450 genes at the onset of pu-
parium formation. Importantly, both factors are also important
for the correct activation of a number of genes that belong to
the 20E-triggered genetic hierarchy during metamorphosis.
dATAC mutants strongly affect the expression, for example, of
one of these factors, Broad, which specifies progression
through pupal development and hence is necessary for the
activation of pupal-specific genes, as well as for the inhibition
of larval and adult genes (8). Taken together, the results pre-
sented here indicate that dADA2a and dADA3 are central
proteins in metamorphosing insects. The characterization of
the developmentally controlled mechanisms that coordinate
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FIG. 7. dADA3 expression rescues the mutant when driven in the ring
gland. (A) Expression of the ADA3 transgene in the phantom domain at
the larval stage visualized with GFP. Note the selective expression in the
ring gland. (B) Lethality phase of d4da3 mutants. The dAda3? allele fails
to pupariate or forms abnormal pupae. (C) Normal pupae at the P4 and
P5 stages shown for comparison. (D) Rescue of dAda3® mutants by driv-
ing transgene expression in the phantom domain. (E) Phenotype quanti-
fications. The fractions of animals that perished in the indicated develop-
mental stages are shown. The error bars indicate the SEM.

the synthesis of ecdysteroids and the response to such hor-
mones, specifically during metamorphosis, could be relevant to
understanding how complete metamorphosis has evolved. In
this context, it would be interesting to analyze the role of
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Ada2a and Ada3 orthologue genes in hemimetabolous insects
that do not present the intermediate pupal stage.

Finally, in vertebrates, SAGA-type complexes have been
involved in the activation of several different nuclear receptor-
regulated genes (36). By analogy to the experiments presented
above, showing a key role of dATAC in E synthesis, further
experiments in mammalian cells would help to understand the
role of ATAC in steroid hormone synthesis.
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