
Service Layer for IDE Integration of C/C++
Preprocessor Related Analysis

Richárd Dévai1, László Vidács2, Rudolf Ferenc1, and Tibor Gyimóthy1

1 Department of Software Engineering, University of Szeged, Hungary
Devai.Richard@stud.u-szeged.hu, [ferenc|gyimothy]@inf.u-szeged.hu

2 MTA-SZTE Research Group on Artificial Intelligence, Hungary
lac@inf.u-szeged.hu

Abstract. Software development in C/C++ languages is tightly cou-
pled with preprocessor directives. While the use of preprocessor con-
structs cannot be avoided, current IDE support for developers can still
be improved. Early feedback from IDEs about misused macros or con-
ditional compilation has positive effects on developer productivity and
code quality as well. In this paper we introduce a service layer for the
Visual Studio to make detailed preprocessor information accessible for
any type of IDE extensions. The service layer is built upon our previous
work on the analysis of directives. We wrap the analyzer tool and pro-
vide its functionality through an API. We present the public interface of
the service and demonstrate the provided services through small plug-ins
implemented using various extension mechanisms. These plug-ins work
together to aid the daily work of developers in several ways. We provide
(1) an editor extension through the Managed Extensibility Framework
which provides macro highlighting within the source code editor; (2) de-
tailed information about actual macro substitutions and an alternative
code view to show the results of macro calls; (3) a managed package
for discovering the intermediate steps of macro replacements through a
macro explorer. The purpose of this work is twofold: we present an ad-
ditional layer designed to aid the work of tool developers; second, we
provide directly usable IDE components to express its potentials.

1 Introduction

Preprocessor directives – like macros and conditional compilation – constitute
an integral part of the source code of C/C++ software, especially when appli-
cations are built for several target architectures, or in case of software product
lines where several parallel configurations exist in the code [11]. An empirical
study on open source applications shows that preprocessor directives make up a
relatively high 8.4% of source code lines on average [3]. Although the preproces-
sor is useful for forward engineering and development, it behaves as an obstacle
in case of program understanding and reverse engineering tasks. The fundamen-
tal problem about preprocessing from a program comprehension point of view
is that the compiler gets the preprocessed code and not the original source code

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE Publicatio Repozitórium - SZTE - Repository of Publications

https://core.ac.uk/display/35346387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Service Layer for IDE Integration of C/C++ Preprocessor Related Analysis

that the developer sees. In many cases the two codes are markedly different.
These differences influence the code quality in case of directive-intensive pro-
grams. Heavy use of directives is usually considered harmful [17] and it results
in weak code quality and maintainability. A large amount of work addressed the
elimination of directive use, with only partial results. The first point where the
software developer is facing problems with macros is when a runtime error occurs
at a source code line which contains macros only. The usual debugger stops at
the line in question, but there is no information on what is the real code that
the compiler used. Besides constant-like macros, many times the macro name is
replaced by whole C/C++ loops or complex expressions spreading across several
lines – all hidden from the developer. Furthermore, several macros have multiple
definitions depending on conditional directives, which fact makes it hard to find
the actual definition manually. These labor-intensive activities can increase the
overall effort spent on development or maintenance tasks.

Widespread integrated development environments today, like the Visual Stu-
dio for C++ [14], give fairly limited support for the developer. As the preproces-
sor language is independent from the C/C++ language, the analysis of directives
requires a separate analyzer, extra risk and effort for tool developers. Although
the benefits of such extension are clear, out of the box solutions are usually not
shipped with IDEs, and the developers are still forced to do workarounds to
investigate macro calls. In our recent work [25] we introduced a Visual Studio
Add-In that utilizes preprocessor related analysis and presents macro folding
information together with a static view on macro calls. This paper builds on
previous results and takes into account two observations: first, macro folding
required to alter the source code, which is not acceptable by developers; and
second, dynamic views are much more usable in concrete scenarios than static
views introduced previously. In this work we intend to keep the workplace of
the developer clean, while adding small pieces of information in a targeted and
dynamic way. In line with the philosophy of flexible development environments
and extensibility mechanisms, we provide a service layer for directive related
information. This means that we use a wrapper for our preprocessor analyzer
tools and provide an API for IDE extension developers to access macro calls,
definitions, etc. Visual Studio extensions introduced in this paper also use this
service layer to demonstrate its functionality.

In this paper we present the following main contributions:

1. Service layer for preprocessor related analysis
2. IDE extensions built up on service layer

– Macro and conditional directive highlights in the code editor
– Side-by-side view to reveal the results of macro expansions
– Macro definitions view to follow macro expansion internals

The paper is organized as follows: we briefly mention current IDE capabil-
ities and propose additional views of the source code as a motivating example
in the next section. Section 3 introduces extension mechanisms used in recent
versions of Visual Studio, while in Section 4 we present our service layer to
enable access for preprocessor related analysis results. We present new source

Service Layer for IDE Integration of C/C++ Preprocessor Related Analysis 3

code views as a demonstration of the usability of the service layer using various
extensibility mechanisms in Section 5. Related work is discussed in Section 6,
while conclusions and future plans are outlined in Section 7.

2 Motivation

The source of program understanding problems is that the compiler gets the
preprocessed code and not the original source code that the programmer sees.
Let us consider a compiler error message pointing to line 49 in Figure 1:

Fig. 1. Example C++ code in Visual Studio code editor

To resolve the problem the developer has to look for the macro name in the
code to find out the replaced text, which was actually compiled. The Visual
Studio provides several ways for code search, one may search among files in the
project, or even select to find classes or other program entities. Unfortunately
the preprocessor language is a pure textual language and is unrelated to C or
C++. Using the Find references feature one can find the #define directive of
the FILT WND macro. Yet, there can be several results, because the same macro
name can be defined in several ways using conditional compilation. This enables
to have different replacement texts for each platform or configuration. The next
question is: Which one of the definitions is finally used? In recent versions the
Visual Studio helps with conditional highlights, but even after finding the right
definition, usually the search continues, because the macro definition contains
further macro calls to look for. This is a tedious and time consuming task.

Fig. 2. Preprocessed code view using IDE extension

A better solution could be to alter the project configuration to produce the
preprocessed file as well during the building process. One can compare the origi-

4 Service Layer for IDE Integration of C/C++ Preprocessor Related Analysis

nal and preprocessed code using .i files. However in this case the reason for the
compiler error can be seen, but the concrete macro definition remains hidden,
where the error could be corrected.

Our contributions include Visual Studio plug-ins to aid developers overcome
these problems – like macro highlights in Figure 2. Furthermore, we provide a
service layer to integrate preprocessor information into Visual Studio in a usable
way for plug-in developers.

3 Visual Studio Extension Frameworks

In this section we first outline the history of plug-in possibilities of Visual Studio,
and then briefly compare the most recent solutions in terms of their usability.
The history of Visual Studio extension mechanisms goes back to the very first
release. We distinguish four main types of extension mechanisms which were
supported in recent releases:

– Visual Basic for Application Macros
– Visual Studio Extensibility and Automation Add-Ins
– Managed Package Framework
– Editor Extension Point components

The type of extension we should use is strongly depends on the objective we
would like to achieve. From our point of view majority of interest lies packages,
but our service layer can be consumed by any type of extensions. In this section
the main historical changes of extensions are briefly introduced and at last we
will give some direction about their common usage. We do not discuss VBA
Macros as they were removed with the 2012 release.

To give a brief overview of changes in Visual Studio releases on extension
frameworks we refer to Table 1. As shown in the table, development of Add-Ins
stopped in the release in 2012, but generally prior versions brought only slight
improvements of its API (we present Development Tools Environment (DTE)
versions in the table). At the beginning Add-In APIs were poorly documented,
but it was compensated by web sources – some driven also by Microsoft spe-
cialists – like MZ-Tools1. At the beginning, these resources approached from the
Visual Basic side, while the C# support and the low number number of examples
could be told more insufficient for beginners. There are also slight semantic dif-
ferences between the usage and behavior of APIs for Add-Ins because of lingual
differences, and one has to understand architectural flavors of the IDE to touch
it the right place and with proper technique. After the opening of Visual Studio
Code Gallery the support was improved by the increased number of examples.
Search options and categorisation enhanced the proper use of different extension
types. Open source projects both on CodePlex 2 and GitHub3 meant a great help
for developers in discovery of Add-In API’s capabilities.

1 MZ-Tools Add-In resources: http://www.mztools.com/resources vsnet addins.aspx
2 CodePlex: https://www.codeplex.com
3 GitHub: https://github.com

Service Layer for IDE Integration of C/C++ Preprocessor Related Analysis 5

Table 1. Visual Studio extension type changes in recent releases

Release 2005 2008 2010 2012 2013

Add-In DTE80 DTE90 DTE100 Deprecated

MPF Release WPF API

EEP Release

For a deeper level of integration MPF can come into the picture. At first
MPF was supposed to be used by Microsoft partners for commercial purposes.
Only Microsoft’s VSIP partners were able to distribute packages until the Visual
Studio release in 2010. Hence its use was not spread as widely as in case of Add-
In’s. Users of MPF could rely only experienced partnership developer’s blogs, but
the Add-Ins remained first choice because of their simplicity. In 2010 Packages
became freely available, but Add-Ins are still more supported by the community
compared to them.

The newest and suppletory extension type for Visual Studio is Editor Exten-
sion as shown in Figure 1. Editor extensions are based on a lightweight plug-in
technology called Managed Extensibility Framework which was also introduced
in 2010. Their most important advantage is their simplicity. They can be used as
editor enhancements to highlight code by formatting tokens through language
classifiers, to add tags for background highlight, and to decorate code in the
editor with custom UI elements using adornments.

In terms of API capabilities, packages enable access to deeper integration
level, and besides they provide custom and consumable services through public
APIs. Their main purpose is to extend Visual Studio with so called Language
Services, hence they can be used to build up complex services as well. On the
other hand, their use requires higher level of expertise. Packages are the base
building blocks of the IDE and they even make it possible to reuse the IDE
on other purposes with Shell Isolated packages like the MS SQL Management
Studio. Partially the services provided for MPF components also available from
Add-Ins, but they are designed to use a simple and lightweight API, so this is not
a common method of their usage. The connection type of these two extensions
are different at many points. It is advised by Microsoft from the release of 2013
to migrate Add-Ins to MPF. Except the simplified event system (also used for
connection of Add-Ins) packages can use all API features provided for Add-Ins.

With the appearance of Editor Extensions one can access and easily extend
the editor’s presentation layer showing additional information to the programer
in a lightweight method. Editor extensions owned pretty high interest as part
of the reworked and Windows Presentation Foundation based IDE released in
2010. They give supplementary support for code highlighting and other feedback
abilities just inside the editor window was depend on Language Services before,
and can’t be accessed through separated, lightweight API.

To summarize extensions by their most common usage, Add-Ins are the best
choice whether we would like to extend the IDE with a standalone application

6 Service Layer for IDE Integration of C/C++ Preprocessor Related Analysis

as easy as possible. Add-Ins providing services directly to the user without a
registered API, supported with controllers and tool windows to ease usability.
An Add-In can use services of packages, and can manage commands registered
either by itself or by other extensions. Even nowadays Add-In is a popular choice
to create a simple extension component, however for complex applications it is
more common to use MPF (as we also did). Editor extensions are mostly essential
to give text decoration/highlight support, since their usage is limited.

4 Service Layer to Access Macro Expansions

The primary goal of our service layer is to extend macro-related capabilities
of the Visual Studio IDE and to enable easier access to detailed preprocessor
analysis. Our aim was to ease of its access from as many types of Visual Studio
extensions as possible. While services registered by packages can be accessed
form all type of extensions, we decided to prefer this technique over others. In
the following we present an overview on the context and structure of the service,
while its use is demonstrated in Section 5.

4.1 Service Layer Architecture and Context Outline

Visual Studio

Service Provider

PPService

Add-Ins

Packages

EEP

PPExplorer

PPSubstitution

Columbus Analyzers

Fig. 3. Context and higher level architecture of the service layer

The Visual Studio extension structure is outlined in Figure 3. The central
part of the figure is the Service Provider component of the IDE. It is responsible
for dispatching services to various types of plug-ins. The PPService component

Service Layer for IDE Integration of C/C++ Preprocessor Related Analysis 7

represents our published layer of services and internal processes behind it. This
component registers our service into the Visual Studio’s service provider and
also uses provided services. The core functionality of the PPService component is
implemented by Columbus Analyzers. This component contains the Preprocessor
Analyzer (CANPP) and builds our internal representation of the compilation
unit (see 4.3 for more details). The service component depends on various data
extractors like the Preprocessor ASG extractor as well.

The service is based upon different plug-in interfaces of Visual Studio that
provided for MPF and Extensibility Framework. On the right hand side of the
figure three actual types of plug-ins are represented. These plug-ins use our
services through the provider component. This part of the figure presents a
sample package and an editor extension we implemented to demonstrate the
capabilities of the service. Note that our service is joining the service provider
through an MPF interface, so the PPService component could also belong to
the set of Packages on the right hand side of the picture.

4.2 Service Layer API

The service component hides the analysis process of directives and maintains
a central repository for preprocessor details of the whole solution. The internal
analysis can be triggered by some user action in the IDE (eg.: the build of a
project). The component raises events about recent actions (eg.: about finished
analysis), and API consumers are notified about these events. In case of course
code changes new results invalidates previous data set of the actual project.
The repository is designed for a later support of versioning mechanisms to track
differences between analyzed versions. The current mechanism is connected to
builds, which means that directive evaluation does not takes place during typing
as the syntax highlights or intellisense, which use fuzzy parsers. Analysis re-
sults can be accessed either on demand based on actual file name and positions
within the file, or the whole project structure can be traversed and the needed
information can be collected by consumers.

In the rest of this section we give a brief description of our preprocessing data
access interfaces presented in Figure 4. Interfaces are accessible through the IP-
PAnalysisService, which is registered by the package into the service provider.
This interface is the base of data sharing, placed at the top of Figure 4. ICon-
textProvider can be used to arrange analysis data to projects. Data can be
extracted from IDiscoveredProject and an exact analysis round is presented by
IAnalysisConext. The data for different source files are handled by IAnalysisUnit.

We would like to give the chance to a consumer to access simpler data with-
out extracting details through complex traversals on our internal representation.
Therefore results are accessible through different kinds of perspectives: a sim-
pler and easy to use interface handling whole replacement texts, and a detailed
interface where each token can be accessed.

Providing most basic type of data ISubstitutionSpan and its tracking version
are available. We can access space information about all kind of macro names
that are subjects of substitution process during macro processing. This interface

8 Service Layer for IDE Integration of C/C++ Preprocessor Related Analysis

IPPAnalysisService

IDefinition *

ISubstitutionSpan

ISubstitutionTrackingSpan *

IToken

IAnalysisContext

IAnalysisUnit

IDiscoveredProject

IContextProvider

Fig. 4. Interface hierarchy of the service layer

gives information about macro calls and their substituted counter parts in code
and preprocessed code file. Tracking version of the interface is ready to be used
in Editor Extensions to create highlights on code files in IDE. These spans are
also classified by different type of macro name areas like normal macro names
and conditional subtypes as clauses evaluated to true or false, etc.

On next level the service provides data in tree structures. This interface group
reflects our detailed internal representation (introduced in the next section be-
low). These interfaces represent text tokens and their associated definitions used
during macro substitution progress in a simplified structure. IToken interface
gives information about the text, its file position, the substitution related child
which is an other IToken calculated by the preprocessor during macro substitu-
tion. In addition, contains information about the used definition which lead to
the child, finally information about whether the actual token is function or it is
within the condition of a conditional directive. Definitions are presented through
the IDefinitioninterface, which provides name and placement information. It also
implements an interface called IVsCodeDefViewContext which makes the user
able to feed the definition into the service of Visual Studio’s Code Definition
Window. Traverse of the token tree is also aided by several extension methods,
although the actual analysis data is available easily through IPPAnalysisService
by file name as well.

To present the usage of our interfaces we give a brief sample from the Macro
Explorer managed package written in C# in Listing 1. A picture of this view in
Visual Studio can be seen in Figure 8.

ISubstitutionSpan actSpan =

_spans.FirstOrDefault(

span => span.LineOriginal == line &&

(span.ColumnOriginal <= column &&

span.ColumnOriginal +

span.LengthOriginal >= column));

if (actSpan != null) {

Service Layer for IDE Integration of C/C++ Preprocessor Related Analysis 9

IToken actToken =

_tokens.FirstOrDefault(

token => token.Line - 1 == actSpan.LineOriginal &&

token.Column - 1 == actSpan.ColumnOriginal);

if (actToken != null) {

explorerTree.Items.Clear ();

TreeViewItem root = AddItem(null , actToken);

if (actToken.UsedDefinition != null) {

jumpCodeDefinitionToDefinion(

actToken.UsedDefinition);

}

explorerTree.Items.Add(root);

}

}

Listing 1. Interface consuming code sample

In the example we search for a target span by line and column information.
Whether we find the required span then we select the joining token from the
actual token collection by the head column and line number of selected span.
Than we clear the tree view shown by the Macro Explorer. Next we traverse the
token tree and build the represented hierarchy with TreeViewItems. After that
we give the definition of the root to the service of the Code Definition Window
and at last we add the TreeViewItem created for the root to the tree view.

4.3 Internal Representation of Directives

contains (2)

101 :File

name =

contains (3)

contains (4)

contains (1)
contains (6)

contains (5)

144 :Define

name = Z

145 :DirectiveText

name =1

hasReplacement

146 :Define

name = Y

147 :DirectiveText

name =3

hasReplacement

148 :FuncDefine

name = A

150 :Parameter

name = x
152 :Parameter

name = y

hasParameter(1) hasParameter

153 :DirectiveId

name = x

hasReplacement(1)

155 :DirectiveId

name = y
154 :DirectiveId

name = +

hasReplacement(2)
hasReplacement(3)

refersToParameter
refersToParameter

157 :Id

name = A
156 :Text

name = int var =
159 :Text

name = (
161 :Id

name = Z
163 :Text

name = ,
165 :Id

name = Y
167 :Text

name = +
168 :Text

name = 3
169 :Text

name =)

1 :FuncDefineRef

hasArgument

2 :Argument3 :DefineRef

contains (7)
contains (8)

contains (9)

contains (10)
contains (11)

contains (12)

refersToDefiniton

refersToNext

refersToId

refersToDefinitionrefersToDefinition

refersToId

refersToId

consistsOf consistsOf consistsOf consistsOf

Fig. 5. Sample schema instance of a function-like macro

Detailed analysis is done by the analyzer tool of the Columbus Framework.
In our previous work we defined a schema (metamodel) for the preprocessor [22].
The Columbus Schema for C/C++ Preprocessing describes the original source
code, the final preprocessed code and all transformation steps in between. Schema
instances represent preprocessor constructs of concrete programs. We analyze

10 Service Layer for IDE Integration of C/C++ Preprocessor Related Analysis

one configuration at a time (dynamic instances.) Our representation contains
all kinds of preprocessor construct, however in current work we use the macro-
related part of the schema. Schema instances are produced by a tool, which can
be smoothly incorporated into build processes, as it behaves as a usual prepro-
cessor as well. Using schema instances macro expansions can be tracked at all
places of programs, e.g. in conditional expressions as well, in a step-by-step way.
The output of the tool can be written out in XML format. Figure 5 presents
the dynamic schema instance of a function-like macro example. Macro defini-
tions are denoted with (Func)Define nodes. Definitions contain replacement
text and may contain parameters. Macro calls are linked to active macro defini-
tions via (Func)DefineRef reference nodes, which also mark actual arguments
of function-like macros. Detailed macro call information, including all internal
steps, can be extracted by traversing the instance graph along these references.
These references take into account conditional compilation and concatenation
and stringize operators used within macro replacement texts. For further infor-
mation we refer to our previous work [22].

5 Applications of the Service Layer

In this section we present how the service layer is used to implement various
mechanisms to support program understanding of preprocessor-related program
parts. In our previous work we implemented a folding mechanism integrated
into the code editor window [25]. The folded and unfolded states in the source
code window correspond well to macro names (folded) and replacement texts
(unfolded). Macro folds can also be nested in a way to show nested macro calls
and even argument substitutions in case of function-like macros. The mechanism
is appropriate for presenting the whole macro expansion process in a step by step
manner. However due to practical reasons we needed to revise this concept. To
implement folding in code edit window the actual source code must be modified
in two ways: (1) folding markers (H, N, I and J) are inserted and (2) macros
replacement text is replaced directly within the editor. To keep the code editor
clean from unwanted modifications, a different approach is used in this paper.
Code highlights are used to mark macros in the source code and a parallel window
is shown to check the results of the macro replacement. In addition, the process
of macro replacements can be followed using the macro explorer.

Figure 6 shows a Visual Studio screen, where all components of our tool set
are present: (1) code editor window; (2) side-by-side view for parallel observation
of the original code and the result of preprocesing; (3) macro definition explorer;
and (4) macro definitions view.

5.1 Macro Highlights and Side-by-side View

As mentioned above, the motivation for highlighting code is to avoid changing
the code just for presenting macro information. The aim is to give hands-on
information around the code editor, but leave it untouched as much as possible.

Service Layer for IDE Integration of C/C++ Preprocessor Related Analysis 11

Fig. 6. Macro related extensions built on the service layer in Visual Studio

The only change in the outlook of the code editor is that macro calls are high-
lighted (see the light green code in the left hand side of Figure 7). Code highlight
positions can be obtained using the service layer API. The natural question that
follows highlight is to check what is the final value of the macros after prepro-
cessing. This is a central problem for a developer in a situation as outlined in
our motivating example. The compiler in fact compiles the replaced text, which
is not visible in a usual code editor. In case of an error message pointing at the
position of the macro call, the developer needs to perform code search for the
corresponding macro definition(s) to see what went wrong. Our service layer also
can generate a copy of the source code for a user request where Macro names are
being substituted. However in this format Macro calls are being replaced with
the final macro replacement texts, but comments are held on to keep the code
near to the origin version as possible. The Macro Explorer window is designed
to be placed next to the code editor, thus parallel view of the original source
code and the corresponding preprocessed code can be observed. Replaced code
is highlighted using different color than in code editor as can be seen in Figure 7.

5.2 Macro Explorer and Definitions View

Macro highlights and the side by side view provide static information on macro
replacements. Although observing the final preprocessed code is mostly suffi-
cient, macro bodies may contain further macro calls, in many cases even 10-20
macros take part in a full macro replacement process. In these cases one may
have to investigate internal steps of macro replacement. Searching manually
for each macro definition is a time consuming task. Several macros have even
more than one definitions surrounded by #if conditions. These conditions de-
pend on macros as well, hence selecting the right one from several definitions
is not straightforward. The macro explorer view and the code definition view
is prepared for these situations. The macro explorer is a managed package and

12 Service Layer for IDE Integration of C/C++ Preprocessor Related Analysis

Fig. 7. Side-by-side view and macro highlight example in Visual Studio (two side win-
dows shown below each other)

provides a hierarchical view of macro definitions in the order they take part in
the macro replacement (see Figure 8).

Fig. 8. Macro definitions explorer view in Visual Studio

Selecting any of the definitions in the explorer activates the code definition
view to position to the selected macro definition in the source code (in the bottom
part of the IDE). Note that definitions are usually placed in separate headers,
not in the same file as the edited source code, where the macro is originally
called. Several headers also take part in the include hierarchy, and the actual
definition may be contained by them. The positioning also takes into account
the conditional directives as can be seen in Figure 9.

Service Layer for IDE Integration of C/C++ Preprocessor Related Analysis 13

Fig. 9. Code definition window example in Visual Studio

Last but not least, the concatenating operator may cause strange constructs
which are hard to find manually and also possibly result in coding problems and
weak code quality. Using the concatenating operator (## in the replacement text
of a macro, the macro parameter can be concatenated to a fixed string and the
resulting token may produce a new, hidden macro call. These type of calls are
rare, but could not be found by code search, as the macro name is not present in
the code in its final form. The macro explorer helps developers overcome these
situations as well, although our tool is currently a research prototype. Analysis
of the Mozilla Firefox revealed 24 such concatenations which resulted in new
macro calls, and these calls are used 337 times, which is not negligible.

6 Related Work

Preprocessor directives are still widely used as no real size program with configu-
rations exist without them. Ernst, Badros and Notkin [3] analyzed 26 commonly
used Unix software packages and found that preprocessor directives made up the
relatively high 8.4% of lines on average.

To overcome the preprocessor as a barrier in program understanding, re-
searchers tackled problems of various areas. Analysis and visualization of include
directives is a research topic from the early years, while in a recent work Spinel-
lis [19] proposes a solution for the automatic removal of unnecessary includes,
based on computed dependencies of program elements. Dealing with software
configurations is a well studied topic as well. Krone and Snelting [7] proposed
concept lattices to aid reengineering configurations. Latendresse [9, 10] proposed
a symbolic evaluation algorithm for finding the conditions required for a par-
ticular source line to get through the conditional compilation. CViMe and C-
CLR tools are Eclipse plugins, which collect and present configuration-controller
macros [16]. Sutton and Maletic implemented analyzer tools on the top of the sr-
cML infrastructure to reveal portability issues based on include files and configu-
ration macros [20]. In the work of Garrido the analysis of preprocessor constructs
was integrated into the C refactoring tool, where she implemented a configura-
tion independent solution [5, 6]. The Refactoring Browser by Vittek [26] carries
out automated modifications on a C source code. An interesting idea in this work

14 Service Layer for IDE Integration of C/C++ Preprocessor Related Analysis

is that of handling macros as special include files (the macro body is included),
but handling of ## operators is not solved in some cases. To handle the problem
of configurations, this tool relies on user input. Livadas and Small developed
a preprocessor inserting special lines into the preprocessed file to support the
source code highlighting methods of the Ghinsu program slicing tool [12].

Those working on C or C++ analyzers are confronted by the problem of pre-
processor directives. Therefore, a lot of effort has been made to avoid their usage.
Mennie and Clarke proposed a method to transform some macros and condition-
als into C/C++ code [13]. Spinellis tackled the problem of global renaming of
variables, preprocessor-aware solutions have been implemented in the CScout
tool [18]. Saebjoernsen et al. [15] propose a mapping between the C language
and the preprocessor to find inconsistent macro usage. The preprocessor-problem
occurs also in the context of aspect mining and aspect-refactoring. Adams et al.
worked on the problem of aspect refactoring, and also how to refactor various
conditional compilation usage patterns into aspects [1]. In our previous work, we
defined the macro dependency graph (MDG) for dependence based slicing of pre-
processor macros [24]. Using the MDG C++ slices were extended with macro
slices and better precision is achieved in case of more than 75% of backward
slices [23]. Despite the wide range of initiations, current software development
tools lack of support for the developers. In a recent paper Feigenspan et al.
investigate the use of coloring techniques depending on the preprocessor con-
ditionals in the FeatureCommander tool [4]. Folding is an interactive extension
of the textual view of the source code. The idea of folding in the context of
preprocessing is presented by Kullbach and Riediger [8] and we applied the idea
in our previous work. The folding mechanism was successfully employed within
the GUPRO program understanding environment [2]. In this work we targeted
the IDE and decided not to touch the code but use highlighting and parallel
code window instead. The Understand for C++ reverse engineering tool pro-
vides cross references between the use and definition of software entities [21].
This includes the step-by-step tracing of macro calls in both directions as well.
The tool is appropriate for tracking back the uses of a give macro definition but
the information is imprecise in certain situations like macro calls generated by
operators. A similar solution to macro folding is implemented in the Emacs
editor. In C-mode, the M-x c-macro-expand command in Emacs will run the C
preprocessor on the actual region and display the results in another buffer. This
is similar to unfolding a macro. Besides the folding mechanism shown in our
previous paper, we provide parellel code window and a more intuitive view for
stepwise investigation of macro definitions taking part in the expansion process.

7 Conclusions

Advanced integrated development environments influence the daily work of de-
velopers, thus having positive effect on productivity. IDEs also provide extension
mechanisms to include plug-ins. Plug-ins enrich the environment to support sev-
eral aspects of coding and help the developer maintain high code quality. In this

Service Layer for IDE Integration of C/C++ Preprocessor Related Analysis 15

paper our aim was to integrate preprocessor related analysis in Visual Studio.
Built on our previous works on detailed macro analysis and IDE Add-Ins, we
extend the capabilities of the Visual Studio with a service layer to provide ac-
cess for other plug-ins to the internals of preprocessing. We presented the high
level and low level architecture of this service and demonstrated its usability.
We implemented packages and an editor extension to show the interoperability
of mechanisms, and showed how these plug-ins can aid the daily work of de-
velopers. Using our services and tools one can overcome obstacles in program
understanding caused by preprocessor conditionals, dependent macro definitions
and concatenated macro parameters.

Our future plans include a usability study with the help of developers to
identify directions of enhancements. We already identified rooms for development
in integrating folding in code view, improving performance and implementing
synchronized side-by-side view windows.

Acknowledgments

This research was supported by the Hungarian national grant GOP-1.1.1-11-
2011-0006.

References

1. Adams, B., De Meuter, W., Tromp, H., Hassan, A.E.: Can we refactor conditional
compilation into aspects? In: AOSD ’09: Proceedings of the 8th ACM interna-
tional conference on Aspect-oriented software development. pp. 243–254. ACM,
New York, NY, USA (2009)

2. Ebert, J., Kullbach, B., Riediger, V., Winter, A.: GUPRO - Generic Understand-
ing of Programs. In: Mens, T., Schrr, A., Taentzer, G. (eds.) Electronic Notes in
Theoretical Computer Science. vol. 72. Elsevier (2002)

3. Ernst, M.D., Badros, G.J., Notkin, D.: An empirical analysis of C preprocessor
use. IEEE Transactions on Software Engineering 28(12) (Dec 2002)

4. Feigenspan, J., Kästner, C., Apel, S., Liebig, J., Schulze, M., Dachselt, R., Pa-
pendieck, M., Leich, T., Saake, G.: Do background colors improve program compre-
hension in the #ifdef hell? Empirical Software Engineering 18(4), 699–745 (2013)

5. Garrido, A., Johnson, R.: Analyzing multiple configurations of a c program. In:
Proceedings of the 21st International Conference on Software Maintenance (ICSM
2005). pp. 379–388. IEEE Computer Society (2005)

6. Garrido, A., Johnson, R.: Embracing the c preprocessor during refactoring. Journal
of Software: Evolution and Process 25(12), 1285–1304 (2013)

7. Krone, M., Snelting, G.: On the inference of configuration structures from source
code. In: Proceedings of ICSE 1994, 16th International Conference on Software
Engineering. pp. 49–57. IEEE Computer Society (1994)

8. Kullbach, B., Riediger, V.: Folding: An Approach to Enable Program Understand-
ing of Preprocessed Languages. In: Proceedings of the 8th Working Conference on
Reverse Engineering (WCRE 2001). pp. 3–12. IEEE Computer Society (2001)

16 Service Layer for IDE Integration of C/C++ Preprocessor Related Analysis

9. Latendresse, M.: Fast symbolic evaluation of C/C++ preprocessing using condi-
tional values. In: Proceedings of the 7th European Conference on Software Main-
tenance and Reengineering (CSMR 2003). pp. 170–179. IEEE Computer Society
(March 2003)

10. Latendresse, M.: Rewrite systems for symbolic evaluation of c-like preprocessing.
In: Proceedings of the 8th European Conference on Software Maintenance and
Reengineering (CSMR 2004). pp. 165–173. IEEE Computer Society (March 2004)

11. Liebig, J., Apel, S., Lengauer, C., Kästner, C., Schulze, M.: An analysis of the
variability in forty preprocessor-based software product lines. In: Proceedings of
the 32Nd ACM/IEEE International Conference on Software Engineering - Volume
1. pp. 105–114. ICSE ’10, ACM, New York, NY, USA (2010)

12. Livadas, P., Small, D.: Understanding code containing preprocessor constructs. In:
Proceedings of IWPC 1994, Third IEEE Workshop on Program Comprehension.
pp. 89–97 (Nov 1994)

13. Mennie, C.A., Clarke, C.L.A.: Giving meaning to macros. In: Proceedings of IWPC
2004. pp. 79–88. IEEE Computer Society (2004)

14. Microsoft Visual Studio. http://www.microsoft.com/visualstudio/ (2014)
15. Saebjoernsen, A., Jiang, L., Quinlan, D.J., Su, Z.: Static validation of c preproces-

sor macros. In: AOSD ’09: Proceedings of the 8th ACM international conference
on Aspect-oriented software development. pp. 149–160. IEEE Computer Society
(2009)

16. Singh, N., Gibbs, C., Coady, Y.: C-clr: a tool for navigating highly configurable
system software. In: ACP4IS ’07: Proceedings of the 6th workshop on Aspects,
components, and patterns for infrastructure software. p. 9. ACM, New York, NY,
USA (2007)

17. Spencer, H., Collyer, G.: #ifdef considered harmful, or portability experience with
C News. In: USENIX Summer Technical Conference. pp. 185–197 (June 1992)

18. Spinellis, D.: A refactoring browser for c. In: ECOOP’08 International Workshop
on Advanced Software Development Tools and Techniques (WASDeTT) (2008)

19. Spinellis, D.: Optimizing header file include directives. Journal of Software Main-
tenance and Evolution: Research and Practice 22 (2010)

20. Sutton, A., Maletic, J.I.: How we manage portability and configuration with the
c preprocessor. In: Proceedings of the 23rd International Conference on Software
Maintenance (ICSM 2007). pp. 275–284 (2007)

21. Understand for C++ homepage. http://www.scitools.com (2009)
22. Vidács, L., Beszédes, A., Ferenc, R.: Columbus Schema for C/C++ Preprocessing.

In: Proceedings of CSMR 2004 (8th European Conference on Software Maintenance
and Reengineering). pp. 75–84. IEEE Computer Society (Mar 2004)

23. Vidács, L., Beszédes, A., Ferenc, R.: Macro impact analysis using macro slicing.
In: Proceedings of ICSOFT 2007, The 2nd International Conference on Software
and Data Technologies. pp. 230–235 (Jul 2007)

24. Vidács, L., Beszédes, Á., Gyimóthy, T.: Combining Preprocessor Slicing with
C/C++ Language Slicing. Science of Computer Programming 74(7), 399–413 (May
2009)

25. Vidács, L., Dévai, R., Ferenc, R., Gyimóthy, T.: Developer Support for Understand-
ing Preprocessor Macro Expansions. In: Proceedings of International Conference
on Advanced Software Engineering & Its Applications (ASEA 2012). pp. 121–130.
Springer-Verlag (Nov 2012)

26. Vittek, M.: Refactoring browser with preprocessor. In: Proceedings of the Seventh
European Conference on Software Maintenance and Reengineering (CSMR 2003).
pp. 101–110. Benevento, Italy (March 2003)

