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Abstract 

 

Aims: Brain ischaemia models are essential to study the pathomechanisms of stroke. Our aim 

was to investigate the reliability and reproducibility of our novel focal ischaemia-reperfusion 

model. 

Methods: To induce a cortical transient ischaemic attack, we lifted the distal middle cerebral 

artery (MCA) with a special hook. The early changes after 2x15-min occlusion were observed 

in the somatosensory evoked responses (SERs). The histological responses to 2x15-min MCA 

occlusion and to 30, 45 or 60-min ischaemia were examined after a 1-day survival period by 

2,3,5-triphenyltetrazolium chloride (TTC) and Fluoro Jade C (FJC) staining. Another group, 

with 30-min ischaemia, was analysed histologically by FJC, S100 and CD11b labelling after a 

5-day survival period. 

Results: The amplitudes of the SERs decreased immediately at the beginning of the 

ischaemic period, and remained at a reduced level during the ischaemia. Reperfusion resulted 

in increasing SER amplitudes, but they never regained the control level. The short-lasting 

ischaemia did not lead to brain infarction when evaluated with TTC, but intense labelling was 

found with FJC. The 30-min ischaemia did not result in FJC labelling after 1 day, but marked 

labelling was observed after 5 days with FJC, S100 and CD11b in the cortical area supplied 

by the MCA. 

Conclusions: We present here a novel, readily reproducible method to induce focal brain 

ischaemia. The ischaemia-reperfusion results in noteworthy changes in the SERs and the 

appearance of conventional tissue damage markers. This method involves possibilities for 

precise blood flow regulation, and the setting of the required level of perfusion.  
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Introduction 

 

During the past 30-35 years, there have been significant developments as concerns animal 

models of cerebral ischaemia designed to shed light on the pathomechanism leading to tissue 

damage, with the aim of the discovery of new therapies for stroke [1, 2]. For a considerable 

time, middle cerebral artery occlusion (MCAO) has been one of the models widely used to 

induce reversible brain ischaemia [3-6]. In most cases, a variety of intraluminar nylon 

filaments have been utilized in rat MCAO models. However, the extent of the lesion and its 

reproducibility tend to vary from laboratory to laboratory. The method itself is rather 

complex, but the properties of nylon filaments are also responsible in part for these variations 

[7]. Moreover, when short-lasting (15–30-min) ischaemia is required, e.g. in studies of the 

effects of transient ischaemic attacks (TIAs), there is no major tissue damage and no infarcts, 

and it is therefore particularly difficult to achieve and check reproducibility. However, there is 

no animal model that can be used to induce focal, well-regulated repetitive ischaemia-

reperfusion. In this paper, we present a simple new method for the induction of transient focal 

brain ischaemia.  

 

Materials and methods  

 

Animals and MCAO  

Male adult Wistar (Charles River) rats weighing 250-300 g (N = 34) were used in the 

experiments. The animals were given free access to food and water prior to surgery. All 

procedures were approved by the Animal Care Committee of the University and were 

conducted in accordance with the Directives of the European Union. Experiments were 

carried out under Nembutal anaesthesia. Body temperature was maintained at 37 ± 0.5 ºC 
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through use of a self-regulating heating pad (Supertech TMP5a) and a rectal probe. After 

removal of the masticatory muscle, the head of the animals was fixed in a stereotaxic head 

holder. The surface of the left side of the temporal skull was cleaned and the brain was 

exposed with a high-speed microdrill. Saline was applied to the area throughout the procedure 

in order to prevent heat injury and to maintain the area in a hydrated state. The exposed 

cortical surface involved the trunk and main branches of the MCA and the barrel field in the 

primary somatosensory cortex (Fig. 1). To induce ischaemia at a point where its diameter was 

300 µm, the MCA was carefully lifted through 1200 µm with a Fisher microsurgery hook 

with the aid of a micromanipulator. The ischaemic duration was adjusted to 2 x 15 

(interrupted by a 30-min reperfusion), 30, 45 or 60 min (N = 5, 3, 3 and 3). To terminate the 

occlusion, the hook was carefully removed, and restoration of the blood flow was confirmed 

under an operating microscope. Finally, the dura and the temporal muscle were replaced, the 

skin was closed with a silk suture and the wound was cleaned with iodine solution. The 

procedure was quick and secure; the survival rate was 95% (34/36 animals). 

 

Electrophysiology  

Somatosensory evoked responses (SERs) induced as described previously [8] were recorded 

in 8 animals before, during and after the ischaemic period (120 min). Briefly, the trigeminal 

nerve was stimulated by electrical stimulation of the whisker pad (4 V, 0.2 ms, 0.1 Hz) 

through a bipolar needle electrode [8, 9]. The recordings were made on the surface of the dura 

with the aid of a silver electrode. The punctum maximum of the SERs was identified; it was 

generally localized 3.5 mm behind the bregma and 5 mm laterally (Fig. 1). The amplified 

responses were processed and averaged with Experimetria Intrasys software (Experimetria 

Ltd., Budapest, Hungary). The 30-min control period was followed by 2 x 15-min ischaemic 

episodes interrupted by a 30-min reperfusion.  
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Histology  

 

For histological assessment after a 1 or 5-day survival period following surgery, the animals 

(N = 26) received an overdose of urethane, and were perfused transcardially with 0.1 M ice- 

cold phosphate-buffered saline (PBS, pH 7.4), followed by 4% buffered paraformaldehyde. 

The brains were removed, and postfixed overnight in paraformaldehyde at 4 °C. Coronal 

sections (20 µm) were obtained with a vibratome (Leica VT1000 S). The early changes in 

neural viability induced by the ischaemia and reperfusion were visualized by means of 2,3,5-

triphenyltetrazolium chloride (TTC, 1.5%) and Fluoro Jade C (FJC) staining in 14 animals. 

After 5 days, the delayed consequences of the 30-min ischaemic attack were also 

demonstrated with FJC, and were assessed with the conventional free-floating 

immunohistochemistry of reactive astrocytes (rabbit polyclonal antiS100, dilution 1:2000; 

DAKO) and activated microglia (mouse monoclonal anti-rat CD11b, clone OX-42, dilution 

1:1000; Millipore) in 12 animals. Three adjacent slices were obtained at 500 µm from bregma 

1 to 4.5. Briefly, the slices were washed in PBS, then incubated in a blocking solution 

containing 10% normal donkey serum (NDS), and next incubated in primary antibody 

overnight at 4 °C and in secondary antibody for 2 h at room temperature. The antibodies were 

diluted in a solution containing 0.1% PBS, 0.4% Triton X100, 2% NDS and 0.01% sodium 

azide. The slices were coverslipped with Fluoromount G. Fluorescence photomicrographs 

were obtained with an Olympus BX51 microscope fitted with a DP70 digital imaging system. 

Solvents were obtained from Sigma-Aldrich Co.  

 

Statistical analysis  
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Statistical analysis of electrophysiological data was performed with the General Linear 

Model/Repeated Measures (PASW Statistics 18  data analysis package, SPSS Inc., Chicago, 

IL, USA).  

 

Results  

 

Electrophysiology  

 

The amplitudes of the SERs decreased immediately at the beginning of the ischaemic period, 

and remained at 8-12% of the control level. Reperfusion resulted in a gradual increase in the 

amplitudes of the SERs, though the amplitudes never regained the control level, but only 

around 60% of it. This phenomenon could be reproduced with a high level of significance in 

the same animal (Fig. 2). 

 

Histology  

The short-lasting 2 x 15-min ischaemic period did not induce a degree of tissue damage after 

a survival time of 1 day that was sufficiently severe to be detected with TTC staining at the 

various stereotaxic coordinates (Fig. 3A). After a 30, 45 or 60-min ischaemic period, no FJC 

staining positivity was observed. However, as a result of the 2 x 15-min MCAO, well-outlined 

FJC-positive cells were seen throughout the ipsilateral somatosensory cortices supplied by the 

MCA. Staining was pronounced in the cell membrane and the cytoplasm (Fig. 3C). FJC- 

positive cells could readily be determined as the FJC did not penetrate into the damaged brain 

parenchyma during the 1-day survival period. No labelling occurred on the contralateral side 

(Fig. 3B). In another series of experiments with a 5-day survival period, we examined the 

changes with FJC, and investigated whether conventional glial responses are observed as a 

consequence of 30-min MCAO. Positive labelling was observed in half of the animals in all 
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three histological processes. The damaged cells labelled by FJC were found in an extensive 

area of the ipsilateral cortex (Fig. 4B). S100 immunohistochemistry revealed an increased 

number of S100-positive astrocytes and a typical change in astrocyte phenotype in response to 

the 30-min MCAO (Fig. 4D). The ipsilateral cortex was characterized by hypertrophic 

astrocytes with prominent, thick processes and small vacuoles in the cell bodies (Fig. 4D, 

insert). The number and phenotype of the S100-positive astrocytes on the contralateral side 

were normal (Fig. 4C). Immunostaining of the activated microglia also revealed the activated 

phenotype of these cells. On the contralateral side, the microglia stained faintly, revealing a 

normal, resting, ramified morphology (Fig. 4E). As a result of the 30-min MCAO, the 

microglia ipsilaterally displayed an activated phenotype with enlarged somata and the loss of 

secondary and tertiary branching, which is typical in pathological conditions (Fig. 4F, and 

insert).  

 

Discussion  

 

We have presented here a novel, readily reproducible method for the induction of focal 

transient ischaemia in the rat cortex. Stroke, as the second leading cause of death worldwide, 

is studied intensively. The use of animal models in recent years has improved our 

understanding of the pathomechanism of this disease. The animals most widely used in such 

models are rats and mice [2]. In rats, the most frequent methods are based on mechanical 

occlusion of the proximal MCA [10]. In models which involve distal occlusion, as in our 

present model, the damage is restricted to the cerebral cortex, and the models are highly 

reproducible [11]. Reproducibility is a particularly difficult problem when the aim is to study 

the effects of short-lasting ischaemic attacks, e.g. TIAs. In these cases, there is no serious 

tissue damage, no infarct, and therefore no infarct volume which could be studied by TTC 
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labelling. In transient ischaemia, the final injury is a result of ischaemic and reperfusion 

damage. The reperfusion itself provides substrates of enzymatic oxidation reactions and 

proinflammatory mediators [12, 13]. Although biochemical and molecular biological studies 

are needed to identify in detail the activated pathways, the method that we have reported here 

for the induction of fine changes in the cortex with TIAs is simple and well reproducible with 

an extremely high survival rate. A short-lasting period of occlusion, achieved by lifting of the 

MCA where its diameter is 300 µm, resulted in a characteristic and significantly reproducible 

decrease in the amplitudes of the SERs. The histological study on brain slices taken from a 

definitive distance from the MCAO after 2 x 15-min ischaemia indicated FJC labelling. 

Although the emergence of FJC staining after a relatively short survival period (1 day in our 

experiment) after MCAO has not been described in the literature, in our experimental model 

and paradigm well-outlined FJC-positive cells were found throughout the ipsilateral 

somatosensory cortices. In contrast with the ipsilateral cortex, no staining at all was observed 

in the contralateral hemisphere. The mechanisms of staining with FJ dyes are not clearly 

understood [14], but our results lead us to suppose that the repeated ischaemia-reperfusion 

induced consecutive processes that resulted in molecules which bind FJC. The phenomenon 

that 2 x 15-min ischaemia did, whereas 30, 45 or 60-min ischaemia did not induce FJC 

staining after a 1-day survival may indicate different intracellular signalling processes. These 

processes may result in molecules that bind FJC, but this does not necessarily mean a greater 

extent of damage in the brain tissue.  

In the case of a 5-day survival period, the effect of slight (30-min) ischaemia could be 

detected with FJC. Astrocytes and microglial cells suffer changes after a transient ischaemic 

insult [11, 15, 16]; indeed, with our model we also observed characteristic changes in the glia, 

in the injured cortical areas, but not in the contralateral cortex. 

Pathophysiological processes of the ischaemic condition itself, induced for example by a TIA 
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or short-term hypoperfusion, overlap with the excitotoxic processes following ischaemic 

periods (especially the reperfusion). Although a spontaneous reperfusion occurs in 

approximately 21% of cases of human stroke [17, 18], TIA allowed us to investigate 

endogenous survival mechanisms. The experimental study of focal TIAs is therefore 

reasonable. Our new method offers an easy way to study the effects of TIAs with precise 

regulation of the blood flow, and to set the required level of perfusion. 

To summarize, we have achieved a simple and highly reproducible model for the induction of 

short-lasting, focal transient cortical ischaemia in the rat by lifting up the distal MCA.  
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Legends to Figures  

 

Fig. 1. The experimental design to induce short-lasting ischaemic periods. The middle 

cerebral artery was exposed at its trunk (where its diameter was 300 µm), and lifted up by 

1200 µm. Somatosensory evoked responses (SERs) were recorded at the punctum maximum. 

 

Fig. 2. Changes in SERs as a consequence of repeated short-lasting (15-min) ischaemic 

periods. The amplitudes of the SERs were measured from peak to peak (see insert). The 

maximum amplitudes in both reperfusion periods were significantly lower than that in the 

control period (see labelled data range). N = 8, means ± S.E., *** p < 0.001. 

 

Fig. 3. TTC and FJC labelling after a 1-day survival period (2 x 15-min MCAO).  

TTC labelling of coronal sections of the brain (sections were made from bregma 1, 3 and 4.5). 

No tissue damage could be observed (A). Fluoro Jade C (FJC) labelling of the contralateral 

(B) and the ipsilateral (C) sides following left MCA occlusion for 2 x 15 min. The insert 

shows the FJC-positive cells at higher magnification. 

 

Fig. 4. FJC, S100 staining and CD11b immunostaining after a 5-day survival period (30-min 

MCAO). The inserts show the labelled cells at higher magnification. No FJC labelling 

emerged contralaterally (A). Pronounced FJC staining emerged in the cortex ipsilateral to the 

MCAO (B). No staining (meaning that the astrocytes were normal) was observed in the 

contralateral hemisphere (C). S100-positive astrocytes were observed in the ipsilateral 

hemisphere (D). No labelling of microglia was observed in the contralateral hemisphere (E). 

An activated phenotype of microglia was observed in the ipsilateral cortex (F). 
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