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Abstract

We consider the problem of online planning in a Markov decision process with
discounted rewards for any given initial state. We consider the PAC sample com-
plexity problem of computing, with probability 1−δ, an ε-optimal action using the
smallest possible number of calls to the generative model (which provides reward
and next-state samples). We design an algorithm, called StOP (for Stochastic-
Optimistic Planning), based on the “optimism in the face of uncertainty” princi-
ple. StOP can be used in the general setting, requires only a generative model, and
enjoys a complexity bound that only depends on the local structure of the MDP.

1 Introduction

1.1 Problem formulation

In a Markov decision process (MDP), an agent navigates in a state space X by making decisions
from some action set U . The dynamics of the system are determined by transition probabilities
P : X × U ×X → [0, 1] and reward probabilities R : X × U × [0, 1] → [0, 1], as follows: when
the agent chooses action u in state x, then, with probabilityR(x, u, r), it receives reward r, and with
probability P (x, u, x′) it makes a transition to a next state x′. This happens independently of all
previous actions, states and rewards—that is, the system possesses the Markov property. See [20, 2]
for a general introduction to MDPs. We do not assume that the transition or reward probabilities
are fully known. Instead, we assume access to the MDP via a generative model (e.g. simulation
software), which, for a state-action (x, u), returns a reward sample r ∼ R(x, u, ·) and a next-state
sample x′ ∼ P (x, u, ·). We also assume the number of possible next-states to be bounded byN ∈ N.

We would like to find an agent that implements a policy which maximizes the expected cumulative
discounted reward E[

∑∞
t=0 γ

trt], which we will also refer to as the return. Here, rt is the reward
received at time t and γ ∈ (0, 1) is the discount factor. Further, we take an online planning approach,
where at each time step, the agent uses the generative model to perform a simulated search (planning)
in the set of policies, starting from the current state. As a result of this search, the agent takes a single
action. An expensive global search for the optimal policy in the whole MDP is avoided.

∗Current affiliation: Google DeepMind
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To quantify the performance of our algorithm, we consider a PAC (Probably Approximately Correct)
setting, where, given ε > 0 and δ ∈ (0, 1), our algorithm returns, with probability 1−δ, an ε-optimal
action (i.e. such that the loss of performing this action and then following an optimal policy instead
of following an optimal policy from the beginning is at most ε). The number of calls to the generative
model required by the planning algorithm is referred to as its sample complexity. The sample and
computational complexities of the planning algorithm introduced here depend on local properties
of the MDP, such as the quantity of near-optimal policies starting from the initial state, rather than
global features like the MDP’s size.

1.2 Related work

The online planning approach and, in particular, its ability to get rid of the dependency on the global
features of the MDP in the complexity bounds (mentioned above, and detailed further below) is
the driving force behind the Monte Carlo Tree Search algorithms [16, 8, 11, 18]. 1 The theoreti-
cal analysis of this approach is still far from complete. Some of the earlier algorithms use strong
assumptions, others are applicable only in restricted cases, or don’t adapt to the complexity of the
problem. In this paper we build on ideas used in previous works, and aim at fixing these issues.

A first related work is the sparse sampling algorithm of [14]. It builds a uniform look-ahead tree of a
given depth (which depends on the precision ε), using for each transition a finite number of samples
obtained from a generative model. An estimate of the value function is then built using empirical
averaging instead of expectations in the dynamic programming back-up scheme. This results in an

algorithm with (problem-independent) sample complexity of order
(

1
(1−γ)3ε

) logK+log[1/(ε(1−γ)2)])
log(1/γ)

(neglecting some poly-logarithmic dependence), where K is the number of actions. In terms of ε,
this bound scales as exp(O([log(1/ε)]2)), which is non-polynomial in 1/ε. 2 Another disadvantage
of the algorithm is that the expansion of the look-ahead tree is uniform; it does not adapt to the MDP.

An algorithm which addresses this appears in [21]. It avoids evaluating some unnecessary branches
of the look-ahead tree of the sparse sampling algorithm. However, the provided sample bound does
not improve on the one in [14], and it is possible to show that the bound is tight (for both algorithms).
In fact, the sample complexity turns out to be super-polynomial even in the pure Monte Carlo setting
(i.e., when K = 1): 1/ε2+(logC)/ log(1/γ), with C ≥ 1

ε2(1−γ)4 .

Close to our contribution are the planning algorithms [13, 3, 5, 15] (see also the survey [18]) that
follow the so-called “optimism in the face of uncertainty” principle for online planning. This prin-
ciple has been extensively investigated in the multi-armed bandit literature (see e.g. [17, 1, 4]). In
the planning problem, this approach translates to prioritizing the most promising part of the policy
space during exploration. In [13, 3, 5], the sample complexity depends on a measure of the quantity
of near-optimal policies, which gives a better understanding of the real hardness of the problem than
the uniform bound in [14].

The case of deterministic dynamics and rewards is considered in [13]. The proposed algorithm has
sample complexity of order (1/ε)

log κ
log(1/γ) , where κ ∈ [1,K] measures (as a branching factor) the

quantity of nodes of the planning tree that belong to near-optimal policies. If all policies are very
good, many nodes need to be explored in order to distinguish the optimal policies from the rest, and
therefore, κ is close to the number of actions K, resulting in the minimax bound of (1/ε)

logK
log(1/γ) .

Now if there is structure in the rewards (e.g. when sub-optimal policies can be eliminated by ob-
serving the first rewards along the sequence), then the proportion of near-optimal policies is low,
so κ can be small and the bound is much better. In [3], the case of stochastic rewards have been
considered. However, in that work the performance is not compared to the optimal (closed-loop)
policy, but to the best open-loop policy (i.e. which does not depends on the state but only on the

sequence of actions). In that situation, the sample complexity is of order (1/ε)max(2,
log(κ)

log(1/γ) ).

The deterministic and open-loop settings are relatively simple, since any policy can be identified with
a sequence of actions. In the general MDP case however, a policy corresponds to an exponentially

1A similar planning approach has been considered in the control literature, such as the model-predictive
control [6] or in the AI community, such as the A∗ heuristic search [19] and the AO∗ variant [12].

2A problem-independent lower bound for the sample complexity, of order (1/ε)1/ log(1/γ), is provided too.
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wide tree, where several branches need to be explored. The closest work to ours in this respect is
[5]. However, it makes the (strong) assumption that a full model of the rewards and transitions is

available. The sample complexity achieved is again
(
1/ε
) log(κ)

log(1/γ) , but where κ ∈ (1, NK] is defined
as the branching factor of the set of nodes that simultaneously (1) belong to near-optimal policies,
and (2) whose “contribution” to the value function at the initial state is non-negligible.

1.3 The main results of the paper

Our main contribution is a planning algorithm, called StOP (for Stochastic Optimistic Planning)
that achieves a polynomial sample complexity in terms of ε (which can be regarded as the leading
parameter in this problem), and which is, in terms of this complexity, competitive to other algorithms
that can exploit more specifics of their respective domains. It benefits from possible reward or
transition probability structures, and does not require any special restriction or knowledge about the
MDP besides having access to a generative model. The sample complexity bound is more involved
than in previous works, but can be upper-bounded by:

(1/ε)2+ log κ
log(1/γ)

+o(1) (1)

The important quantity κ ∈ [1,KN ] plays the role of a branching factor of the set of important
states Sε,∗ (defined precisely later) that “contribute” in a significant way to near-optimal policies.
These states have a non-negligible probability to be reached when following some near-optimal
policy. This measure is similar (but with some differences illustrated below) to the κ introduced in
the analysis of OP-MDP in [5]. Comparing the two, (1) contains an additional constant of 2 in the
exponent. This is a consequence of the fact that the rewards are random and that we do not have
access to the true probabilities, only to a generative model generating transition and reward samples.

In order to provide intuition about the bound, let us consider several specific cases (the derivation of
these bounds can be found in Section E):

• Worst-case. When there is no structure at all, then Sε,∗ may potentially be the set of
all possible reachable nodes (up to some depth which depends on ε), and its branching
factor is κ = KN . The sample complexity is thus of order (neglecting logarithmic fac-

tors) (1/ε)2+
log(KN)
log(1/γ) . This is the same complexity that uniform planning algorithm would

achieve. Indeed, uniform planning would build a tree of depth h with branching factorKN
where from each state-action one would generate m rewards and next-state samples. Then,
dynamic programming would be used with the empirical Bellman operator built from the
samples. Using Chernoff-Hoeffding bound, the estimation error is of the order (neglecting
logarithms and (1−γ) dependence) of 1/

√
m. So for a desired error ε we need to choose h

of order log(1/ε)/ log(1/γ), and m of order 1/ε2 leading to a sample complexity of order

m(KN)h = (1/ε)2+
log(KN)
log(1/γ) . (See also [15]) Note that in the worst-case sense there is no

uniformly better strategy than a uniform planning, which is achieved by StOP. However,
StOP can also do much better in specific settings, as illustrated next.
• Case with K0 > 1 actions at the initial state, K1 = 1 actions for all other states, and

arbitrary transition probabilities. Now each branch corresponds to a single policy. In
that case one has κ = 1 (even though N > 1) and the sample complexity of StOP is of
order Õ(log(1/δ)/ε2) with high probability3. This is the same rate as a Monte-Carlo eval-
uation strategy would achieve, by sampling O(log(1/δ)/ε2) random trajectories of length
log(1/ε)/ log(1/γ). Notice that this result is surprisingly different from OP-MDP which
has a complexity of order (1/ε)

logN
log(1/γ) (in the case when κ = N , i.e., when all transitions

are uniform). Indeed, in the case of uniform transition probabilities, OP-MDP would sam-
ple the nodes in breadth-first search way, thus achieving this minimax-optimal complexity.
This does not contradict the Õ(log(1/δ)/ε2) bound for StOP (and Monte-Carlo) since this
bound applies to an individual problem and holds in high probability, whereas the bound
for OP-MDP is deterministic and holds uniformly over all problems of this type.

3We emphasize the dependence on δ here since we want to compare this high-probability bound to the
deterministic bound of OP-MDP.
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Here we see the potential benefit of using StOP instead of OP-MDP, even though StOP
only uses a generative model of the MDP whereas OP-MDP requires a full model.

• Highly structured policies. This situation holds when there is a substantial gap between
near optimal policies and other sub-optimal policies. For example if along an optimal
policy, all immediate rewards are 1, whereas as soon as one deviates from it, all rewards
are< 1. Then only a small proportion of the nodes (the ones that contribute to near-optimal
policies) will be expanded by the algorithm. In such cases, κ is very close to 1 and in the
limit, we recover the previous case when K = 1 and the sample complexity is O(1/ε)2.

• Deterministic MDPs. HereN = 1 and we have that κ ∈ [1,K]. When there is structure in
the rewards (like in the previous case), then κ = 1 and we obtain a rate Õ(1/ε2). Now when
the MDP is almost deterministic, in the sense that N > 1 but from any state-action, there
is one next-state probability which is close to 1, then we have almost the same complexity
as in the deterministic case (since the nodes that have a small probability to be reached will
not contribute to the set of important nodes Sε,∗, which characterizes κ).

• Multi-armed bandit we essentially recover the result of the Action Elimination algorithm
[9] for the PAC setting.

Thus we see that in the worst case StOP is minimax-optimal, and in addition, StOP is able to benefit
from situations when there is some structure either in the rewards or in the transition probabilities.
We stress that StOP achieves the above mentioned results having no knowledge about κ.

1.4 The structure of the paper

Section 2 describes the algorithm, and introduces all the necessary notions. Section 3 presents the
consistency and sample complexity results. Section 4 discusses run time efficiency, and in Section 5
we make some concluding remarks. Finally, the supplementary material provides the missing proofs,
the analysis of the special cases, and the necessary fixes for the issues with the run-time complexity.

2 StOP: Stochastic Optimistic Planning

Recall thatN ∈ N denotes the number of possible next states. That is, for each state x ∈ X and each
action u available at x, it holds that P (x, u, x′) = 0 for all but at most N states x′ ∈ X . Throughout
this section, the state of interest is denoted by x0, the requested accuracy by ε, and the confidence
parameter by δ0. That is, the problem to be solved is to output an action u which is, with probability
at least (1− δ0), at least ε-optimal in x0.

The algorithm and the analysis make use of the notion of an (infinite) planning tree, policies and
trajectories. These notions are introduced in the next subsection.

2.1 Planning trees and trajectories

The infinite planning tree Π∞ for a given MDP is a rooted and labeled infinite tree. Its root is
denoted s0 and is labeled by the state of interest, x0 ∈ X . Nodes on even levels are called action
nodes (the root is an action node), and have Kd children each on the d-th level of action nodes: each
action u is represented by exactly one child, labeled u. Nodes on odd levels are called transition
nodes and have N children each: if the label of the parent (action) node is x, and the label of the
transition node itself is u, then for each x′ ∈ X with P (x, u, x′) > 0 there is a corresponding child,
labeled x′. There may be children with probability zero, but no duplicates.

An infinite policy is a subtree of Π∞ with the same root, where each action node has exactly one
child and each transition node hasN children. It corresponds to an agent having fixed all its possible
future actions. A (partial) policy Π is a finite subtree of Π∞, again with the same root, but where
the action nodes have at most one child, each transition node has N children, and all leaves 4 are
on the same level. The number of transition nodes on any path from the root to a leaf is denoted
d(Π) and is called the depth of Π. A partial policy corresponds to the agent having its possible
future actions planned for d(Π) steps. There is a natural partial order over these policies: a policy

4Note that leaves are, by definition, always action nodes.
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Π′ is called descendant policy of a policy Π if Π is a subtree of Π′. If, additionally, it holds that
d(Π′) = d(Π) + 1, then Π is called the parent policy of Π′, and Π′ the child policy of Π.

A (random) trajectory, or rollout, for some policy Π is a realization τ := (xt, ut, rt)
T
t=0 of the

stochastic process that belongs to the policy. A random path is generated from the root by always
following, from a non-leaf action node with label xt, its unique child in Π, then setting ut to the
label of this node, from where, drawing first a label xt+1 from P (xt, ut, ·), one follows the child
with label xt+1. The reward rt is drawn from the distribution determined by R(xt, ut, ·). The value
of the rollout τ (also called return or payoff in the literature) is v(τ) :=

∑T
t=0 rtγ

t, and the value of
the policy Π is v(Π) := E[v(τ)] = E[

∑T
t=0 rtγ

t]. For an action u available at x0, denote by v(u)
the maximum of the values of the policies having u as the label of the child of root s0. Denote by v∗
the maximum of these v(u) values. Using this notation, the task of the algorithm is to return, with
high probability, an action u with v(u) ≥ v∗ − ε.

2.2 The algorithm

StOP (Algorithm 1, see Figure 1 in the supplementary material for an illustration) maintains for each
action u available at x0 a set of active policies Active(u). Initially, it holds that Active(u) = {Πu},
where Πu is the shallowest partial policy with the child of the root being labeled u. Also, for each
policy Π that becomes a member of an active set, the algorithm maintains high confidence lower and
upper bounds for the value v(Π) of the policy, denoted ν(Π) and b(Π), respectively.

In each round t, an optimistic policy Π†t,u := argmaxΠ∈Active(u) b(Π) is determined for each action
u. Based on this, the current optimistic action u†t := argmaxu b(Π

†
t,u) and secondary action u††t :=

argmaxu 6=u†t
b(Π†t,u) are computed. A policy Πt to explore is then chosen: if the one that belongs to

the secondary action is at least as deeply developed as the one that belongs to the optimistic action,
the latter is chosen for exploration, and otherwise the former. Note that a smaller depth is equivalent
to a larger gap between lower and upper bound, and vice versa5. The set Active(ut) is then updated,
replacing the policy Πt by its children policies. Accordingly, the upper and lower bounds for these
policies are computed. The algorithm terminates when ν(Π†t) + ε ≥ maxu6=u†t

b(Π†t,u)–that is,

when, with high confidence, no policies starting with an action different from u†t have the potential
to have significantly higher value.

2.2.1 Number and length of trajectories needed for one partial policy

Fix some integer d > 0 and let Π be a partial policy of depth d. Let, furthermore, Π′ be an infinite
policy that is a descendant of Π. Note that

0 ≤ v(Π′)− v(Π) ≤ γd

1−γ . (2)

The value of Π is a γd

1−γ -accurate approximation of the value of Π′. On the other hand, having m
trajectories for Π, their average reward v̂(Π) can be used as an estimate of the value v(Π) of Π. From

the Hoeffding bound, this estimate has, with probability at least (1− δ), accuracy 1−γd
1−γ

√
ln(1/δ)

2m .

With m := m(d, δ) := d ln(1/δ)
2 ( 1−γd

γd
)2e trajectories, γd

1−γ ≥
1−γd
1−γ

√
ln(1/δ)

2m holds, so with prob-

ability at least (1 − δ), b(Π) := v̂(Π) + γd

1−γ + 1−γd
1−γ

√
ln(1/δ)

2m ≤ v̂(Π) + 2 γd

1−γ and ν(Π) :=

v̂(Π)− 1−γd
1−γ

√
ln(1/δ)

2m ≥ v̂(Π)− γd

1−γ bound v(Π′) from above and below, respectively. This choice
balances the inaccuracy of estimating v(Π′) based on v(Π) and the inaccuracy of estimating v(Π).

Let d∗ := d∗(ε, γ) := d(ln 6
(1−γ)ε )/ ln(1/γ)e, the smallest integer satisfying 3 γ

d∗

1−γ ≤ ε/2. Note
that if d(Π) = d∗ for any given policy Π, then b(Π) − ν(Π) ≤ ε/2. Because of this, it follows
(see Lemma 3 in the supplementary material) that d∗ is the maximal length the algorithm ever has
to develop a policy.

5This approach of using secondary actions is based on the UGapE algorithm [10].
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Algorithm 1 StOP(s0, δ0, ε, γ)

1: for all u available from x0 do . initialize
2: Πu := smallest policy with the child of s0 labeled u
3: δ1 := (δ0/d

∗) · (K0)−1 . d(Πu) = 1
4: (ν(Πu), b(Πu)) := BoundValue(Πu, δ1)
5: Active(u) := {Πu} . the set of active policies that follow u in s0

6: for round t=1, 2, . . . do
7: for all u available at x0 do
8: Π†t,u := argmaxΠ∈Active(u) b(Π)

9: Π†t := Π†
t,u†t

, where u†t := argmaxu b(Π
†
t,u), . optimistic action and policy

10: Π††t := Π†
t,u††t

, where u††t := argmaxu6=u†t
b(Π†t,u), . secondary action and policy

11: if ν(Π†t) + ε ≥ maxu6=u†t
b(Π†t,u) then . termination criterion

12: return u†t
13: if d(Π††t ) ≥ d(Π†t) then . select the policy to evaluate
14: ut := u†t and Πt := Π†t
15: else
16: ut := u††t and Πt := Π††t . action and policy to explore
17: Active(ut) := Active(ut) \ {Πt}
18: δ := (δ0/d

∗) ·
∏d(Πt)−1
`=0 (K`)

−N` .
∏d−1
`=0 (K`)

N` = # of policies of depth at most d
19: for all child policy Π′ of Πt do
20: (ν(Π), b(Π)) := BoundValue(Π′, δ)
21: Active(ut) := Active(ut) ∪ {Π′}

2.2.2 Samples and sample trees

Algorithm StOP aims to aggressively reuse every sample for each transition node and every sample
for each state-action pair, in order to keep the sample complexity as low as possible. Each time the
value of a partial policy is evaluated, all samples that are available for any part of it from previous
rounds are reused. That is, if m trajectories are necessary for assessing the value of some policy
Π, and there are m′ complete trajectories available and m′′ that end at some inner node of Π, then
StOP (more precisely, another algorithm, Sample, called from StOP) samples rewards (using
SampleReward) and transitions (SampleTransition) to generate continuations for the m′′
incomplete trajectories and to generate (m−m′−m′′) new trajectories, as described in Section 2.1,
where

• SampleReward(s) for some action node s samples a reward from the distribution
R(x, u, ·), where u is the label of the parent of s and x is the label of the grandparent
of s, and

• SampleTransition(s) for some transition node s samples a next state from the distri-
bution P (x, u, ·), where u is the label of s and x is the label of the parent of s.

To compensate for the sharing of the samples, the confidences of the estimates are increased, so that
with probability at least (1−δ0), all of them are valid6. The samples are organized as a collection of
sample trees, where a sample tree T is a (finite) subtree of Π∞ with the property that each transition
node has exactly one child, and that each action node s is associated with some reward rT (s). Note
that the intersection of a policy Π and a sample tree T is always a path. Denote this path by τ(T ,Π)
and note that it necessarily starts from the root and ends either in a leaf or in an internal node of Π. In
the former case, this path can be interpreted as a complete trajectory for Π, and in the latter case, as
an initial segment. Accordingly, when the value of a new policy Π needs to be estimated/bounded, it
is computed as v̂(Π) := 1

m

∑m
i=1 v(τ(Ti,Π)) (see Algorithm 2: BoundValue), where T1, . . . , Tm

are sample trees constructed by the algorithm. For terseness, these are considered to be global
variables, and are constructed and maintained using algorithm Sample (Algorithm 3).

6In particular, the confidence is set to 1 − δd(Π) for policy Π, where δd = (δ0/d
∗)

∏d−1
`=0 K

−N`
` is δ0

divided by the number of policies of depth at most d, and by the largest possible depth—see section 2.2.1.
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Algorithm 2 BoundValue(Π, δ)

Ensure: with probability at least (1− δ), interval [ν(Π), b(Π)] contains v(Π)

1: m :=

⌈
ln(1/δ)

2

(
1−γd(Π)

γd(Π)

)2
⌉

2: Sample(Π, s0,m) . Ensure that at least m trajectories exist for Π
3: v̂(Π) := 1

m

∑m
i=1 v(τ(Ti,Π)) . empirical estimate of v(Π)

4: ν(Π) := v̂(Π)− 1−γd(Π)

1−γ

√
ln(1/δ)

2m . Hoeffding bound

5: b(Π) := v̂(Π) + γd(Π)

1−γ + 1−γd(Π)

1−γ

√
ln(1/δ)

2m . . . . and (2)
6: return (ν(Π), b(Π))

Algorithm 3 Sample(Π, s,m)

Ensure: there are m sample trees T1, . . . , Tm that contain a complete trajectory for Π (i.e. τ(Ti,Π)
ends in a leaf of Π for i = 1, . . . ,m)

1: for i := 1, . . . ,m do
2: if sample tree Ti does not yet exist then
3: let Ti be a new sample tree of depth 0
4: let s be the last node of τ(Ti,Π) . s is an action node
5: while s is not a leaf of Π do
6: let s′ be the child of s in Π and add it to T as a new child of s
7: s′′ := SampleTransition(s′), . s′ is a transition node
8: add s′′ to T as a new child of s′
9: s := s′′

10: rT (s′′) := SampleReward(s′′)

3 Analysis

Recall that v∗ denotes the maximal value of any (possibly infinite) policy tree. The following theo-
rem formalizes the consistency result for StOP (see the proof in Section C).
Theorem 1. With probability at least (1− δ0), StOP returns an action with value at least v∗ − ε.

Before stating the sample complexity result, some further notation needs to be introduced.

Let u∗ denote an optimal action available at state x0. That is, v(u∗) = v∗. Define for u 6= u∗

Pεu :=
{

Π : Π follows u from s0 and v(Π) + 3γ
d(Π)

1−γ ≥ v
∗ − 3γ

d(Π)

1−γ + ε
}
,

and also define

Pεu∗ :=

{
Π : Π follows u∗ from s0, v(Π) + 3γ

d(Π)

1−γ ≥ v
∗ and v(Π)− 6γ

d(Π)

1−γ + ε ≤ max
u6=u∗

v(u)

}
.

Then Pε := Pεu∗ ∪
⋃
u6=u∗ Pεu is the set of “important” policies that potentially need to be evaluated

in order to determine an ε-optimal action. (See also Lemma 8 in the supplementary material.)

Let now p(s) denote the product of the probabilities of the transitions on the path from s0 to s. That
is, for any policy tree Π containing s, a trajectory for Π goes through s with probability p(s). When
estimating the value of some policy Π of depth d, the expected number of trajectories going through
some nodes s of it is p(s)m(d, δd). The sample complexity therefore has to take into consideration
for each node s (at least for the ones with “high” p(s) value) the maximum `(s) = max{d(Π) : Π ∈
Pε contains s} of the depth of the relevant policies it is included in. Therefore, the expected number
of trajectories going through s in a given run of StOP is

p(s) ·m(`(s), δ`(s)) = p(s)

⌈
ln(1/δ`(s))

2

(
1−γ`(s)
γ`(s)

)2
⌉

(3)

If (3) is “large” for some s, it can be used to deduce high confidence upper bound on the number of
times s gets sampled. To this end, let Sε denote the set of nodes of the trees in Pε, letN ε denote the
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smallest positive integer N satisfying N ≥
∣∣{s ∈ Sε : p(s) ·m(`(s), δ`(s)) ≥ (8/3) ln(2N/δ0)

}∣∣
(obviously N ε ≤ |Sε|), and let

Sε,∗ :=
{
s ∈ Sε : p(s) ·m(`(s), δ`(s)) ≥ (8/3) ln(2N ε/δ0)

}
Then Sε is the set of important nodes (since Pε is the set of “important” policies), and Sε,∗ consists
of the important nodes which, with high probability, are not sampled more than twice they are
expected to be. (This high probability is 1 − δ0

2N ε according to the Bernstein bound, and so these
upper bounds hold jointly with probability at least (1− δ0

2 ), asN ε = |Sε,∗|. See also Appendix D.)

The number of times some s′ ∈ Sε \ Sε,∗ gets sampled has too large variance compared to its
expected value (3), so a different approach is needed in order to derive high confidence upper bounds.
To this end, for a transition node s, let p◦(s) := p◦(s, ε) :=

∑
{p(s′) : s′ is a child of s with p(s′) ·

m(`(s′), δ`(s′)) < (8/3) ln(2N ε/δ0)}, and

B(s) := B(s, ε) :=

{
0, if p◦(s) ≤ δ

2N εm(`(s),δ`(s))

max(6 ln( 2N ε
δ0

), 2p◦(s)m(`(s), δ`(s))) otherwise

As it will be shown in the proof of Theorem 2 (in Section D), this is a high confidence upper bound
on the number of trajectories that go through some child s′ ∈ Sε \ Sε,∗ of some s′ ∈ Sε,∗.
Theorem 2. With probability at least (1− 2δ), StOP outputs a policy of value at least (v∗ − ε) af-

ter generating at most
∑
s∈Sε,∗

(
2p(s)m(`(s), δ`(s)) +B(s)

∑`(s)
d=d(s)+1

∏d
`=d(s)+1K`

)
samples,

where d(s) = min{d(Π) : s appears in policy Π} is the depth of node s.

Finally, the bound discussed in Section 1 is obtained by setting κ := lim supε→0 max(κ1, κ2),

where κ1 := κ1(ε, δ0, γ) :=
(∑

s∈Sε,∗
ε2(1−γ)2

ln(1/δ0) 2p(s)m(`(s), δ`(s))
)1/d∗

and κ2 := κ2(ε, δ0, γ) :=(
ε2(1−γ)2

ln(1/δ0)

∑
s∈Sε,∗ B(s)

∑`(s)
d=d(s)

∏d
`=d(s)K`

)1/d∗

.

4 Efficiency

StOP, as presented in Algorithm 1, is not efficiently executable. First of all, whenever it evaluates
an optimistic policy, it enumerates all its children policies, which has typically exponential time
complexity. Besides that, the sample trees are also treated in an inefficient way. An efficient version
of StOP with all these issues fixed is presented in Appendix F of the supplementary material.

5 Concluding remarks

In this work, we have presented and analyzed our algorithm, StOP. To the best of our knowledge,
StOP is currently the only algorithm for optimal (i.e. closed loop) online planning with a generative
model that provably benefits from local structure both in reward as well as in transition probabilities.
It assumes no knowledge about this structure other than access to the generative model, and does
not impose any restrictions on the system dynamics.

One should note though that the current version of StOP does not support domains with infinite
N . The sparse sampling algorithm in [14] can easily handle such problems (at the cost of a non-
polynomial (in 1/ε) sample complexity), however, StOP has much better sample complexity in case
of finite N . An interesting problem for future research is to design adaptive planning algorithms
with sample complexity independent of N ([21] presents such an algorithm, but the complexity
bound provided there is the same as the one in [14]).
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A Illustration of the StOP algorithm
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Figure 1: Illustration of the StOP algorithm with K = N = 2. Black dots represents action-nodes
and thick arrows transition-nodes. Thin arrow represents transitions to next action-nodes. The
numbers corresponds to the number of samples allocated to each node or transition. For example
in Iteration 1, the procedure Sample allocated 6 samples to each action. The optimistic policy Π†

is selected (Step 11 of StOP), which is shown by the black arrows. At iteration 2, the leaves of
the optimistic policy are expanded and Sample generates more samples along the new possible
policies. The new optimistic policy is computed. The same process is repeated in later iterations.
Notice that the same samples are used to evaluate many policies, and that the leaves of the optimistic
policy in Iteration 4 are not all leaves of the whole tree.

B Chernoff-Hoeffding and Bernstein bounds

This section provides a quick overview of the specific concentration inequalities that are used
to obtain high confidence bounds on the values of the policies. The first one is the Hoeffding
bound (Corollary A.1 in [7]). It implies that for any given random variable that takes values
from the interval [0, a] and has expected value p, the average pm of m independent samples sat-

isfy P
[
p̂m ≤ p+ a

√
ln(1/δ)

2m

]
≤ δ and P

[
p̂m ≥ p− a

√
ln(1/δ)

2m

]
≤ δ.

The second concentration inequality is the Bernstein bound (see e.g. Corollary A.3 in [7]). It
implies that for any given a > 0 and for any given Bernoulli variable with parameter p, the average
pm of m independent samples satisfy P [p̂m > p+ a] ≤ exp

(
−a2m

2p+2a/3

)
and P [p̂m < p− a] ≤
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exp
(
−a2m

2p+2a/3

)
. In particular, setting a = p, one obtains that

pm ≥ 8
3 ln(1/δ)⇒ P [p̂m > 2p] = P [p̂m > p+ a] ≤ exp

(
−pm
8/3

)
≤ δ . (4)

Similarly, setting a = 8 ln(1/δ)
3m , one obtains that

pm < 8 ln(1/δ)
3 ⇒ P

[
p̂m > 16 ln(1/δ)

3m

]
≤ P [p̂m > p+ a] ≤ exp

(
−am
8/3

)
= δ . (5)

C Proof of the consistency result (Theorem 1)

Lemma 3. There can not be an active policy of depth larger than d∗.

Proof. For a policy with depth larger than d∗ to be in an active policy set, there has to be a round t
with d(Πt) = d∗. This can only be the case if d(Π†t) = d∗ or d(Π††t ) = d∗. However, if d(Π†t) ≥ d∗,
then it holds that ν(Π†t) + ε/2 ≥ b(Π†t) ≥ maxu 6=u†t

b(Π†t,u), so StOP terminates. And since the

selection rule for ut implies that Π†† is only selected as Πt if d(Π†t) > d(Π††t ), selecting it would
mean d(Π†t) > d∗, so the algorithm would terminate by the first argument.

For convenience, we restate the theorem.

Theorem 4 (Restatement of the consistency result, Theorem 1). With probability at least (1 − δ0)
StOP returns an action with value at least v∗ − ε.

To prove the consistency of StOP, the following guarantee of BoundValue is needed.

Claim 5. With probability at least (1 − δ), BoundValue(Π, δ) sets v̂(Π) to some value in the

interval
[
v(Π)− 1−γd(Π)

1−γ

√
ln(1/d)

2m , v(Π) + 1−γd(Π)

1−γ

√
ln(1/d)

2m

]
.

Proof. As discussed in Section 2.2.2, each τ(Ti,Π) for i = 1, . . . ,m can be interpreted as trajecto-
ries for Π that are independent (because the samples are also independent of each other). Therefore,
the average of their value (return) v̂(Π) = (1/m)

∑m
i=1 v(τ(Ti,Π)) is an unbiased estimate of v(Π).

What is more, according to the Hoeffding bound (recall Section 2.2.1), the accuracy of this estimate

is 1−γd(Π)

1−γ

√
ln(1/d)

2m ≤ γd(Π)

1−γ , with probability at least 1− δ.

Based on this it is now easy to show that the estimates used by the algorithm are all correct with
high probability.

Corollary 6. The event that for every round t throughout the run of the algorithm, for each action u
available at x0, for each Π ∈ Activet(u), and for each descendant Π′ of Π (allowing Π′ = Π), the
value v(Π′) of Π′ belongs to the interval [ν(Π), b(Π)] has probability at least (1− δ0), and implies

ν
(

Π†t,u

)
≤ v(u) ≤ b

(
Π†t,u

)
.

Proof. If BoundValue is ever called for some policy Π, then it is called with confidence parameter
δ set to δd = (δ0/d

∗)
∏d
`=1K`, where d = d(Π) is the depth of Π. Note also that

∏d−1
`=0 (K`)

N`

is the number of partial policies of depth d, and therefore, based on Claim 5 and Lemma 3, with
probability at least 1−

∑d∗

d=1 δd
∏d−1
`=0 (K`)

N` = 1− δ0, for every Π that ever belongs to the set of

active policies, v(Π) ∈
[
v̂(Π)− 1−γd(Π)

1−γdΠ

√
ln(1/d)

2m , v̂(Π) + 1−γd(Π)

1−γd(Π)

√
ln(1/d)

2m

]
. The claimed result

now follows from (2).

The consistency result of Theorem 1 follows immediately from Corollary 6, Lemma 3 and the ter-
mination condition of StOP.
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D Proof of the sample complexity (Theorem 2)

For convenience, we restate the theorem.
Theorem 7 (Restatement of the sample complexity bound, Theorem 2). With probability at least
(1− 2δ), StOP outputs a policy of value at least (v∗ − ε) after generating at most

∑
s∈Sε,∗

2p(s)m(`(s), δ`(s)) +B(s)

`(s)∑
d=d(s)+1

d∏
`=d(s)+1

K`

 (6)

samples, where d(s) = min{d(Π) : s appears in policy Π} is the depth of node s.

For the proof we need that Pε does indeed contain, with high probability, all the important policies.
The following lemma is essential for this.
Lemma 8. Assume that for each t ≥ 0, for each action available at x0, for each policy Π ∈
Activet(u), ν(Π) ≤ v(Π) ≤ b(Π). Then Πt ∈ Pε for every t ≥ 1 throughout the whole run of the
algorithm, except for maybe the last round.

Proof. Note that, whenever a policy is removed from the set of active policies, it is, actually, replaced
by its children policies. So, as Πu∗ ∈ Active(u∗) initially, in every subsequent step there will be
some Π ∈ Active(u∗) having a descendant policy of value v∗. Therefore, by the assumption of the
lemma and by Corollary 6, b(Π†t,u∗) ≥ v∗, and therefore

b(Π†t) ≥ b
(

Π†t,u∗
)
≥ v∗ (7)

Additionally, the selection rule of Πt implies

d(Πt) ≤ min
{
d(Π†t), d(Π†,†t )

}
(8)

For some u 6= u∗ this implies that, whenever Πt = Π†t,u and the termination criterion is not met,

v(Πt) + 3γ
d(Πt)

1−γ − ε ≥ ν(Πt) + 3γ
d(Πt)

1−γ − ε by the assumption

≥ b(Πt)− ε by the definition of b and ν

≥ max
u6=u†t

b(Π†t,u)− ε by the choice of Πt

> ν(Π†t) termination criterion is not met

≥ b(Π†t)− 3γ
d(Π
†
t )

1−γ by the definition of b and ν

≥ v∗ − 3γ
d(Π
†
t )

1−γ by (7)

≥ v∗ − 3γ
d(Πt)

1−γ by (8)

Consequently Πt ∈ Pε.

Similarly, when Πt = Π†t,u∗ then {u†t , u
††
t } = {u∗, u′} for some u′, and, if the termination criterion

is not met, then

max
u6=u∗

v(u) + 3γ
d(Πt)

1−γ ≥ max
u6=u∗

ν(Π†t,u) + 3γ
d(Πt)

1−γ by the assumption

≥ max
u 6=u∗

ν(Π†t,u) + 3γ
d(Π
†
t,u′

)

1−γ because of (8) and {u†t , u
††
t } = {u∗, u′}

≥ ν(Π†t,u′) + 3γ
d(Π
†
t,u′

)

1−γ because u′ 6= u∗

≥ b(Π†t,u′) by the definition of b and ν

= max
u 6=u∗

b(Π†t,u) because {u†t , u
††
t } = {u∗, u′}
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≥ max
u6=u†t

b(Π†t,u) by the choice of u†t

≥ ν(Π†t) + ε termination criterion is not met

≥ b(Π†t)− 3γ
d(Π
†
t,u)

1−γ + ε by the definition of b and ν

≥ b(Πt)− 3γ
d(Π
†
t,u)

1−γ + ε by the choice of Πt

≥ b(Πt)− 3γ
d(Πt)

1−γ + ε by (8)

≥ v(Πt)− 3γ
d(Πt)

1−γ + ε by the assumption

This, combined with (7), implies that Πt ∈ Pεu∗ .

Proof of Theorem 6. In the proof it is assumed that Πt ∈ Pε for every t throughout the algorithm,
except for maybe the last round. According to Lemma 8 and Corollary 6 this holds with probability
at least (1− δ0).

The assumption implies that all rollouts generated by StOP consist of nodes that belong to Sε. It also
implies that for any node s of Π∞, the depth of any policy Π that includes s and is evaluated by StOP
is bounded by `(s). The largest amount of samples required by such a policy is thus m(`(s), δ`(s)).
Therefore, according to the Bernstein bound (4), for any s ∈ Sε,∗, the number of sample trees
containing s is upper bounded by 2p(s)m(`(s), δ`(s)) with probability at least (1− δ0/(2N ε)), and
so this also upper bounds the number of samples that are generated for s.

It is now only left to upper bound the number of samples that are generated for nodes in (Sε \ Sε,∗).
For this, first partition these nodes by forming, for each s ∈ Sε,∗, a group consisting of all the nodes
having s as their lowest ancestor in Sε,∗. Note that the probability that a trajectory traverses through
this group is p◦(s), and therefore, according to the Bernstein bound, the number of trajectories that
traverses this group is upper bounded by B(s) with probability at least (1 − δ/(2N ε)). Indeed,
in case p◦(s)m(`(s), δ`(s)) ≥ (8/3) ln(2N ε/δ), the Bernstein bound (4) guarantees the bound
2p◦(s)m(`(s), δ`(s)) with confidence at least (1 − δ/(2N ε)), otherwise (5) provides the bound
p◦(s)m(`(s), δ`(s)) + 3 ln(2N ε/δ) ≤ 6 ln(2N ε/δ). In fact, when p◦(s) ≤ δ/(2N εm(`(s), δ`(s)))
then, according to the Bernoulli inequality, with probability at least (1−δ0/(2N ε)), no trajectory tra-
verses through the group. Finally note that a sample tree contains at most

∑`(s)
d=d(s)+1

∏d
`=d(s)+1K`

samples below node s.

E Worst case bound and special cases

Before we turn to the analysis of the special cases, we discuss shortly the second term in the sample
complexity bound (6).

Claim 9.
∑
s∈Sε,∗ B(s)

∑`(s)
d=d(s)+1

∏d
`=d(s)+1K` ≤ |Sε \ Sε,∗| · 6 · ln( 2N ε

δ0
) .

Proof. First of all, each s ∈ Sε,∗ has at least p◦(s) · (3/8) · m(d, δ`(s))/ ln(2N ε/δ0) chil-
dren s′ with p(s′) · m(d, δ`(s′)) < (8/3) ln(2N ε/δ0) (note that `(s) = `(s′)), there-

fore max
(

6 ln( 2N ε
δ0

), 2p◦(s)m(`(s), δ`(s))
)

is upper bounded by the number of these children
multiplied by 6 ln(2N ε/δ0). Note also that number of nodes in Sε below s′ is at least∑`(s)
d=d(s)+1

∏d
`=d(s)+1K`.

To sum up, B(s) accounts at most 6 ln 2N ε
δ0

for every s′ ∈ Sε \ Sε,∗ having s as its lowest ancestor
in Sε,∗.

Now recall that d∗ = d∗(ε, γ) =
⌈

ln((1−γ)ε/6)
ln γ

⌉
, and also that this implies

ε(1− γ) ≤ 6γd
∗−1 (9)
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Defining

κ1 := κ1(ε, δ0, γ) :=

( ∑
s∈Sε,∗

ε2(1−γ)2

ln(1/δ0) 2p(s)m(`(s), δ`(s))

)1/d∗

≤

(
ε2(1−γ)2

ln(1/δ0)

∑
s∈Sε,∗

p(s) · 1
γ2`(s) ln

d∗
∏`(s)
`=1(K`)

N`

δ0

)1/d∗

≤

 ε2(1−γ)2

γ2d∗

∑
s∈Sε,∗

p(s)

ln d∗ +

`(s)∑
`=1

N ` lnK`

1/d∗

≤

 6
γ2

∑
s∈Sε,∗

p(s)

ln d∗ +

`(s)∑
`=1

N ` lnK`

1/d∗

(by 9))

one obtains the bound∑
s∈Sε,∗

2p(s)m(`(s), δ`(s)) = ln(1/δ0)
(1−γ)2ε2

∑
s∈Sε,∗

ε2(1−γ)2

ln(1/δ0) 2p(s)m(`(s), δ`(s))

= ln(1/δ0)
ε2(1−γ)2 · κd

∗

1

= ln(1/δ0)
ε2(1−γ)2 · κ

ln((1−γ)ε)−ln 6
ln γ

1

= (ln 1
δ0

) · κ
ln 6

ln(1/γ)
1 ·

(
1

(1−γ)ε

)2+
lnκ1

ln(1/γ)

Similarly, defining

κ2 := κ2(ε, δ0, γ) :=

 ε2(1−γ)2

ln(1/δ0)

∑
s∈Sε,∗

B(s)

`(s)∑
d=d(s)

d∏
`=d(s)

K`

1/d∗

=
(
ε2(1−γ)2

ln(1/δ0) · |S
ε \ Sε,∗| · 6 · ln( 2|Sε,∗|

δ0
)
)1/d∗

(by Claim (9))

≤
(
ε2(1− γ)2 · |Sε \ Sε,∗| · 6 · ln(2|Sε,∗|)

)1/d∗
≤
(

6γ2d∗−2 · |Sε \ Sε,∗| · 6 · ln(2|Sε,∗|)
)1/d∗

(by (9))

one obtains the bound∑
s∈Sε,∗

B(s)

`(s)∑
d=d(s)

d∏
`=d(s)

K` = ln(1/δ0)
ε2(1−γ)2 · κ

ln((1−γ)ε)−ln 6
ln γ

2 = (ln 1
δ0

) · κ
ln 6

ln(1/γ)
2 ·

(
1

(1−γ)ε

)2+
lnκ1

ln(1/γ)

Finally, defining κ := lim supε→0 max(κ1, κ2), one obtains the following sample complexity
bound.

Theorem 10. Sample complexity (6) is upper bounded by (ln 1
δ0

) · C(κ, γ) ·
(

1
(1−γ)ε

)2+
lnκ

ln(1/γ) ,

where C(κ, γ) := 2κ
ln 6

ln(1/γ) .

E.1 Worst case

When K` = K > 1 for each ` > 0 then
∑
s∈Sε,∗ p(s) =

∑
s∈Sε p(s) ≤ Kd∗ , and so

κ1 ≤

(
6
(

ln d∗+Nd
∗
d∗ lnK

)
γ2

∑
s∈Sε,∗

p(s)

)1/d∗

≤
(

6
(

ln d∗+Nd
∗
d∗ lnK

)
Kd∗

γ2

)1/d∗

.
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Therefore, lim supε→0 κ1 ≤ KN . Similarly, noting that |Sε| ≤ (NK)d
∗
,

κ2 ≤
(
γ2d∗−2 · (NK)d

∗
· 6 · d∗ ln(NK)

)1/d∗

implying lim supε→0 κ2 ≤ γ2KN .

E.2 Case K0 > 1,K` = 1 for all ` ≥ 1

In this case ∑
s∈Sε,∗

p(s) ≤ d∗K, (10)

and so

κ1 ≤

(
6
γ2

∑
s∈Sε,∗

p(s) (ln d∗ +N lnK)

)1/d∗

=
(

6
γ2 (ln d∗ +N lnK) d∗K

)1/d∗

implying lim supε→0 κ1 ≤ 1.

To bound κ2 note that p◦(s) ≤ p(s) for all s and that
∑d∗

d=1

∏d∗

`=dK` = 1, which imply

κ2 ≤

(
ε2(1−γ)2

ln(1/δ0)

∑
s∈Sε

(
2p(s)m(`(s), δ`(s)) + 6 ln( 2N ε

δ0
)
))1/d∗

≤
(
κd
∗

1 + ε2(1−γ)2

ln(1/δ0) · |S
ε,∗| · 6 ln( 2N ε

δ0
)
)1/d∗

By (10) and the definition of Sε,∗, the restriction that K` = 1 for all ` > 1 imply

|Sε,∗| ≤ K · d∗ 3m(d∗,δd∗ )
8 ln(2N ε/δ0) ≤ K · d

∗ 3N ln(d∗K/δ0)
16γ2d∗ ln(1/δ0)

Therefore, recalling also (9),

κ2 ≤
(
κ1 + γ2d∗−2

ln(1/δ0)K · d
∗ 3N ln(d∗K/δ0)

16γ2d∗ ln(1/δ0)
6d∗ ln(KNδ0 )

)1/d∗

=
(
κ1 + (d∗)22NK

γ2

ln(d∗K/δ0) ln(KN/δ0)
ln2(1/δ0)

)1/d∗

Consequently, lim supε→1 κ2 ≤ 1 as well.

E.3 Bandit case

Again K0 > 1,K` = 1 for all ` ≥ 1, but it is also assumed that N = 1 and all the rewards in one
branch are the same (they can be different though in different branches). Then, directly from (6),

one easily deduces the bound O
((

ln d∗

δ0
)
)∑

u6=u∗

(
1

(1−γ)(v∗−v(u)+ε)

)−2
)

.

E.4 Deterministic MDPs

In case N = 1 and K` = K > 1 for ` ≥ 0, then κ1 ≤
(

6
γ2 ·Kd∗ · (ln d∗ + d∗ · lnK)

)1/d∗

, so
lim supε→0 κ1 ≤ K. Additionally, κ2 = 0, since in this case p(s) = 1 for each node s.

Assume now some structure in the rewards: for every action u on exactly one path in Π∞ the
rewards are 1; everywhere else they are 0. Then nodes with depth at least log(5)/ log(1/γ) bigger
than their lowest ancestor having nonzero reward do not appear in Sε. Therefore,

κ1 ≤

(
ε2(1−γ)2

ln(1/δ0) ·K ·
d∗∑
d=1

K log(5)/ log(1/γ)m(d, δd)

)1/d∗

≤
(

3
γ2 ln(1/δ0) · d

∗K1+log(5)/ log(1/γ) ln d∗Kd∗

δ0

)1/d∗

,

and so lim supε→0 κ1 = 1.
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F Efficient version of StOP

This section is devoted to fix all the time-efficiency issues in the previous version of the algorithm.
The primary task here is to find a way to solve both the policy evaluation and the construction of the
optimistic policies efficiently.

With some abuse of notation let Activet denote the set in round t consisting of policies Π for which
rollout τ(Π, Ti) has length d(Π) for 1 ≤ i ≤ m(d(Π), δd(Π)), and, at the same time, for some child
policy Π′ of Π some rollout τ(Π, Ti) for 1 ≤ i ≤ m(d(Π), δd(Π)) has length less than d(Π′).

F.1 Evaluating the children of Πt

The first problem to solve is to maintain the sample trees without actually going through all the
children policies of Πt.

To this end, define first md(s) as the number of times s appears in sample trees T1, T2, . . . , Tm(d,δd)

at the current round. Similarly, let r̂d(s) denote the average of the rewards for s in
T1, T2, . . . , Tm(d,δd) at the current round. These values are easily updated using a simple recursion
rule applied in algorithm Sample-eff.
Claim 11. Executing Sample-eff(Π, s,m) ensures that τ(Ti,Π) has length d(Π) (i.e., has full
length) for i = 1, 2, . . . ,m, and runs in time O(m · d(Π)).

As the next step, note that, if the first Kd children policies of Πt that StOP picks to evalu-
ate in round t (where d = d(Πt)) do not share any leaves, then BoundValue will not call
SampleTransition or SampleReward for any other children of Πt. The reason for this is
that the the first Kd trees include all the nodes that appear in any child policy of Πt.

The above argument shows that the evaluation of a policy Π in StOP-eff and in StOP are essen-
tially equivalent.

F.2 Constructing the optimistic policies

Note that, in round t, for any Π ∈ ∪t′≤tActive it holds that

v̂(Π) =
∑
s∈Π

γd(s) ·md(s) · r̂d(s) .

Additionally, as b(Π) = v̂(Π) + 2γ
d(Π)

1−γ , it holds for any two policies Π and Π′ of the same depth
that

b(Π) > b(Π′) ⇔ v̂(Π) > v̂(Π′) .

It is thus easy to compute the value of any active policy, and also to decide between two policies
which one is better. However, it is less obvious how to construct the optimistic policies efficiently.

Theorem 12. For any action u accessible from x0, and any round t, ValueTr(su) returns Π†t,u,
where su is the child of the root labeled u.

Proof. Let ad(s) = ad,t(s) be the indicator that, for some 1 ≤ i ≤ m(d, δd), sample tree Ti
has a leaf below s with d(s) = d at iteration t. Note that for action node s, ad(s) must be set
to 1 if md(s)(s) > 0 and md(s)+1(s′) = 0 for some child s′ of s, otherwise it must be set to
0. For node s of depth d(s) < d, at,d(s) can be computed based on the simple recursion rule
ad(s) := maxs′ child of s ad(s

′).

Equivalently, ad,t(s) indicates that, for some policy Π of depth d containing s, rollout τ(Ti,Π) has
length d (i.e., full length) for i = 1, . . . ,m(d, δd), but for some child policy Π′ of Π and for some
1 ≤ i ≤ m(d, δd) rollout τ(Π′, Ti) goes through s and has length at most d (instead of d + 1,
which would be the maximal possible). On one hand, the extra requirement about the rollout going
through s makes a distinction between ad,t(s) and the indicator that s belongs to some policy in
Activet, but, at the same time, this is the distinction that makes it easy to compute it efficiently with
the recursive rule described above. This is the key insight that is used in constructing the optimistic
policies efficiently too.
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Now, consider, for each node s the policies in∪t′≤tActivet′ with d(Π) = d, and denote by Πcomp
t,d (s)

the one that has the largest cumulated reward below s in the first m(d, δd) sample trees. Denote this
cumulated reward by v̂comp(s), and note that it can be computed recursively by

• setting it to r̂d(s) for each action node s with d(s) = d,

• setting it to maxs′ children of s v̂
comp
d (s′) for all action nodes with d(s) < d, and

• setting it to v̂compl
d (s) := γ

∑
s′: child of s(md(s

′) · v̂compl
d (s′)) for a transition node s with

d(s) ≤ d.

Finally, consider, for a node s, those policies in ∪t′≤tActivet′ which satisfy that

• d(Π) = d

• rollout τ(Ti,Π) has length d (i.e., full length) for i = 1, . . . ,m(d, δd),

• for some child policy Π′ of Π and for some 1 ≤ i ≤ m(d, δd) rollout τ(Π′, Ti) goes
through s and has length d too (instead of d+ 1).

Denote by Πinc
t,d (s) the one that has the largest cumulated reward below s in the firstm(d, δd) sample

trees, and by v̂inc
d this cumulated reward. This value can also be computed efficiently using recursion:

• v̂inc
d (s) := r̂d(s) for a transition node s with d(s) = d

• v̂inc
d (s) := maxs′ children of swith ad(s)=1 v̂

inc
d (s′) for a transition node s with d(s) < d, and

•

v̂inc
d (s) := γ max

s′: child of s with ad(s′)=1

(
md(s

′) · v̂inc
d (s′)+

∑
s′′ 6=s′ child of s

(md(s
′′) · v̂compl

d (s′′))
)

for an action node s with d(s) ≤ d

The claim of the theorem follows by noting that, for any child node s of the root, Πinc
t,d (s) = Π†t,u,

where u is the label of s.

In order to simplify the pseudocode, the construction of the optimistic policies are not implemented.
Nevertheless, they can be easily obtained along the same line values v̂comp

d (s) and v̂inc
d (s) are com-

puted.

Finally note that in step t only the values belonging to the nodes of policy Πt require update. Making
use of this, an even more significant speed-up is possible.
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Algorithm 4 StOP-eff(s0, δ0, ε, γ)

1: for all u available from x0 do . Initialize
2: Π := smallest policy with the child su of s0 labeled u
3: δ1 := (δ0/d

∗) · (K0)−1 . d(Π) = 1
4: Sample(Π, su,m(1, δ1))

5: t := 1
6: for round t = 1, 2, . . . do
7: for all u available at x0 do
8: ValueTr(su)

9: Π†t,u := argmaxΠ∈Active(u) b(Π)

10: Π†t := Π†
t,u†t

, where u†t := argmaxu b(Π
†
t,u) . optimistic policy and action

11: Π††t := Π†
t,u††t

, where u††t := argmaxu6=u†t
b(Π†t,u) . secondary policy and action

12: if ν(Π†t) + ε ≥ maxu6=u†t
b(Π†t,u) then . termination criterion

13: return u†t
14: if d(Π††t ) ≥ (Π†t) then . choose action and policy to explore
15: ut := u†t and Πt := Π†t
16: else
17: ut := u††t and Πt := Π††t
18: set dt := d(Πt)

19: δ := (δ0/d
∗) ·
∏dt−1
`=0 (K`)

−N` . the # of policies of depth at most d is
∏d−1
`=0 (K`)

N`

20: for each of the Kdt action u do
21: let Πt,u be the policy children of Π that follows action u from each leaf of Π
22: set adt(s) := 1 for each node s of Πt,u that are not in Πt

23: Sample (Πt,i, sut , m(dt + 1, δdt+1))

24: t := t+ 1

Algorithm 5 Sample-eff(Π, s,m)

1: if s is a leaf of Π then return
2: let s′ be the child node of s in Π
3: while md(Π)(s

′) < m . make sure that s has at least m samples do
4: md(Π)(s

′) := md(Π)(s
′) + 1

5: s′′ := SampleTransition(s′)

6: r̂d(Π)(s
′′) :=

r̂d(Π)(s
′′)·md(Π)(s

′′)+SampleReward(s′′)

1+md(Π)(s′′)

7: md(Π)(s
′′) := md(Π)(s

′′) + 1

8: for all grandchildren s′′ of s do . ensure that all rollouts going through s have full length in Π
9: Sample-eff(Π, s′′,md(Π)(s

′′))

Algorithm 6 ValueTr(s)

1: ad(s) = 0
2: for all children s′ of s with maxd=d(s′),...,d∗ md(s

′) > 0 do
3: ValueAc(s′)
4: for all d := d(s) + 1, . . . , d∗ with md(s) > 0 do
5: v̂compl

d (s) := γ
∑
s′: child of s(md(s

′) · v̂compl
d (s′))

6: ad(s) := maxs′ child of s ad(s
′)

7: v̂inc
d (s) := γmaxs′: child of s with ad(s′)=1

(
md(s

′) · v̂inc
d (s′)

8: +
∑
s′′ 6=s′ child of s(md(s

′′) · v̂compl
d (s′′))

)

18



Algorithm 7 ValueAc(s)

1: for all children s′ of s do
2: ValueTr(s′)

3: v̂comp
d(s) (s) := r̂d(s)(s)

4: if md(s)(s) > 0 but md(s)+1(s′) = 0 for some child s′ of s then
5: ad(s)(s) := 1

6: v̂inc
d(s)(s) := r̂d(s)(s)

7: for d := d(s) + 1, . . . , d∗ do
8: v̂comp

d (s) := maxs′ children of s v̂
comp
d (s′)

9: ad(s) := maxs′ children of s ad(s
′)

10: v̂inc
d (s) := maxs′ children of swith ad(s)=1 v̂

inc
d (s′)
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