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Abstract The regulation of gastrointestinal motility mainly
involves the smooth muscle, neural (extrinsic and intrinsic),
and hormonal elements, the glial cells, and the interstitial cells
of Cajal. An orchestrated function of all these components is
required for the appropriate propulsive movement of the food
in the gastrointestinal tract. Gastroparesis, a pathological
slowing-down of gastric emptying, is a result of the damage
to the tissue elements involved in the regulation of motility.
Gastroparesis is one of the well-known complications of long-
standing diabetes mellitus. Although it is rarely a life-
threatening complication, it has a deteriorating effect on the
quality of life, leads to unpredictable oscillation of the blood
glucose level, and increases the time required for the absorp-
tion of food and medicines. This review describes the clinical
characteristics of diabetic gastroparesis and summarizes the
organic and functional motility abnormalities caused by this

complication. Finally, the currently available and potential
future therapeutic approaches are summarized.
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Introduction

The mixing and the propulsive movement of liquid and solid
food arriving into the esophagus and the lower parts of the
gastrointestinal (GI) tract require the well-coordinated work of
five basic tissue elements: smooth muscle, extrinsic and in-
trinsic neurons, glial cells, hormonal elements, and the inter-
stitial cells of Cajal (ICCs). Damage to any of these elements
leading to an imbalance of the neuromuscular unit will dete-
riorate the propulsive movement of food to some extent. The
degrees to which these elements are involved determine the
degree and nature of the functional disorder. The stomach,
positioned in the upper tract of the GI system, has a unique
role in the processing of food, since it accommodates to the
volume of the aliments, stores them, grinds them into small
pieces, and transmits the food toward the duodenum. Under
physiological conditions, the movement of low-calory liquid
food, especially water, toward the duodenum depends on its
volume and the pressure pump function of the stomach [1].
Low-calory solid food (such as bread) spends 20–30 min in
the stomach, while a continuous peristaltic movement starts at
the mid-upper corpus of the greater curvature of the stomach,
spreads toward the antral region (usually 3–5 times per min-
ute) [2], and presses the pieces of food to the almost closed
pylorus. This way, the stomach comminutes the solid food and
makes it accessible to the digestive enzymes. Hyperosmotic,
acidic, or nutrient-rich food makes stomach emptying much
slower [3].

The over-slow emptying of solid food from the stomach for
a nonmechanical reason is defined as gastroparesis [4]. The
etiology of the disease is complex, but in approximately 30 %
of the cases it is caused by long-term diabetes. Gastroparesis
was one of the first complications of diabetes described [5],
and some ancient doctors, such as Aretaeus of Cappadocia,
thought that diabetes was a disease of the stomach. The
etiology of gastroparesis cannot be identified in about a third
of the cases [6]. The symptoms in all cases are chronic and
recur frequently [7], including epigastric burning sensation,
bloating, early satiety, abdominal discomfort, nausea, and
vomiting. In approximately 90 % of the cases, the first symp-
tom of diabetic gastroparesis is continuous nausea of fluctu-
ating intensity. Eighty percent of the patients complain of
bloating, and about 60 % present early satiety [6].
Gastroparesis develops in only 5 %–12 % of patients with
diabetes [8], although previous studies reported a higher inci-
dence [7]. Diabetic gastroparesis occurs more frequently in
women, in obese patients with poor glycemic control, and in
patients where other complications of diabetes have already
appeared. Nonetheless, an obvious relationship between the
higher glycated hemoglobin (HbA1c) level and the develop-
ment and severity of gastroparesis has not been clearly
established [9]. Another typical characteristic of gastroparesis
is the fact that the severity and nature of the symptoms do not

correlate linearly with the extent of the slowdown; therefore,
analysis of the complaints alone is not sufficient for the
diagnosis of impaired motility of the stomach [10]. Further-
more, a normal gastric motility rate does not exclude the
possibility that the complaints originate from motility disor-
ders, while a slower gastric motility is not always associated
with symptoms [11]. It is important to emphasize that the only
manifestation of gastroparesis in some patients without GI
symptoms is poor glycemic control, whereas in other cases,
the completely opposite phenomenon may be experienced:
the presence of obvious symptoms are not related to
dysglycemia [12]. Due to delayed food absorption, postpran-
dial hypoglycemia might be a characteristic feature of
gastroparesis among insulin-treated diabetic patients. Al-
though slower stomach emptying in a case of long-standing
diabetes mellitus rarely leads to life-threatening complications
and does not increase mortality [13], it increases the risk of an
electrolyte imbalance, as well as hypo- or hyperglycemia.
Gastroparesis should also be considered as the underlying
mechanism among patients thought to have brittle diabetes.

As in various other areas of medicine, the severity of the
disease may be characterized by different scoring systems. In
clinical practice, the Gastroparesis Cardinal Symptom Index
[14] and the Patient Assessment of Upper Gastrointestinal
Disorders Quality of Life [15] questionnaire are used. Further
investigations are required to test whether these questionnaires
are sufficiently valuable to guide the proper therapeutic ap-
proach or how well these scores lead to an estimate of the
prognosis of the gastric complication.

Motility Disorders in Diabetic Gastropathy

Approximately 18 % of diabetic patients display some kind of
upper GI symptoms [16]. The connection between symptoms
and motility disorders related to gastroparesis is rather poor
[17, 18]. An increased rate of stomach emptying is a charac-
teristic finding in patients with a relatively short diabetes
history (less than 2 years) and without the signs and symptoms
of diabetic neuropathy [19]. Faster than normal stomach emp-
tying can be observed even in long-term type 1 diabetes
mellitus [12]. In animal models, insulin therapy in a subther-
apeutic dosage normalized increased stomach emptying [20].
The most important consequence of faster gastric emptying in
clinical practice is sudden postprandial hyperglycemia shortly
following food intake. It is also possible that this increased
rate of stomach emptying is a preliminary phase of later
slower stomach emptying [21].

Diabetic gastroparesis involves a severe delay of stomach
emptying of both solid and liquid food [22]. In a survey, type 2
diabetic patients with delayed emptying were older, had
higher body mass index, and exhibited more intensive nausea
and early satiety, as compared with type 1 diabetic patients
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with impaired gastric motility [23]. Several functional changes
can be found in the background of slower stomach emptying
[21–24]. However, acute and chronic hyperglycemia have
different effects on stomach motility.

In healthy volunteers, severe artificial hyperglycemia
causes slowing-down of the emptying of nutrient-containing
liquid and solid food [25]. In type 1 diabetic patients with
diabetic autonomic neuropathy, hyperglycemia increases the
frequency of rhythmic activity in the stomach, resulting in
tachygastria [26]. Obvious deleterious effects of hyperglyce-
mia cannot be confirmed on ICCs (cells generate and propa-
gate electrical activity in the stomach and the GI tract) [27].
Interestingly, in type 1 diabetic patients without autonomic
neuropathy, the stomach emptying can be significantly de-
creased even if the postprandial blood glucose elevation does
not exceed the physiological range [28].

Chronic hyperglycemia in diabetes can also be responsible
for all of the above-mentioned motility disorders. However, it
is important to consider that diabetes is associated not only
with elevated blood glucose levels, but additionally with an
absolute or relative absence of insulin. The importance of this
phenomenon is revealed by in vitro experimental data dem-
onstrating the deteriorating effect of the absolute absence of
insulin on stomach ICCs and the smooth muscle cells [27]. In
general, slower movement of solid food from the stomach in
diabetes is more frequent than slower movement of liquids.
The impaired pyloric pressure pump function also has an
effect on solid food emptying [29], and the dilatation of the
distal stomach also relates to the antral hypomotility [30]. The
decreased smooth muscle contraction might be explained by
smooth muscle myopathy [27, 29] and/or inappropriate func-
tion of the stomach pacemaker activity and leads to distur-
bances of the coordination of electromechanical coupling
[31]. It is probably important that the slow waves of the
stomach generated by the ICCs are modified by a number of
factors, such as the sympathetic–parasympathetic balance,
eating, and medicines. Any disturbance in these factors can
worsen the effectivity of the peristalsis [18].

The reasons for the discrepancy between the symptoms and
detectable motility disorders are not clear; a possible explana-
tion is the viscero-sensory functional defect related to diabetic
autonomic neuropathy. The increased activity or sensitivity of
these neuronal systems in the proximal stomach might explain
the generation of nausea, vomiting, early satiety, and
epigastrial pain experienced in type 1 diabetic patients without
substantial motility disorders [32].

Cellular-Level Changes in Diabetic Gastroparesis

The morphological background of diabetes-related GI com-
plications is still not clear. Various factors can damage differ-
ent tissues, including hyperglycemia and an absolute or

relative lack of insulin. The increase in mitochondrial super-
oxide activity caused by the increased glucose burden can be
an important factor in the development of chronic morpho-
logic complications of diabetes [33]. The increased oxidative
stress-related decrease in nitric oxide (NO) concentration,
together with the reduced activity of heme oxygenase, is an
important feature of the pathogenetic background at the cel-
lular level [34]. Carbon monoxide (produced by heme oxy-
genase) has a protective effect on the ICCs [35].

Histological changes in long-standing diabetes can also be
studied. In a human investigation in antrum samples, mild
lymphocytic infiltration in the myenteric plexus was a char-
acteristic finding of diabetic gastroparesis [36]. Significant
reductions in the numbers of neuronal elements and the ICCs
in the antrum wall were detected [37]. In another investiga-
tion, the loss of neuronal elements was proven in diabetic
samples from the mucosal layer [38]. In a larger study [39],
the most frequent abnormality was damage to or loss of the
ICCs and the decrease in the number of NO synthase (NOS)-
positive neurons. However, the loss of the NOS-positive
neurons was more characteristic for idiopathic gastroparesis.
Electromicroscopic investigations detected a significant in-
crease in the amount of connective tissue. Overall, the most
characteristic histopathological change in diabetic
gastroparesis is the loss of or damage to the ICCs. The
pathophysiologic steps leading to ICC damage are complex.
The ICCs are very sensitive to the lack of insulin, despite the
absence of insulin receptors and insulin-like growth factor-1
(IGF-1) receptors on these cells [40]. The explanation of this
paradoxical situation was provided by experiments [41] that
revealed that the smooth muscle cells of the stomach have
insulin and IGF-1 receptors and these cells produce the stem
cell factor (SCF) that is essential for the development and
maintenance of the network of ICCs. The smooth muscle
atrophy that develops in the lack of insulin is responsible for
the decreased production of SCF and, hence, for the damage
to the ICC network [27, 40]. The exact mechanism of ICC
damage is still not clear, and several questions remain to be
answered [42, 43]. The most characteristic histological find-
ings and symptoms of diabetic gastroparesis are listed in
Tables 1 and 2.

Table 1 Histological findings in diabetic gastroparesis in human
investigations

Reductions in the numbers of neuronal elements (especially nitric oxide
synthase positive neurons)

Damage or loss of interstitial cells of Cajal in the myenteric or
intramuscular layer (most characteristic finding)

Increase in the amount of connective tissue

Abnormal immune infiltrate (CD45- and CD68-positive cells)

Smooth muscle atrophy
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Role of Neuropathy in the Pathogenesis of Gastroparesis

The Contribution of Impaired Autonomic Function
to the Development of Delayed Gastric Emptying

The motor, secretory, and sensory functions of the stomach
may all be altered when the balance is impaired between the
intrinsic enteral and the extrinsic (parasympathetic [vagal] and
sympathetic [mesenteric] fibers} autonomic neuronal systems
[24]. The parasympathetic regulation can exert both excitatory
and inhibitory effects, while the sympathetic input is generally
inhibitory, with the exception of its propulsive influence on
the lower esophageal sphincter [44]. In accordance with the
previous description, GI autonomic neuropathy is the result of
a complex pathophysiological process that involves organic
and functional impairments of the neuronal cells and a pro-
gressive imbalance of various autonomic regulations. The
changes include reduced numbers of ICCs, extrinsic autonom-
ic neurons, and smooth muscle cells with altered inhibitory
neurotransmission [29]. In patients with diabetic
gastroparesis, a reduction in the intraneuronal levels of NO
has also been observed [45]. It is assumed that the leading
pathophysiologic abnormality is the impairment of parasym-
pathetic function in autonomic neuropathy. Sham feeding-
induced gastric acid production or pancreatic polypeptide
response to hypoglycemia is decreased in diabetic patients as
well. Since both the gastric secretory function and pancreatic
polypeptide secretion are under vagal control, these observa-
tions support the role of parasympathetic damage in the de-
velopment of diabetic gastroparesis [46, 47]. The long-term
diabetic exposure is one of the most important risk factors of
autonomic neuropathy, as indicated in the EURODIAB
IDDM study [48]. The progression of the impaired gastric
emptying seems to be slower than the progression of the
autonomic neuropathy [49]. Besides the chronic metabolic
exposure, acute hyperglycemia can also alter GI vagal func-
tions [50]. Moreover, current hyperglycemia affects parasym-
pathetic cardiac functions even in healthy subjects, pointing to
the importance of the physiological condition of all those
factors that possibly affect the vagal control in the regulation
of gastric emptying [51]. The emptying of the stomach might

be slower when the balance between the excitatory and inhib-
itory regulations of the autonomic system becomes disturbed
[52]. Parasympathetic function becomes abnormal earlier dur-
ing the progression of autonomic neuropathy than does the
sympathetic function, leading to weakening of the excitatory
parasympathetic innervation of the stomach and a relative
strengthening of the inhibitory sympathetic effects [53]. The
alteration in the sympathetic function can also have detrimen-
tal effect on gastric emptying.

Several important processes are regulated by the sympa-
thetic nervous system, which may also partially affect the
gastric motility (visceral reflexes, nausea, vomiting, and ab-
dominal pain). Despite the well-known general consequences
of the parasympathetic and sympathetic impairments, it is still
not clear how these alterations act directly on the motility of
the stomach in diabetic patients. Besides the normal extrinsic
autonomic neuronal functions, intact central neuronal regula-
tion is also mandatory for the integrity of gastric emptying.
Abnormal visceral hypersensitivity as a result of an altered
afferent central function is a newly documented source of
various digestive symptoms that are responsible for an im-
paired quality of life [54]. In line with this, a recent study
demonstrated altered central sensory processing in diabetic
patients with upper abdominal symptoms [55]. A few clinical
observations suggest the role of the central neuronal system in
the regulation of certain visceral functions, including gastric
motility [56]. The severity of the autonomic neuronal damage
in humans is not yet measurable directly; therefore, reproduc-
ible and sensitive cardiovascular and sensory tests are applied
to estimate the neuronal dysfunctions in patients with abnor-
mal gastric emptying or GI symptoms. In some of these tests,
correlations have been found between neuropathy and stom-
ach motility. The overall autonomic neuropathy score calcu-
lated from cardiovascular reflex tests correlated positively
with the scintigraphic gastric emptying rate of solids in pa-
tients with long-standing type 1 diabetic patients [57]. Two
heart rate tests of the five cardiovascular tests consistently
correlated with the emptying of an isotope-labeled solid meal
from the stomach in long-standing type 1 diabetes [52]. These
heart rate tests, the heart rate response to deep breathing, and
the Valsalva maneuver are regarded as sensitive indicators of
the parasympathetic function that become abnormal during
the early course of neuropathy. These data support the hypoth-
esis that the insufficiency of the excitatory effect of the vagal
nerve on the postprandial phase of the stomach functions leads
to delayed emptying in type 1 diabetic patients with long
duration. Reduced heart rate variability, a well-known indica-
tor of the autonomic dysfunction, was associated with GI
complaints in diabetic patients with sensorimotor neuropathy,
suggesting a concomitant role of various manifestations of
neuropathy in the pathogenesis of digestive complications
[58]. Although several studies have documented correlations
between neuropathy tests and gastric emptying, numerous

Table 2 Symptoms and sign of diabetic gastroparesis

Nausea (in about 90 %, the first symptom)

Bloating (80 %)

Early satiety (60 %)

Abdominal discomfort or pain

Vomiting

Epigastric burning sensation

Poor control of blood sugar

Poor appetite and weight loss
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other studies did not discern any relationship [59]. This might
be explained in terms of the restricted methodology of the
measurement of the complex GI neuronal dysfunctions, the
heterogeneity of the tests applied in the various studies, and
the importance of pathophysiological factors other than neu-
ropathy in the pathogenesis of gastroparesis.

The Role of Nitric Oxide Synthase in the Development
of Diabetic Gastroparesis

The NOS-positive neurons identified in the GI tract have a
crucial role in the inhibitory regulation of the motility func-
tions and, hence, in the relaxation of the different sphincters. It
has been confirmed in animal models that inhibition of neu-
ronal NOS results in slower stomach emptying. Human in-
vestigations have revealed that the endogenous NO inhibits
the propulsive movement in the stomach [60]. The clinical
observation that diabetic gastroparesis predominantly affects
women might be related to the fact that impairment of the
nitrergic system is more pronounced in females [61]. It has
been revealed in animal models that the number of NOS-
positive neurons decreases in diabetes and, in parallel with
the loss of these neurons, the regulation of pyloric relaxation,
just as the antral tone deteriorates. Early treatment with insulin
led to rearrangement of the presence of NOS-positive neurons
and their synthetic function [20]. A possible future therapeutic
approach may be to transplant stem cells that can differentiate
into NOS-positive enteral neurons [62].

The Role of Enteral Hormones in the Development
of Diabetic Gastroparesis

The role of these hormones in the pathomechanism of diabetic
gastroparesis is still controversial. The effects of the hormones
that stimulate (e.g., serotonin, gastrin, acetyl choline, motilin,
and substance P) or inhibit (NO, vasoactive intestinal peptide,
cholecystokinin, gastric inhibitory polypeptide or glucose-
dependent insulinotropic peptide, secretin, glucagon-like pep-
tide) gastric emptying can be deteriorated either by the
glycation of these hormones or their receptors or through the
loss of the function of their target organs. One of the most
frequently investigated enteral hormone is GLP-1, since
dipeptidyl-peptidase-IV inhibitors and GLP-1 analogues and
agonists are increasingly more widely used in clinical practice.
The consequences of elevations or reductions of this peptide
in diabetes have been analyzed, and an association was proven
between the effect of GLP-1 on gastric emptying and the
elevation of postprandial glucose levels [63]. Ghrelin has also
been a target molecule in recent investigations. Although in a
species-specific manner, ghrelin promotes the antro-pyloric

coordination and can thereby improve stomach emptying
[64, 65]. Ghrelin receptors are located in the highest concen-
trations on antral and duodenal neurons, with decreasing
amounts toward the distal regions [66]. Accordingly, it can
be assumed that ghrelin has effects on vagal nerves [67], and
the connection between neuropathy and enteral neurons is also
indicated [68]. The multiple aspects of the effects of enteral
hormones can be further exemplified by the fact that some of
the enteral hormones (GLP-1, peptide YY, and gastrin) pro-
mote the survival of the pancreas beta cells, which can have a
beneficial influence on GI function [69].

The Role of Enteric Glial Cells on the Development
of Motility Disorders in Diabetes Mellitus

Enteric glial cells (EGCs) outnumber the enteral neurons in a
ratio of 2:1. In view of the close anatomical and functional
connection between enteric neurons and EGCs [70, 71], it can
be assumed that damage to these cells plays an important role
in the diabetes-related impairment of the enteric nervous sys-
tem and, hence, in motility disorders. However, this close
neuron–glia connection complicates the separate in vivo in-
vestigation of these cells. Conditional ablation of the EGCs
induces changes in the neurochemical coding of enteric neu-
rons, whichmay be responsible, in part, for the reduced gastric
emptying and intestinal transit [72]. In an in vitro study, viral
targeted ablation of EGCs increased the level of neuronal
death in the presence of oxidative stress because the neuro-
protective effects of the EGCs via their release of glutathione
were missing [73]. Oxidative stress also activates mechanisms
that result in glia-mediated inflammation that causes second-
ary neuronal damage [74]. The complex role of EGCs in
diabetes-related gastric motility disorders has not yet been
clearly identified, but their potential targeted influence may
open up new therapeutic approaches.

Diagnosis

Scintigraphic Gastric Emptying Procedure

The standard method for the diagnosis of diabetic gastroparesis
is the scintigraphic evaluation of stomach emptying. Recent
developments in ultrasonography make this technique too
suitable for the evaluation and diagnosis of impaired gastric
emptying. In clinical practice, when GI symptoms appear,
patients should undergo routine gastroscopy, during which
the possibility of slower stomach emptying may be suspected.

The standardization of the scintigraphic measurement of
stomach emptying has raised a number of questions, since
numerous factors influence gastric emptying [75]. The rate of
gastric emptying is frequently defined by using 99mTc-sulfur
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colloid-containing eggs. During the procedure, the imaging is
carried out at minute intervals while the patient is lying in
supine position. Medicines that affect the gastric motility have
to be avoided for at least 72 h before the investigation. The
blood glucose level must be kept in a narrow range during the
procedure (between 4 and 10 mmol/l; 72–180 mg/dl for 2–
4 h). The diagnosis of gastroparesis can be established if 60 %
or more of the activity of the isotope remains in the stomach
2 h after the test meal ingestion or if at least 10 % of the initial
activity is still detected after 4 h. The diagnostic steps for
evaluating diabetic gastropathy are shown in Fig. 1.

Investigation of Gastric Emptying by Ultrasonography

The evaluation and follow-up of gastric emptying by ultraso-
nography is a convenient noninvasive method. An experienced
physician visualizes the structure of the gastric wall by means of
ultrasonography and can gain information about the intragastric
dispersion of solid food, the accommodation of the stomach, the
number of antral contractions, and the transpyloric flow of
chopped food [76]. Ultrasonography provides more details of
the stomach motility than does scintigraphy, and its sensitivity
and specificity might be comparable to those of the isotope-
labeling technique [77]. Through the use of 3-D techniques, the
gastric volume changes over time can be evaluatedmore exactly,
and the correlation between the findings of this technique and
those of scintigraphy becomes more pronounced [78].

Therapeutical Approaches

In everyday practice, the available therapeutic approaches
focus on the symptoms; no causal therapy is yet available,

although stem cell replacement therapy (so far carried out only
in animal experiments) raises the hope of long-term causal
therapy.

The most important treatment option is still optimal glyce-
mic control. Gastric motility disorders and the different stages
of glucose metabolismmutually affect each other from several
respects. Better glycemic control can improve the motility
disorders, which creates an opportunity for stabilizing the
blood glucose fluctuations. Adherence to the recommended
diet is a crucial point of the treatment. Patients with diabetic
gastroparesis should eat small meals, and eating is recom-
mended 6–8 times a day. Solid food should be comminuted
as much as possible. Meat containing large amount of dietary
fibres or fatty acids should be avoided. Postprandial glucose
level in patients with diabetic gastroparesis can be successful-
ly decreased only if the suggested dietary rules are strictly
observed [79].

The use of medication to treat diabetic gastroparesis is rather
complicated. Prokinetic drugs seem to be right choices, since
they improve gastric motility and promote the emptying of
carbohydrates, ensuring better conditions of absorption in the
small bowel. On the other hand, there is very little evidence that
the improvement of motility achieved with these drugs stabi-
lizes glycemic control [19]. Metoclopramide, a peripheral
dopamine-2 receptor antagonist and, in part, an agonist of the
peripheral serotoninergic 5-hydroxytryptamimne-4 (5-HT4)
and vagal and brainstem 5-HT3 receptors, has combined effects
(the increase of gastric contractility and the improvement of the
relaxation of the pyloric sphincter and the bulbus, moderate
nausea, and vomiting via affecting central dopaminergic recep-
tors) and seemed to be promising medication for the treatment
of diabetic gastroparesis [80], but its long-term efficacy has not
been proven [81], and it has no obvious positive effect on the
symptoms of diabetic gastroparesis and glucose metabolism

Fig. 1 Diagnostic steps for
evaluating diabetic gastropathy. If
symptoms (especially recurrent
vomiting and nausea) are present,
gastroscopymust be completed. It
can exclude other causes of
gastroparesis and can raise the
possibility of motility disorder.
An experienced physician can
diagnose gastroparesis with
ultrasonography. On the other
hand, for the time being,
scintigraphy is the most exact
diagnostic step for evaluating
gastroparesis. Note that other
causes have to be excluded before
the diagnosis is established
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[82]. Since diabetic gastroparesis is a chronic disease, the med-
icine is usually used for long-term treatment in clinical practice,
although its effectivity diminishes with time and side effects
become more frequent and pronounced. Some genetic factors
have been reported to influence the effectiveness of the drug
(polymorphisms in the potassium voltage-gated channel, sub-
family H [eag-related], member 2, and the alpha-1-adrenergic
receptor genes); the side effect is predicted by the polymorphism
of the CYP2D6 and serotonin 5-HT4 receptor genes [83].

Another prokinetic drug for the treatment of diabetic
gastroparesis is domperidone. This drug has a similar effect to
that of metoclopramide, but its side effects are not so frequent,
because it has no central effect, except for an elevation of the
prolactin level. However, sudden cardiac death occurred more
frequently among the patients treated with domperidone than
among the controls. The explanation was based on the prolon-
gation of the QTc interval [84]. Careful usage of this drug is
required from health-care professionals. Domperidone is not
currently a legally marketed drug or approved for sale in the U.S.

Erythromycin is an effective motilin receptor agonist [85].
Other macrolides, such as azithromycin, also improve the
antroduodenal contractions [46]. Azithromycin does not partic-
ipate in significant drug–drug interactions and may be of great-
er clinical importance in the treatment of gastroparesis [86].
The down-regulation of motilin receptors frequently leads to
tolerance (tachyphylaxis). Macrolides also have a QT-
prolonging effect, and some investigations have also shown
an increase in sudden death following the application of this
drug [87]. Administration of macrolides with the indication of
motility enhancement is limited, with the exception of acute
exacerbations, when they are administered intravenously.

Alpha-lipoic acid is an effective agent in the
pathogenetically oriented treatment of diabetic neuropathy
[88], and its beneficial effects on the cardiovascular manifesta-
tions of autonomic neuropathy have been proved [89]. These
data may support the theory that the autonomic neuronal fibers
that are responsible for gastroparesis might respond to alpha-
lipoic acid treatment, but no studies have yet been organized to
explore this possible effect. As benfotiamine blocks the four
hyperglycemia-induced pathways, it exerts an antioxidative
effect, resulting in an improvement in painful neuropathy
[90]. This effect might theoretically be utilized in the treatment
of GI neuronal dysfunctions, but no clinical observations have
been published to confirm this hypothesis yet.

Some promising motility-enhancing drugs have appeared
in the experimental phase recently [46], and the modulation of
the effect of ghrelin, regulating food intake and gastric emp-
tying in healthy subjects, seems to be also a promising ap-
proach [91, 92]. Further investigations are required to find
their place in clinical practice.

Selective substance P receptor (NK-1 receptor) agonist
aprepitant effectively moderates the complaints in diabetic
gastroparesis [93]. In most countries, aprepitant is registered

only for the treatment of chemotherapy-related nausea. The
effectiveness of other antiemetics, such as ondansetron or
promethazine, has not yet been proven in the treatment of
diabetic gastroparesis [46], and their use is therefore not
recommended.

Nonpharmacological Treatment of Diabetic Gastroparesis

The currently available medicines are not suitable for recovery
of the physiological pattern of gastric motility. Moreover, they
cannot treat the gastroparesis itself, and they do not have long-
term efficacy against the symptoms. Surgical, endoscopic
(botulinum toxin injection and percutaneous endoscopic
jejunostomy), electric stimulatory possibilities (gastric electri-
cal neurostimulation and gastric electrical pacing), and even
acupuncture for the treatment of the disease have been tested,
but none of these methods became a part of the routine clinical
practice [94–99].

Conclusion

Gastroparesis is a well-known but difficult-to-treat complica-
tion of long-standing diabetes mellitus. Its exact
pathomechanism is still not known, although more and more
data become available as regard to the complex mechanisms
in the background of this complication. Unfortunately, no
uniquely effective medical or other treatment is available for
influencing the disease, but some promising techniques (such
as stem cell replacement or gastric pacing) and new drugs
(e.g., ghrelin agonists) raise the possibility that successful
treatment options will become available in the near future.
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