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Abstract

In this paper we prove an asymptotically sharp Bernstein-type inequal-
ity for polynomials on analytic Jordan arcs. Also a general statement on
mapping of a domain bounded by finitely many Jordan curves onto a
complement to a system of the same number of arcs with rational func-
tion is presented here. This fact, as well as, Borwein-Erdélyi inequality
for derivative of rational functions on the unit circle, Gonchar-Grigorjan
estimate of the norm of holomorphic part of meromorphic functions and
Totik’s construction of fast decreasing polynomials play key roles in the
proof of the main result. 1

Classification (MSC 2010): 41A17, 30C20, 30E10

Introduction
Let T := {z ∈ C : |z| = 1} denote the unit circle, D := {z ∈ C : |z| < 1} denote
the unit disk and C∞ := C∪{∞} denote the extended complex plane. We also
use D∗ := {z ∈ C : |z| > 1}∪{∞} for the exterior of the unit disk and ‖.‖K for
the sup norm over the set K.

First, we recall a Bernstein-type inequality proved by Borwein and Erdélyi
in [BE96] (and in a special case, by Li, Mohapatra and Rodriguez in [LMR95]).
We rephrase their inequality using potential theory (namely, normal derivatives
of Green’s functions) and for the necessary concepts, we refer to [ST97] and
[Ran95]. Then we present one of our main tools, the “open-up” step in Propo-
sition 5, similar step was also discussed by Widom, see [Wid69], p. 205–206
and Lemma 11.1. This way we switch from polynomials and Jordan arcs to
rational functions and Jordan curves. Then we use two conformal mappings,
Φ1 and Φ2 to map the interior of the Jordan domain onto the unit disk and
to map the exterior of the domain onto the exterior of the unit disk respec-
tively. We transform our rational function with Φ1 and “construct” a similar
rational function (approximate with another, suitable rational function) so that
the Borwein-Erdélyi inequality can be applied.

Our main theorem is the following.

Theorem 1. Let K be an analytic Jordan arc, z0 ∈ K not an endpoint. Denote
the two normals to K at z0 by n1 (z0) and n2 (z0). Then for any polynomial Pn

1 This is author accepted manuscript, including a few typo corrections. The published
version of the paper is available at DOI: 10.1016/j.jmaa.2015.05.022.
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of degree n we have

|P ′n (z0)| ≤ (1 + o (1))n ‖Pn‖K

·max

(
∂

∂n1 (z0)
gC∞\K (z0,∞) ,

∂

∂n2 (z0)
gC∞\K (z0,∞)

)
where o (1) depends on z0 and K only and tends to 0 as n→∞.

Remark. This theorem was formulated as a conjecture in [NT13] on page
225.

Theorem 1 is asymptotically sharp as the following theorem shows.

Theorem 2. Let K be a finite union of disjoint, C2 smooth Jordan arcs and
z0 ∈ K is a fixed point which is not an endpoint. We denote the two normals to
K at z0 by n1 (z0) and n2 (z0). Then there exists a sequence of polynomials Pn
with degPn = n→∞ such that

|P ′n (z0)| ≥ n (1− o (1)) ‖Pn‖K

·max

(
∂

∂n1 (z0)
gC∞\K (z0,∞) ,

∂

∂n2 (z0)
gC∞\K (z0,∞)

)
.

1 A rational inequality on the unit circle
The following theorem was proved in [BE96] (see also [BE95], p. 324, Theorem
7.1.7), with slightly different notations.

If f is a rational function, then deg (f) denotes the maximum of the degrees
of the numerator and denominator of f (where we assume that the numerator
and the denominator have no common factors).

Theorem (Borwein-Erdélyi). Let a1, . . . , am ∈ C \ {|u| = 1} and let

B+
m (u) :=

∑
j: |aj |>1

|aj |2 − 1

|aj − u|2
, B−m (u) :=

∑
j: |aj |<1

1− |aj |2

|aj − u|2
,

and Bm (u) := max (B+
m (u) , B−m (u)). If R is a polynomial with deg(R) ≤ m

and f (u) = R (u) /
∏m
j=1 (u− aj) is a rational function, then

|f ′ (u) | ≤ Bm (u) ||f ||T, u ∈ T.

If all the poles of f are inside or outside of D, then this result was improved
in [LMR95], Theorem 2 and Corollary 2 on page 525 using different approach.

We need to relax the condition on the degree of the numerator and the
denominator.

If we could allow poles at infinity, then the degree of the numerator can be
larger than that of the denominator. More precisely, we can easily obtain the
following

Theorem 3. Using the notations from Borwein-Erdélyi Theorem, if R is a
polynomial with deg(R) > m and f (u) = R (u) /

∏m
j=1 (u− aj) is a rational

function, then

|f ′ (u) | ≤ max
(
B+
m (u) + deg (R)−m, B−m (u)

)
||f ||T, w ∈ T. (1)
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Proof. Let d := deg (R) −m > 0, and let f1 (τ ; u) = f1 (u) := f(u)

(u−τ)d
, where

τ ∈ R, τ > 1. Then (τ − 1)
d |f1 (u) | ≤ |f (u) | ≤ (τ + 1)

d |f1 (u) | for |u| = 1, so

||f1||T ≤
1

(τ − 1)
d
||f ||T.

Since f ′1 (u) = f ′ (u) 1
(u−τ)d

− d f (u) 1
(u−τ)d+1 , therefore

|f ′1 (u) | ≥ |f ′ (u) | 1

(τ + 1)
d
− d||f ||T

1

(τ − 1)
d+1

.

Using Borwein-Erdélyi Theorem for f1, |u| = 1,

|f ′1 (u) | ≤ max

(
B+
m (u) + d

τ2 − 1

|u− τ |2
, B−m (u)

)
||f1||T.

Letting τ →∞ and combining the last three displayed estimates, we obtain the
Theorem.

Note that if we let all the poles tend to infinity, then we get back the original
Bernstein (Riesz) inequality for polynomials on the unit disk. Let us also re-
mark that the original proof of Borwein and Erdélyi also proves (1), with little
modifications.

The relation with Green’s functions is as follows. It is well known (see e.g.
[ST97], p.109) that Green’s function of the unit disk D with pole at a ∈ D is

gD (u, a) = log

∣∣∣∣1− auu− a

∣∣∣∣
and Green’s functions of the complement of the unit disk D∗ = {|u| > 1}∪{∞}
with pole at a ∈ C, |a| > 1 and with pole at infinity are

gD∗ (u, a) = log

∣∣∣∣1− auu− a

∣∣∣∣ and gD∗ (u,∞) = log |u|.

For the normal derivatives elementary calculations give (|u| = 1, n1 (u) = −u is
the inner normal, n2 (u) = u is the outer normal)

∂

∂n1 (u)
gD (u, a) = lim

t→0+

log
∣∣∣ 1−a(1−t)u

(1−t)u−a

∣∣∣
t

=
1− |a|2

|u− a|2
, (2)

∂

∂n2 (u)
gD∗ (u, a) = lim

t→0+

log
∣∣∣ 1−a(1+t)u

(1+t)u−a

∣∣∣
t

=
|a|2 − 1

|u− a|2
, (3)

∂

∂n2 (u)
gD∗ (u,∞) = lim

t→0+

log | (1 + t)u|
t

= 1. (4)

They are also mentioned in [DK07], p.1739.

Using this notation, we can reformulate these last two theorems as follows.
This is actually the result of Borwein and Erdélyi with slightly different wording.
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Theorem 4. Let f (u) = R (u) /Q (u) be an arbitrary rational function with no
poles on the unit circle where R and Q are polynomials. Denote the poles of
f on C∞ by a1, . . . , am ∈ C∞ \ {|u| = 1} where each pole is repeated as many
times as its order. Then, for u ∈ T,

|f ′ (u) | ≤ ||f ||T

·max

 ∑
j:|aj |<1

∂

∂n1 (u)
gD (u, aj) ,

∑
j:|aj |>1

∂

∂n2 (u)
gD∗ (u, aj)

 . (5)

Note that if deg (R) > deg (Q), then f has a pole at ∞, therefore it is
repeated deg (R) − deg (Q) times and this pole at ∞ is taken into account in
the second term of maximum. Inequality (5) is sharp, the factor on the right
hand side cannot be replaced for smaller constant, see, e.g., [BE95], p. 324.

2 Mapping complement of a system of arcs onto
domains bounded by Jordan curves with ratio-
nal functions

LetK be a finite union of C2 smooth, disjoint Jordan arcs on the complex plane,
that is,

K = ∪k0j=1γj , where γj ∩ γk = ∅, j 6= k.

Denote the endpoints of γj by ζ2j−1, ζ2j , j = 1, . . . , k0.
We need the following Proposition to transfer our setting. Although we will

use it for one analytic Jordan arc, it can be useful for further researches.
After we worked out the proof, we learned that Widom developed very simi-

lar open-up Lemma in his work, see [Wid69], p. 205-207. The difference is that
he considers Ck smooth arcs with Hölder continuous k-th derivative (see also
p. 145) while we need this open-up technique for analytic arcs. Furthermore,
there is a difference regarding the number of poles. This is discussed after the
proof.

Proposition 5. There exists a rational function F and a domain G ⊂ C∞ such
that C \G is a compact set with k0 components, ∂ (C∞ \G) = ∂G is union of
finitely many smooth Jordan curves and F is a conformal bijection from G onto
C∞ \K with F (∞) =∞.

Furthermore, if K is analytic, then ∂G is analytic too.

Proof. First, we show that there are polynomials R, Q such that deg (R) =
k0 + 1, deg (Q) = k0,

F (u) :=
R (u)

Q (u)

and
F ′ (u) = 0⇔ F (u) ∈ {ζ1, . . . , ζ2k0} . (6)

Obviously, F ′ (u) = (R′ (u)Q (u)−R (u)Q′ (u)) /Q2 (u) and the numerator is
a polynomial of degree 2k0. Let A (u) :=

∏2k0
j=1 (u− ζj). Taking reciprocal,

4



1/F ′ = Q2/A, that is, the location of the poles are known. Our goal is to find
β0, β1, β2, . . . , β2k0 ∈ C such that

ˆ
1

β0 +
∑2k0
j=1

βj

u−ζj

du is a rational function.

Or equivalently, F1 (u) :=
∏

k(u−ζk)

β0
∏

k(u−ζk)+
∑

j>0 βj
∏

k 6=j(u−ζk) must have 0 residue
everywhere, Res (F1, u) = 0 for all u ∈ C. Since ζk’s are pairwise different,∏
k 6=j (u− ζk), j = 1, 2, . . . , 2k0 and

∏
k (u− ζk) are linearly independent, so we

can choose βj ’s so that

β0

∏
k

(u− ζk) +
∑
j>0

βj
∏
k 6=j

(u− ζk) = (u− u∗)2k0

where u∗ will be specified later. Write A (u) =
∏
k (u− ζk) in the form A (u) =∑2k0

j=0 cj (u− u∗)j with suitable cj ’s. It is easy to see that Res (F1, u) = 0 for all
u 6= u∗, furthermore Res (F1, u

∗) = c2k0−1. Comparing the coefficients of A (u),
we obtain c2k0 = 1, c2k0−1 = −

(∑2k0
j=1 ζj

)
+ 2k0u

∗. Rearranging the expression
for c2k0−1, u∗ must satisfy the following equation

u∗ =

∑2k0
j=1 ζj

2k0
.

With this choice, there exists F =
´
F1 with the desired properties.

The domain G is constructed as follows. Denote the unbounded component
of F−1 [C∞ \K] by G. We prove that G is a domain and its boundary consists
of finitely many Jordan curves and those curves are smooth. Locally, if z ∈ γj
for some γj and z is not endpoint of γj , then, by the construction, z is not a
critical value. In other words, for any u such that F (u) = z, we know F ′ (u) 6= 0
(u is not a critical place). If z ∈ γj is an endpoint and u1 is any of its inverse
image, then F ′ (u1) = 0 by (6) and since the degree of R and Q are minimal,
F ′′ (u1) 6= 0. Therefore F (u) ≈ c (u− u1)

2
+ z, and the inverse image F−1 [γj ]

of γj near u1 is a smooth, simple arc. So each bounded component of C \G is
such a compact set that it is a closure of a Jordan domain.

Using continuity and connectedness, C∞ \ F−1 [C∞ \K] has at least k0

bounded components. If there were more than k0 components, then we obtain
contradiction as follows. The boundary of each component is mapped into K, so
there should be more than 2k0 critical points, but this contradicts the minimality
of F . Denote the boundary of the components by κj , j = 1, . . . , k0. These κj ’s
are smooth Jordan curves and assume κj = κj (t), t ∈ [0, 2π].

It is clear that each component has nonempty interior and contains at least
one pole of F , otherwise F maps that component onto some open, bounded,
nonempty set and this set would intersect C∞ \K. Therefore each component
contains exactly one pole which is simple by the minimality assumption.

Now, F = R/Q is univalent on G because of the followings. Take smooth
Jordan curves κj,δ (t), t ∈ [0, 2π] satisfying the next properties: κj,δ ⊂ G,
κj,δ (t) → κj (t) as δ → 0 and κ′j,δ (t) → κ′j (t) as δ → 0 and κ0,δ (t) :=
1/δ exp (it). Since deg (R) = deg (Q) + 1, F (u) = c1u + c0 + o (1) as u → ∞
therefore F (κ0,δ (t)) ⇒ ∞ as δ → 0 and, by continuity, dist (F (κj,δ) , γj) → 0.
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Since F has no critical values outside K, the F (κj,δ)’s are smooth Jordan
curves. Fix b ∈ C \ K, then there is (at least one) b′ ∈ G with F (b′) = b,
because F (G) is open, F (G) ⊂ C \ K and F (∂G) = F (κ1 ∪ . . . ∪ κk0) ⊂
K. If δ > 0 is small enough, then b ∈ IntF (κ0,δ) and b ∈ C \ IntF (κj,δ)
(j = 1, . . . , k0), so index (b, F (κ0,δ) ∪ F (κ1,δ) ∪ . . . ∪ F (κk0,δ)) = 1. Therefore
index (b′, κ0,δ ∪ κ1,δ ∪ . . . ∪ κk0,δ) = 1, so there is exactly one inverse image, this
shows the univalence of F .

We can give another proof for the univalence as follows. There is a (local)
branch of F−1 such that F−1 [z] = z/c1 + .. as z → ∞, in other words, ∞
is not a branch point of F−1. Furthermore, the function F has branch points
only at ζj ’s, j = 1, . . . , 2k0 and it behaves as a square root there. Therefore
every analytic continuations along any curve in C \K give the same function
element. Now we use Lemma 2, p. 175 in [SFS89] with this (local) branch.
Therefore we can choose a (global) regular branch of F−1 such that F−1 [∞] =
∞. Since this branch is regular and F is a rational function, there is no other
inverse image of ∞ by F−1 in G. By the construction of G and applying the
maximum principle, we have gC∞\K (F (u) ,∞) ≡ gG (u,∞), u ∈ G. Using the
majorization principle (see [Kal08], Theorem 1 on p. 624) or Theorem 4.4.1
on p. 112 from [Ran95], we obtain that F is conformal bijection from G onto
C∞ \K.

As for the smoothness assertion (∂G analytic), this follows from standard
considerations as follows. Without loss of generality, we may assume that z =
κ (t) = t + c1t + c2t

2 + . . ., is a convergent power series for 0 ≤ t ≤ t0 and
z = F (u) is such that F (0) = 0, F ′ (0) = 0 and F ′′ (0) 6= 0. It is known,
see e.g. [Sto62], p. 286, that the two branches of the inverse of F near z = 0
can be written as G0 (z) ±

√
zG1 (z) where G0, G1 are holomorphic functions.

Denote them by F−1
1 and F−1

2 . This way γ1 (t) := F−1
1

[
κ
(
t2
)]

= G0

(
κ
(
t2
))

+

t
√

1 + κ1 (t2)G1

(
κ
(
t2
))

is a convergent power series in t ∈ [0, t1] and similarly
for γ2 (t) := F−1

2

[
κ
(
t2
)]

and γ′1 (0) 6= 0. Considering γ1 (−t) for t ∈ [0, t1],
we see that γ2 (t) = γ1 (−t), so γ1 is actually a convergent power series and it
parametrizes the two joining arc.

As for the number of poles, Widom’s open-up mapping is constructed as
iterating the Joukowskii mapping (composed with a suitable linear mapping in
each step) for each arc and that open-up mapping has 2k0 different, simple poles
and the location of poles also depends on the order of arcs. In contrast, our
open-up rational function has k0 simple poles.

With this Proposition, we switch from polynomials on Jordan arcs to ra-
tional functions on Jordan curves as follows. We use the following notations,
assumptions.

Fix one, C2 smooth Jordan arc γ with endpoints ζ1 and ζ2 and let z ∈ γ,
z 6= ζ1, z 6= ζ2. Denote the two normal vectors of unit length at z to γ by
n1 (z), n2 (z), where n1 (z) = −n2 (z). We may assume that n1 and n2 depend
continuously on z. We use the same letter for normals in different planes and
from the context, it is always clear that which arc we refer to. We use the
rational mapping F and the domain G2 := G from the previous Proposition for
γ. Denote the inward normal vector to ∂G at u ∈ ∂G by n2 (u) and the outward
normal vector to ∂G at u by n1 (u), n2 (u) = −n1 (u). It is easy to see that
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Figure 1: The γ, z, G1 and G2 with the normal vectors

there are two inverse images of z: u1 = u1 (z) , u2 = u2 (z) ∈ ∂G (such that
F (u1) = F (u2) = z) and we can assume that u1, u2 are continuous functions
of z.

By reindexing u1 and u2, we may assume that the normal vector n2 (u1)
is mapped by F to the normal vector n2 (z). This immediately implies that
n1 (u1), n2 (u2), n1 (u2) are mapped by F to n1 (z), n1 (z), n2 (z) respectively.

Let us denote the domain C \ (G ∪ ∂G) by G1. Since degF = 2 and F is a
conformal bijection from G2 onto C∞ \ γ, F is a conformal bijection from G1

onto C∞ \ γ. For simplicity, let us denote the inverse of F onto G1 by F−1
1 and

onto G2 by F−1
2 .

These geometrical objects are depicted in Figure 1 where we indicated the
normal vectors n2 (z) and n2 (u1) with dashed arrows (we fix the notations with
their help) and we indicated the other normal vectors with simple (not dashed)
arrows (their indexings are consequence of the earlier two vectors).

Proposition 6. Using the notations above, for the Green’s functions of G = G2

and G1 and for b ∈ C∞ \K we have

∂

∂n1 (z)
gC∞\K (z, b) =

∂

∂n1 (u1)
gG1

(
u1, F

−1
1 (b)

)
/ |F ′ (u1)|

=
∂

∂n2 (u2)
gG2

(
u2, F

−1
2 (b)

)
/ |F ′ (u2)|

and, similarly for the other side,

∂

∂n2 (z)
gC∞\K (z, b) =

∂

∂n1 (u2)
gG1

(
u2, F

−1
1 (b)

)
/ |F ′ (u2)|

=
∂

∂n2 (u1)
gG2

(
u1, F

−1
2 (b)

)
/ |F ′ (u1)| .

For arbitrary polynomial P , let fP (u) = f (u) := P (F (u)). Then ‖P‖γ =
‖f‖∂G.

Proof. This immediately follows from the conformal invariance of Green’s func-
tions

gC∞\K (F (u) , b) = gG1

(
u, F−1

1 (b)
)

and
gC∞\K (F (u) , b) = gG2

(
u, F−1

2 (b)
)
.

See e.g. [Ran95], p. 107, Theorem 4.4.4.
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This Proposition implies that it is enough to take into account the normal
derivatives at, say, u1 only , i.e. ∂

∂n2(u1)gG2

(
u1, F

−1
2 (b)

)
and ∂

∂n1(u1)gG1

(
u1, F

−1
1 (b)

)
only.

3 Conformal mappings on simply connected do-
mains

Here G1 is the bounded domain from the previous section and G2 is the un-
bounded domain from the previous section. Actually, G2 = C∞ \

(
G−1
)
. As

earlier, D = {v : |v| < 1} and D∗ = {v : |v| > 1} ∪ {∞}. With these notations,
∂G1 = ∂G2. Using Kellogg-Warschawski theorem (see e.g. [Pom92] p. 49, The-
orem 3.6), if the boundary is C1,α smooth, then the Riemann mappings of D,D∗
onto G1, G2 respectively and their derivatives can be extended continuously to
the boundary.

Under analyticity assumption, we can compare the Riemann mappings as
follows.

Proposition 7. Let u0 ∈ ∂G1 = ∂G2 be fixed. Then there exist two Riemann
mappings Φ1 : D → G1, Φ2 : D∗ → G2 such that Φj (1) = u0 and

∣∣Φ′j (1)
∣∣ = 1,

j = 1, 2.
If ∂G1 = ∂G2 is analytic, then there exist 0 ≤ r1 < 1 < r2 ≤ ∞ such that

Φ1 extends to D1 := {v : |v| < r2}, G+
1 := Φ1 (D1) and Φ1 : D1 → G+

1 is a
conformal bijection, and similarly, Φ2 extends to D2 := {v : |v| > r1} ∪ {∞},
G+

2 := Φ2 (D2) and Φ2 : D2 → G+
2 is a conformal bijection.

Proof. The existence of Φ1 follows immediately from the Riemann mapping
theorem by considering arbitrary Riemann mapping and composing this map-
ping with a suitable rotation and hyperbolic translation toward 1 (that is,
χt (z) = (z − t) / (1− tz) with t ∈ (−1, 1) and t → −1, χ′t (1) → 0, and t → 1,
χ′t (1)→ +∞).

The existence of Φ2 follows the same way, using the same family of hyperbolic
translations.

The extension follows from the reflection principle for analytic curves (see
e.g. [Con95] pp. 16-21).

From now on, we fix such two conformal mappings and let a1 := Φ−1
1

[
F−1

1 [∞]
]

and a2 := Φ−1
2 [∞] = Φ−1

2

[
F−1

2 [∞]
]
.

The domains of these analytic extensions are depicted on Figure 2 where D1

is the grey region on the right and is mapped onto G+
1 by Φ1 which is the grey

region on the left.
Using these mappings, we have the following relations between the normal

derivatives of Green’s functions and Blaschke factors.

Proposition 8. The followings hold

∂

∂n1 (u0)
gG1

(
u0, F

−1
1 [∞]

)
=

∂

∂n1 (1)
gD (1, a1) =

1− |a1|2

|1− a1|2
,

∂

∂n2 (u0)
gG2

(
u0, F

−1
2 [∞]

)
=

∂

∂n2 (1)
gD∗ (1, a2) =

|a2|2 − 1

|1− a2|2
,
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Figure 2: The two Riemann mappings and the points

and if a2 =∞, then

∂

∂n2 (u0)
gG2

(
u0, F

−1
2 [∞]

)
=

∂

∂n2 (1)
gD∗ (1,∞) = 1.

Proof. The second equalities in all three lines follow from (2), (3) and (4).
We know that Φ1 (1) = u0 and Φ2 (1) = u0, moreover |Φ′1 (1)| = 1, |Φ′2 (1)| =

1 imply that nj (1) is mapped to nj (u0) by Φj , j = 1, 2 and the mappings Φj ,
j = 1, 2 also preserve the length at 1 (there is no magnifying factor

∣∣Φ′j (1)
∣∣−1

unlike at Proposition 6). Using the conformal mappings Φ1 and Φ2, and the
conformal invariance of Green’s functions, we obtain the first equalities in all
three lines.

4 Proof of Theorem 1 with rational functions

4.1 Auxiliary results, some notations
Before we start the proof, let us recall three results. The first one is Gonchar-
Grigorjan estimate when we have one pole only. See [GG76], Theorem 2 on p.
572 (in the english translation).

Theorem. Let DG ⊂ C be a simply connected domain and its boundary is C1

smooth. Let fG : DG → C∞ be a meromorphic function on DG such that it has
only one pole. Assume that fG can be extended continuously to the boundary
∂DG of DG. Denote fG,r the principal part of fG in DG (with fG,r (∞) = 0)
and let fG,h denote the holomorphic part of fG in DG. Denote the order of
the pole of fG by nG. Then fG = fG,r + fG,h and there exists C1 (DG) > 0
depending on DG only such that

‖fG,h‖∂DG
≤ C1 (DG) (log nG + 1) ‖fG‖∂DG

(7)

where ‖.‖∂DG
denotes the sup norm over the boundary of DG.

In the main result of this paper we are interested in asymptotics as n →
∞. In particular, if nG ≥ 2, then log nG + 1 ≤ 3 log (nG), so we may write
log nG + 1 = O (log nG).

The second result is a special case of the Bernstein-Walsh estimate, see
[Ran95], p. 156, Theorem 5.5.7 a) or [ST97], p. 153.
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Theorem. Let G̃ ⊂ C∞ be a domain, ∞ ∈ G̃ and denote its Green’s function
by gG̃ (u,∞) with pole at infinity. Let f̃ : G̃→ C∞ be a meromorphic function
which has only one pole at infinity and we denote the order of the pole by ñ.
Assume that f̃ can be extended continuously to the boundary ∂G̃ of G̃. Then∣∣∣f̃ (u)

∣∣∣ ≤ ∥∥∥f̃∥∥∥
∂G̃

exp (ñ gG̃ (u,∞)) (8)

where ‖.‖∂G̃ denotes the sup norm over ∂G̃.

The third result is a special case of a general construction of fast decreasing
polynomials by Totik, see [Tot10], Corollary 4.2 and Theorem 4.1 too on p.
2065.

Theorem. Let K̃ ⊂ C be a compact set, ũ ∈ ∂K̃ be a boundary point. Assume
that K̃ satisfies the touching outer-disk-condition, that is, there exists a closed
disk (with positive radius) such that its intersection with K̃ is {ũ}. Then there
exist C2, C3 > 0 such that for all ñ there exists a polynomial Q̃ with the following
properties: deg

(
Q̃
)
≤ ñ109/110, Q̃ (ũ) = 1,

∥∥∥Q̃∥∥∥
K̃
≤ 1 and if u ∈ K̃, |u− ũ| ≥

ñ−9/10, then
∣∣∣Q̃ (u)

∣∣∣ ≤ C2 exp
(
−C3ñ

1/110
)
.

To apply this third theorem, we introduce several notations.
We need ψ (v) := 1−a2v

v−a2 = w and its inverse ψ−1 (w) = 1+a2w
w+a2

. Note that
ψ (a2) =∞, ψ (1) = 1−a2

1−a2 and let b1 := 1−a2
1−a2 . Obviously, ψ (∂D) = ∂D.

Let Γ1 = {w : |w| = 1 + δ1} and δ1 > 0 is chosen so that Γ1 ⊂ ψ (D1). This
δ1 depends on G2 only.

Let D3 := {w : |w − 2b1| < 1}, this disk touches the unit disk at b1. Fix
δ

(0)
2,3 > 0, δ(0)

2,3 < 1, such that
{
w : |w| ≤ 1 + δ

(0)
2,3

}
⊂ ψ (D1). Then for every

δ2,3 ∈
(

0, δ
(0)
2,3

]
, {w : |w| = 1 + δ2,3} ∩ ∂D3 consists of exactly two points, w∗1 =

w∗1 (δ2,3) and w∗2 = w∗2 (δ2,3). It is easy to see that the length of the two arcs
of
{
w : |w| = 1 + δ

(0)
2,3

}
lying in between w∗1 and w∗2 are different, therefore,

by reindexing them, we can assume that the shorter arc is going from w∗1 to
w∗2 counterclockwise. Elementary geometric considerations show that for all
w, 1 ≤ |w| ≤ 1 + δ2,3 with argw ∈

{
argw∗j (δ2,3) : j = 1, 2

}
, we have (since

δ2,3 < 1)
1

2

√
δ2,3 ≤ |w − b1| ≤ 2

√
δ2,3. (9)

Let
K∗w :=

{
w : |w| ≤ 1 + δ

(0)
2,3

}
\D3.

Obviously, this K∗w is a compact set and satisfies the touching-outer-disk con-
dition at b1 = 1−a2

1−a2 of Totik’s theorem. See figure 3 later.
Consider

K∗u := Φ2 ◦ ψ−1 [K∗w ∩ D∗] ∪ Φ1 ◦ ψ−1 [K∗w ∩ D∗] ∪G1.

This is a compact set and also satisfies the touching-outer-disk condition at
u0 = Φ2 (1) of Totik’s theorem. Obviously, ∂G2 ⊂ K∗u, G1 ⊂ K∗u , u0 ∈ K∗u and
if w ∈ K∗w, then Φ1 ◦ ψ−1 (w) ∈ K∗u and Φ2 ◦ ψ−1 (w) ∈ K∗u too. Now applying

10



Totik’s theorem, there exists a fast decreasing polynomial for K∗u at u0 of degree
at most n1 which we denote by Q = Q (n1;u). More precisely, Q has the
following properties: Q (u0) = 1, |Q (u)| ≤ 1 on u ∈ K∗u, degQ ≤ n

109/110
1 ≤ n1

and if |u− u0| > n
−9/10
1 , u ∈ K∗u, then

|Q (u)| ≤ C2 exp
(
−C3n

1/110
1

)
. (10)

Let n1 := b
√
nc, n2 :=

⌊
n3/4

⌋
, δ2,1 := 1/n and δ2,3 := n−2/3.

4.2 Proof
In this subsection, we let f (u) := Pn (F (u)) where Pn is a fixed polynomial of
degree n and F is the open-up rational function (see Proposition 5) for K (from
Theorem 1).

Actually, we use only the following facts. f is a rational function such that it
has one pole in G1 and one in G2. We know that the poles of f are∞ = F−1

2 [∞]
and F−1

1 [∞], and the order of the pole in G1 is n.
It is easy to decompose f into sum of rational functions, that is,

f = f1 + f2

where f1 is a rational function with pole inG1, f1 (∞) = 0 and f2 is a polynomial
(rational function with pole at ∞). This decomposition is unique. We use the
Gonchar-Grigorjan estimate (7) for f2 on G+

1 , so we have

‖f2‖∂G2
≤ C1

(
G+

1

)
(log n+ 1) ‖f‖∂G2

. (11)

Obviously, we have

‖f1‖∂G2
≤
(
1 + C1

(
G+

1

)
(log n+ 1)

)
‖f‖∂G2

. (12)

Consider
ϕ1 (v) := f1 (Φ1 (v)) .

This is a meromorphic function in D1. We may assume that ϕ1 has only one
pole in D1 otherwise we can decrease r2 > 1 so that the pole in G2 is not in
Φ1 (D1) = G+

1 . We know that

‖ϕ1‖∂D = ‖f1‖∂G2
(13)

and |ϕ′1 (1)| = |f ′1 (u0)|.
We decompose “the essential part of” ϕ1 as follows

Q ◦ Φ1 · ϕ1 = ϕ1r + ϕ1e (14)

where ϕ1r is a rational function, ϕ1r (∞) = 0 and ϕ1e is holomorphic in D. We
use the Gonchar-Grigorjan estimate (7) again for ϕ1 on D, this way the following
sup norm estimate holds

‖ϕ1e‖∂D ≤ C1 (D) (log n+ 1) ‖Q ◦ Φ1 · ϕ1‖∂D ≤ C1 (D) (log n+ 1) ‖ϕ1‖∂D (15)

where C1 (D) is a constant independent of ϕ1.

11



As a remark, let us note that we may write log n + 1 ≤ O (log n) for sim-
plicity since we are interested in asymptotics as n → ∞ in the main theorem.
Otherwise, if n = 0 or n = 1, then Pn is a constant or linear polynomial and
the error term o(1) in the main theorem (Theorem 1) can be sufficiently large
(depending on K and z0) for these two particular values of n. In this manner,
we write (log n+ 1) in general, but we simplify it to O(log n) frequently.

Furthermore, we can estimate ϕ1e (v) on v ∈ D1 \ D as follows

|ϕ1e (v)| = |(Q · f1) ◦ Φ1 (v)− ϕ1r (v)| ≤ |(Q · f1) ◦ Φ1 (v)|+ |ϕ1r (v)| . (16)

We also need to estimate Q outside D (and K∗w) as follows. Using degQ ≤
n

109/110
1 ≤ n1 and Bernstein-Walsh estimate (8), we can write for v ∈ D1 \ D

|Q (Φ1 (v))| ≤ 1 · exp (n1gG2
(Φ1 (v) ,∞)) .

Since the set Φ1 (D1 \ D) is bounded,

C6 := sup {gG2
(Φ1 (v) ,∞) : v ∈ D1 \ D} <∞.

Therefore, for all v ∈ D1 \ D,

|(Q · f1) ◦ Φ1 (v)| ≤ eC6n1 ‖f1‖∂G2
.

This way we can continue (16) and we use u = Φ1 (v) here and that ϕ1r is
a rational function with no poles outside D and the maximum principle for ϕ1r

≤ eC6n1 |f1 (u)|+ ‖ϕ1r‖∂D ≤ e
C6n1 ‖f1‖∂G2

+ ‖ϕ1‖∂D + ‖ϕ1e‖∂D

and here we used that f1 has no pole in G2 and the maximum principle. We
can estimate these three sup norms with the help of (12) and (13), (12) and
(15), (13), (12). Hence we have for v ∈ D1 \ D

|ϕ1e (v)| ≤
(
eC6n1 + 1 + C1 (D) (log n+ 1)

) (
1 + C1

(
G+

1

)
(log n+ 1)

)
‖f‖∂G2

= O
(
log (n) eC6n1

)
‖f‖∂G2

. (17)

Approximate and interpolate ϕ1e as follows with rational function which has
only one pole, namely at a2 = Φ−1

2 [∞]. Consider ϕ1e◦ψ−1 (w) on ψ (D1). Using
the properties of ψ, we have

‖ϕ1e‖∂D =
∥∥ϕ1e ◦ ψ−1

∥∥
∂D

and ϕ1e ◦ ψ−1 is a holomorphic function in ψ (D1). We interpolate and use
integral estimates for the error, see e.g. [Ran95], p. 170, proof of Theorem 6.3.1
or [SL68], p. 11. Therefore, let

qN (w) := wN (w − b1)
2

where N = n + b
√
nc +

⌊
n3/4

⌋
= n (1 + o (1)). We define the approximating

polynomial

p1,N (w) :=
1

2πi

ˆ
Γ1

ϕ1e ◦ ψ−1 (ω)

qN (ω)

qN (w)− qN (ω)

w − ω
dω.

12



It is well known that p1,N does not depend on Γ1. Since b1 is a double pole
of qN , therefore p1,N and p′1,N coincide there with ϕ1e ◦ ψ−1 and

(
ϕ1e ◦ ψ−1

)′
respectively.

The error of the approximating polynomial p1,N to ϕ1e ◦ ψ−1 is

ϕ1e ◦ ψ−1 (w)− p1,N (w) =
1

2πi

ˆ
Γ1

ϕ1e ◦ ψ−1 (ω)

ω − w
qN (w)

qN (ω)
dω

=
1

2πi

ˆ
Γ1

1

ω − w
qN (w)

ϕ1e ◦ ψ−1 (ω)

qN (ω)
dω, (18)

here w ∈ D can be arbitrary. It is easy to see that for w ∈ D, |qN (w)| ≤ 4 and

1

2π

ˆ
Γ1

∣∣∣∣ 1

ω − w

∣∣∣∣ |dω| ≤ 1 + δ1
δ1

.

Therefore, using (17), we can estimate the error (of approximation of p1,N to
ϕ1e ◦ ψ−1 ) as follows

∣∣ϕ1e ◦ ψ−1 (w)− p1,N (w)
∣∣ ≤ 4 (1 + δ1)

δ1
O
(
log (n) eC6n1

)
‖f‖∂G2

1

δ2
1 (1 + δ1)

N

=
4 (1 + δ1)

δ3
1

O
(
log (n) eC6n1

)
(1 + δ1)

N
‖f‖∂G2

which tends to 0 as n→∞, because n1 = b
√
nc and

eC6n1

(1 + δ1)
N

= exp
(
C6

√
n− log (1 + δ1)n (1 + o (1))

)
→ 0.

Considering p1,N ◦ ψ, it is a rational function with pole at a2 only, the order of
its pole at a2 is at most N and we know that

‖ϕ1e − p1,N ◦ ψ‖∂D = o (1) ‖f‖∂G2
(19)

where o (1) is independent of Pn and f and depends only on G2 and tends to 0
as n→∞, furthermore

ϕ′1e (1) = (p1,N ◦ ψ)
′
(1) . (20)

Now we interpolate and approximate f2 ◦Φ1. As earlier, we do not need the
full information of this function, it is enough to deal with f2 ◦Φ1 locally around
1 and preserve the sup norm. Therefore we “chop off” “the unnecessary parts of
f2 ◦ Φ1” with the fast decreasing polynomial Q.

We have the following description about the growth of Green’s function.

Lemma 9. There exists C4 > 0 depending on δ
(0)
2,3, that is, depending on G2

only and is independent of Pn, n and f such that for all 1 ≤ |w| ≤ 1 + δ
(0)
2,3 we

have ∣∣∣∣∣
(
ψ ◦ Φ−1

2 ◦ Φ1 ◦ ψ−1
)′

(w)

ψ ◦ Φ−1
2 ◦ Φ1 ◦ ψ−1 (w)

∣∣∣∣∣ ≤ C4.
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and
gG2

(
Φ1 ◦ ψ−1 (w) ,∞

)
≤ C4 (|w| − 1) . (21)

Furthermore, there exists C5 > 0 which depends on G2 and independent of Pn, n
and f such that for all 1 ≤ |ζ| ≤ 1 + δ

(0)
2,3 we have∣∣∣∣∣

(
ψ ◦ Φ−1

2 ◦ Φ1 ◦ ψ−1
)′

(ζ)

ψ ◦ Φ−1
2 ◦ Φ1 ◦ ψ−1 (ζ)

∣∣∣∣∣ ≤ 1 + C5 |ζ − b1|

and
gG2

(
Φ1 ◦ ψ−1 (ζ) ,∞

)
≤ (|ζ| − 1) (1 + C5 |ζ − b1|) . (22)

Proof. For simplicity, let ζ∗ := arg ζ where arg ζ = ζ/ |ζ|, if ζ 6= 0 and arg 0 = 0.
We can express Green’s function in the following ways for u ∈ G2,

gG2
(u,∞) = log

∣∣ψ ◦ Φ−1
2 (u)

∣∣
and for w ∈ D∗

gG2

(
Φ1 ◦ ψ−1 (w) ,∞

)
= log

∣∣ψ ◦ Φ−1
2 ◦ Φ1 ◦ ψ−1 (w)

∣∣ .
The first displayed inequality in the Lemma comes from continuity consider-

ations and the conformal bijection properties. Integrating this inequality along
radial rays, we obtain (21). If we are close to 1, then more is true:∣∣∣(ψ ◦ Φ−1

2 ◦ Φ1 ◦ ψ−1
)′

(b1)
∣∣∣ = 1.

Using continuity, we see that there exists C5 > 0 such that for all ζ, 1 ≤
|ζ| ≤ 1 + δ

(0)
2,3, we have∣∣∣∣∣

(
ψ ◦ Φ−1

2 ◦ Φ1 ◦ ψ−1
)′

(ζ)

ψ ◦ Φ−1
2 ◦ Φ1 ◦ ψ−1 (ζ)

∣∣∣∣∣ ≤ 1 + C5 |ζ − b1| .

In particular, for all η from the segment [ζ∗, ζ], η ∈ [ζ∗, ζ],∣∣∣∣∣
(
ψ ◦ Φ−1

2 ◦ Φ1 ◦ ψ−1
)′

(η)

ψ ◦ Φ−1
2 ◦ Φ1 ◦ ψ−1 (η)

∣∣∣∣∣ ≤ 1 + C5 |η − b1|

and |η − b1| ≤ |ζ − b1|. Therefore, integrating with respect to η along [ζ∗, ζ], we
obtain

gG2

(
Φ1 ◦ ψ−1 (ζ) ,∞

)
= <
ˆ ζ

ζ∗

(
ψ ◦ Φ−1

2 ◦ Φ1 ◦ ψ−1
)′

(η)

ψ ◦ Φ−1
2 ◦ Φ1 ◦ ψ−1 (η)

dη

≤
ˆ ζ

ζ∗

∣∣∣∣∣
(
ψ ◦ Φ−1

2 ◦ Φ1 ◦ ψ−1
)′

(η)

ψ ◦ Φ−1
2 ◦ Φ1 ◦ ψ−1 (η)

∣∣∣∣∣ |dη| ≤
ˆ ζ

ζ∗
1 + C5 |ζ − b1| |dη|

= (|ζ| − 1) (1 + C5 |ζ − b1|) .
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Figure 3: K∗w and the arcs that make up Γ2

Now we give the approximating polynomial as follows

p2,N (w) :=
1

2πi

ˆ
Γ

(Q · f2) ◦ Φ1 ◦ ψ−1 (ω)

qN (ω)

qN (w)− qN (ω)

w − ω
dω

where Γ can be arbitrary with D ⊂ IntΓ and Γ ⊂ ψ (D1). We remark that
we use the same interpolating points, but we need a different Γ for the error
estimate.

Now we construct Γ = Γ2 for the estimate and investigate the error. We
use δ2,1 = 1/n, δ2,3 = n−2/3 and n2 =

⌊
n3/4

⌋
. We give four Jordan arcs that

will make up Γ2. Let Γ2,3 be the (shorter, circular) arc between w∗1 (δ2,3) and
w∗2 (δ2,3), Γ2,1 be the longer circular arc between w∗1 (δ2,3)

1+δ2,1
1+δ2,3

and w∗2 (δ2,3)
1+δ2,1
1+δ2,3

,
Γ2,2 := {w : 1 + δ2,1 ≤ |w| ≤ 1 + δ2,3, argw = arg (w∗1 (δ2,3))} and similarly Γ2,4 :=
{w : 1 + δ2,1 ≤ |w| ≤ 1 + δ2,3, argw = arg (w∗2 (δ2,3))} be the two segments con-
necting Γ2,1 and Γ2,3. Finally let Γ2 be the union of Γ2,1, Γ2,2, Γ2,3 and Γ2,4.
Figure 3 depicts these arcs and K∗w defined above.

We estimate the error of p2,N to (Q · f2)◦Φ1◦ψ−1 on each integral separately:

(Q · f2) ◦Φ1 ◦ψ−1 (w)− p2,N (w) =
1

2πi

ˆ
Γ2

(Q · f2) ◦ Φ1 ◦ ψ−1 (ω)

ω − w
qN (w)

qN (ω)
dω

=
1

2πi

(ˆ
Γ2,1

+

ˆ
Γ2,2

+

ˆ
Γ2,3

+

ˆ
Γ2,4

)
.

For the first term, we use Bernstein-Walsh estimate (8) for the polynomial f2

on G2 and the fast decreasing polynomial Q as follows. If w ∈ Γ2,1, then with
(21), gG2

(
Φ1 ◦ ψ−1 (w) ,∞

)
≤ C4δ2,1 = C4/n, therefore

∣∣f2

(
Φ1 ◦ ψ−1 (w)

)∣∣ ≤ ‖f2‖∂G2
exp

(
n
C4

n

)
≤ ‖f‖∂G2

C1

(
G+

1

)
(log n+ 1) eC4

= O (log (n)) ‖f‖∂G2
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where we used (11). Now we use the fast decreasing property of Q as fol-
lows. We know that Γ2,1 ⊂ K∗w (if n ≥ 1/δ

(0)
2,3 ) and with the elementary

geometric considerations (9) we have
√
δ2,3/2 ≥ n

−9/10
1 which is equivalent

to n−1/3/2 ≥ n−9/20 (this is true if n is large). It is also important that
sup

{∣∣∣(Φ1 ◦ ψ−1
)′

(w)
∣∣∣ : w ∈ ψ (D1)

}
< ∞ and K∗w ⊂ ψ (D1) therefore the

growth order of the distances is preserved by Φ1 ◦ ψ−1. Hence the fast decreas-
ing polynomial Q is small, see (10), and we can write

∣∣(Q · f2)
(
Φ1 ◦ ψ−1 (w)

)∣∣ ≤ O( log (n)

exp
(
C3n1/220

)) ‖f‖∂G2

and integrating along Γ2,1, we can write for w ∈ D∣∣∣∣∣ 1

2πi

ˆ
Γ2,1

(Q · f2) ◦ Φ1 ◦ ψ−1 (ω)

ω − w
qN (w)

qN (ω)
dω

∣∣∣∣∣
≤ 1

2π

ˆ
Γ2,1

1

|ω − w|
O

(
log (n)

exp
(
C3n1/220

)) ‖f‖∂G2
4

1

(1 + δ2,1)
N
δ2
2,1

|dω|

≤ 2

π

2π (1 + δ2,1)

(1 + δ2,1)
N
δ3
2,1

O

(
log (n)

exp
(
C3n1/220

)) ‖f‖∂G2
= O

(
n3 log (n)

exp
(
C3n1/220

)) ‖f‖∂G2

here we used δ2,1 = 1/n.

We estimate the third term, the integral on Γ2,3, as follows for w ∈ D∣∣∣∣∣ 1

2πi

ˆ
Γ2,3

(Q · f2) ◦ Φ1 ◦ ψ−1 (ω)

ω − w
qN (w)

qN (ω)
dω

∣∣∣∣∣
≤ 1

2π

ˆ
Γ2,3

4
1

|ω − w|
∣∣(Q · f2)

(
Φ1 ◦ ψ−1 (ω)

)∣∣ 1

|qN (ω)|
|dω| . (23)

Here, |ω| = 1 + δ2,3, |w − ω| ≥ δ2,3, |qN (ω)| ≥ δ2
2,3 (1 + δ2,3)

N . Roughly speak-
ing, f2 grows and this time Q grows too (the bad guys) and only |qN (ω)|−1

decreases (the good guy). We estimate their growth using Bernstein-Walsh es-
timate (8) for f2 on G2 and Lemma 9 (and estimate (11) as well) in the following
way. Here, as earlier, ω ∈ Γ2,3∣∣f2

(
Φ1 ◦ ψ−1 (ω)

)∣∣ ≤ ‖f2‖∂G2
exp

(
ngG2

(
Φ1 ◦ ψ−1 (ω) ,∞

))
≤ C1

(
G+

1

)
(log n+ 1) ‖f‖∂G2

exp (n (|ω| − 1) (1 + C5 |ω − b1|))

≤ C1

(
G+

1

)
(log n+ 1) ‖f‖∂G2

exp
(
nδ2,3 + C5nδ2,32

√
δ2,3

)
= C1

(
G+

1

)
(log n+ 1) ‖f‖∂G2

exp (nδ2,3) e2C5

where in the last two steps we used |ω − b1| ≤ 2
√
δ2,3 from (9) and δ2,3 = n−2/3.
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As for qN ,

1

|qN (ω)|
≤ 1

δ2
2,3

1

(1 + δ2,3)
N

=
1

δ2
2,3

exp (− (n+ n1 + n2) log (1 + δ2,3))

≤ 1

δ2
2,3

exp

(
−nδ2,3 − n1δ2,3 − n2δ2,3 + (n+ n1 + n2)

δ2
2,3

2

)

≤ 1

δ2
2,3

exp (−nδ2,3 − n1δ2,3 − n2δ2,3) exp
(

3n n−4/3
)

≤ exp (−nδ2,3 − n1δ2,3 − n2δ2,3)

δ2
2,3

e3

where we used n1 =
⌊
n1/2

⌋
, n2 =

⌊
n3/4

⌋
and δ2,3 = n−2/3.

As for Q (this time it is a bad guy), we use Bernstein-Walsh estimate (8) for
Q on G1 ∪ ∂G1 and that G1 ∪ ∂G1 ⊂ K∗u. Therefore, ‖Q‖∂G2

= 1 and we know
that degQ ≤ n109/110

1 ≤ n109/220, hence∣∣Q (Φ1 ◦ ψ−1 (ω)
)∣∣ ≤ ‖Q‖∂G2

exp
(
n1gG2

(
Φ1 ◦ ψ−1 (ω) ,∞

))
≤ exp (n1 (|ω| − 1) (1 + C5 |ω − b1|)) ≤ exp

(
n109/220δ2,3

(
1 + C52

√
δ2,3

))
= exp

(
n109/220δ2,3 + 2C5n

109/220n−1
)
≤ exp

(
n109/220δ2,3

)
e2C5 .

Here we used again (9) and the definition of δ2,3.
We multiply together all these three last displayed estimates, this way we can

continue our main estimate (23). Note that exp (nδ2,3) cancels, and exp (−n1δ2,3)
kills the factor exp

(
n109/220δ2,3

)
, in more detail:

≤ 2

π

ˆ
Γ2,3

1

δ2,3
C1

(
G+

1

)
(log n+ 1) ‖f‖∂G2

exp (nδ2,3) e2C5

· exp (−nδ2,3 − n1δ2,3 − n2δ2,3)

δ2
2,3

e3 exp
(
n109/220δ2,3

)
e2C5 |dω|

=
2e4C5+3C1

(
G+

1

)
π

‖f‖∂G2

log n+ 1

δ3
2,3

ˆ
Γ2,3

|dω|

· exp
((
n109/220 − n1

)
δ2,3

)
exp (−n2δ2,3) ≤ ‖f‖∂G2

O

(
n2 log (n)

exp
(
n1/12

))

where we used several estimates: length of Γ2,3 is at most 4π, the definitions of
n1, n2 and δ2,3 and that n1 > n109/220, therefore exp

((
n109/220 − n1

)
δ2,3
)
≤ 1.

For Γ2,2 and Γ2,4, we apply the same estimate which we detail for Γ2,2 only.
We again start with the integral for w ∈ D∣∣∣∣∣ 1

2πi

ˆ
Γ2,2

(Q · f2) ◦ Φ1 ◦ ψ−1 (ω)

w − ω
qN (w)

qN (ω)
dω

∣∣∣∣∣
≤ 1

2π

ˆ
Γ2,2

4
1

|w − ω|
∣∣(Q · f2)

(
Φ1 ◦ ψ−1 (ω)

)∣∣ 1

|qN (ω)|
|dω| . (24)
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Since ω ∈ Γ2,2, we can rewrite it in the form ω = (1 + δ)w∗1/ |w∗1 | where δ2,1 ≤
δ ≤ δ2,3 (with w∗1 = w∗1 (δ2,3) ). We use essentially the same steps to estimate
f2 (the only one bad guy this time) and qN and Q (this time it is a good guy).
In estimating f2, the only difference is that |ω| − 1 = δ, so∣∣f2

(
Φ1 ◦ ψ−1 (ω)

)∣∣ ≤ ‖f2‖∂G2
exp

(
ngG2

(
Φ1 ◦ ψ−1 (ω) ,∞

))
≤ C1

(
G+

1

)
(log n+ 1) ‖f‖∂G2

exp (n (|ω| − 1) (1 + C5 |ω − b1|))

≤ C1

(
G+

1

)
(log n+ 1) ‖f‖∂G2

exp
(
nδ + C5nδ2,32

√
δ2,3

)
= C1

(
G+

1

)
(log n+ 1) ‖f‖∂G2

exp (nδ) e2C5 .

Similarly for qN , we can write

1

|qN (ω)|
≤ 1

δ2
2,1

1

(1 + δ)
N

=
1

δ2
2,1

exp (− (n+ n1 + n2) log (1 + δ))

≤ 1

δ2
2,1

exp

(
−nδ − n1δ − n2δ + (n+ n1 + n2)

δ2
2,3

2

)

≤ 1

δ2
2,1

exp (−nδ − n1δ − n2δ) exp
(

3n n−4/3
)

≤ exp (−nδ − n1δ − n2δ)

δ2
2,1

e3 ≤ exp (−nδ)
δ2
2,1

e3.

As for Q, we know that ω is far from b1 so Q is small there. More precisely,
following the same argument as for Γ2,1, we know that

√
δ2,3/2 ≥ n−9/10

1 , hence
(10) holds for Q at ω, that is, we can write∣∣Q (Φ1 ◦ ψ−1 (ω)

)∣∣ ≤ C2 exp
(
−C3n

1/220
)
.

Putting these all together, we see that exp (nδ) cancels and actually Q make
the integrand small. So we can continue the estimate (24)

≤ 2

π

ˆ
Γ2,2

1

δ2,1
C1

(
G+

1

)
(log n+ 1) ‖f‖∂G2

exp (nδ) e2C5
exp (−nδ)

δ2
2,1

e3

· C2 exp
(
−C3n

1/220
)
|dω| =

2e2C5+3C2C1

(
G+

1

)
π

‖f‖∂G2

ˆ
Γ2,2

|dω|

· log n+ 1

δ3
2,1

exp
(
−C3n

1/220
)
≤ ‖f‖∂G2

O

(
n3 log (n)

exp
(
C3n1/220

))

where we used that the length of Γ2,2 is at most 1 (since δ(0)
2,3 < 1) and δ2,1 = 1/n.

Summarizing these estimates on Γ2,1, Γ2,3 and Γ2,2 (and also on Γ2,4), we
have uniformly for |w| ≤ 1,∣∣p2,N (w)− (Q · f2) ◦ Φ1 ◦ ψ−1 (w)

∣∣ = o (1) ‖f‖∂G2

where o (1) tends to 0 as n→∞ but it is independent of Pn and f2. Obviously,
p2,N ◦ψ is a rational function with pole at v = a2 only, the order of the pole at
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a2 (of p2,N ◦ ψ ) is deg p2,N = N = n + n1 + n2 = (1 + o (1))n and using the
properties of w = ψ (v), we uniformly have for |v| ≤ 1

|p2,N ◦ ψ (v)− (Q · f2) ◦ Φ1 (v)| = o (1) ‖f‖∂G2
,

that is,
‖p2,N ◦ ψ − (Q · f2) ◦ Φ1‖∂D = o (1) ‖f‖∂G2

. (25)

Since b1 is double zero of q, p′2,N (b1) =
(
(Q · f2) ◦ Φ1 ◦ ψ−1

)′
(b1), and dividing

both sides with
(
ψ−1

)′
(b1), we obtain

(p2,N ◦ ψ)
′
(1) = ((Q · f2) ◦ Φ1)

′
(1) . (26)

Consider the “constructed” rational function

h (v) := ϕ1,r (v) + p1,N ◦ ψ (v) + p2,N ◦ ψ (v) .

This function h has a pole at a1 (because of ϕ1,r) and the order of its pole at
a1 is at most n, and h has a pole at a2 (because of p1,N ◦ ψ and p2,N ◦ ψ) and
the order of its pole at a2 is at most N = n (1 + o (1)). We use the identity

f ◦ Φ1 = (Q · f + (1−Q) · f) ◦ Φ1

to calculate the derivatives as follows

(((1−Q) · f) ◦ Φ1)
′
(1) =

(
(1−Q)

′ · f
)

(u1) ·Φ′1 (1) + ((1−Q) · f ′) (u1) ·Φ′1 (1)

where the second term is zero because of the fast decreasing polynomial (Q (u1) =
1) and for the first term we can apply Theorem 1.3 from [NT05] in the following
way (‖1−Q‖∂G2

≤ 2):

∣∣(1−Q)
′
(u1)

∣∣ ≤ (1 + o (1)) deg (Q) 2
∂

∂n2 (u1)
gG2

(u1,∞)

where o (1) depends on G2 and u1 only and tends to 0 as degQ → ∞ (note:
degQ ≤ n109/220 ≤

√
n ). Therefore

∣∣((1−Q)
′ · f

)
(u1) · Φ′1 (1)

∣∣ ≤ ‖f‖∂G2

√
n2 (1 + o (1))

∂

∂n2 (u1)
gG2

(u1,∞)

= ‖f‖∂G2
O
(√
n
) ∂

∂n2 (u1)
gG2

(u1,∞)

≤ o (1)n ‖f‖∂G2
max

(
∂

∂n2 (u1)
gG2

(u1,∞) ,
∂

∂n1 (u1)
gG1

(u1, a1)

)
. (27)

This way we need to consider (Q · f) ◦ Φ1 only. The derivatives at 1 of the
original f and h coincide, because of (14), (20) and (26), so

h′ (1) = ϕ′1,r (1) + (p1,N ◦ ψ)
′
(1) + (p2,N ◦ ψ)

′
(1) = ((Q · f) ◦ Φ1)

′
(1) . (28)

As for the sup norms, we use (14), (19), (25), so we write

‖(Q · f) ◦ Φ1 − h‖∂D = o (1) ‖f‖∂G2
. (29)
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Now we apply the Borwein-Erdélyi inequality (5) for h as follows:

|h′ (1)| ≤ ‖h‖∂D max

(∑
α

∂

∂n1 (1)
gD (1, α) ,

∑
α

∂

∂n2 (1)
gD∗ (1, α)

)
(30)

where the summation is taken over all poles in D and in D∗ respectively, count-
ing multiplicities. We will continue this estimate later after simplifying these
expressions. Using Propositions 8 and 7, we can write∑

α

∂

∂n1 (1)
gD (1, α) ≤ n ∂

∂n1 (1)
gD (1, a1) = n

∂

∂n1 (u0)
gG1

(
u0, F

−1
1 [∞]

)
= n

∂

∂n2 (z0)
gC∞\K (z0,∞) |F ′ (u0)|

where in the last step we used Proposition 7 with z0 = F (u0) and identifying
u0 = u1. Similarly, we can simplify the second term in the maximum in (30)∑

α

∂

∂n2 (1)
gD∗ (1, α) = deg (p1,N + p2,N )

∂

∂n2 (1)
gD∗ (1, a2)

≤ N ∂

∂n2 (1)
gD∗ (1, a2) = (1 + o (1))n

∂

∂n2 (u0)
gG2

(
u0, F

−1
2 [∞]

)
= (1 + o (1))n

∂

∂n1 (z0)
gC∞\K (z0,∞) |F ′ (u0)|

where o (1) here does not depend on anything. Note that we “used a slightly
bit more the pole at a2”, but it does not cause problem. So we can continue the
main estimate (30)

≤ ‖h‖∂D max
(
n

∂

∂n1 (u0)
gG1

(
u0, F

−1
1 [∞]

)
,

(1 + o (1))n
∂

∂n2 (u0)
gG2

(
u0, F

−1
2 [∞]

) )
≤ ‖h‖∂D (1 + o (1))n

·max

(
∂

∂n1 (u0)
gG1

(
u0, F

−1
1 [∞]

)
,

∂

∂n2 (u0)
gG2

(
u0, F

−1
2 [∞]

) ))
.

Summarizing these estimates, we have for h

|h′ (1)| ≤ ‖h‖∂D (1 + o (1))n

·max

(
∂

∂n1 (u0)
gG1

(
u0, F

−1
1 [∞]

)
,

∂

∂n2 (u0)
gG2

(
u0, F

−1
2 [∞]

) ))
.

Now we rewrite this inequality for Q · f using (28) and (29), so∣∣(Q · f)
′
(u1)

∣∣ ≤ ‖Q · f‖∂G2
(1 + o (1))n

·max

(
∂

∂n1 (u0)
gG1

(
u0, F

−1
1 [∞]

)
,

∂

∂n2 (u0)
gG2

(
u0, F

−1
2 [∞]

) ))
+o (1)n ‖f‖∂G2

·max

(
∂

∂n1 (u0)
gG1

(
u0, F

−1
1 [∞]

)
,

∂

∂n2 (u0)
gG2

(
u0, F

−1
2 [∞]

) ))
.
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Figure 4: The sets K and K∗

Now, we use the estimate ‖Q · f‖∂G2
≤ ‖f‖∂G2

and (27), so

|f ′ (u1)| ≤ ‖f‖∂G2
(1 + o (1))n

·max

(
∂

∂n1 (u0)
gG1

(
u0, F

−1
1 [∞]

)
,

∂

∂n2 (u0)
gG2

(
u0, F

−1
2 [∞]

) ))
. (31)

In the final step, we use f = Pn ◦ F and Proposition 6, so we get the main
theorem.

5 Sharpness
In this section we show that the result is asymptotically sharp, that is, we prove
Theorem 2. The idea is similar to that of [NT13]. Note that we assume C2

smoothness only.

Proof. We may assume that

∂

∂n1 (z0)
gC∞\K (z0,∞) ≤ ∂

∂n2 (z0)
gC∞\K (z0,∞) .

Furthermore, we assume that n1 (.) and n2 (.) are defined on the component of
K containing z0 and they are continuous there except for the endpoints.

It is easy to see that for every ε > 0 there exists a compact set K∗ = K∗ (ε)
such that ∂K∗ is finite union of disjoint, C2 smooth Jordan curves, K ⊂ K∗,
z0 ∈ ∂K∗ and the normal vector n (K∗, z0) to K∗ (pointing outward) at z0 is
equal to n2 (z0) and

∂

∂n2 (z0)
gC∞\K (z0,∞) (1− ε) ≤ ∂

∂n (K∗, z0)
gC∞\K∗ (z0,∞)

≤ ∂

∂n2 (z0)
gC∞\K (z0,∞) .

These conditions, roughly speaking, require that near z0, K∗ is on the n1 (z0)-
side of K and the whole K∗ shrinks to K as ε→ 0. Figure 4 depicts K and the
grey area is K∗.

Now we apply the sharpness result of [NT05] (Theorem 1.4, p. 194). This
gives a sequence of polynomials for K∗ (ε), say Pε,n, with degPε,n ≤ n such
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that

∣∣P ′ε,n (z0)
∣∣ ≥ n (1− oε (1)) ‖Pε,n‖K∗(ε)

∂

∂n (K∗, z0)
gC∞\K∗ (z0,∞)

≥ n (1− oε (1)) (1− ε) ‖Pε,n‖K
∂

∂n2 (z0)
gC∞\K (z0,∞)

where oε (1) depends on K∗ (ε) and z0 and tends to 0 as degPε,n → ∞. Since
ε was arbitrary, we see that (1− oε (1)) (1− ε) = 1 − o (1), that is, choosing a
suitable subsequence of {Pε,n} we obtain the assertion.
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