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Abstract— Vehicle detection and classification is a very 
actual problem, because vehicle count and classification 
data are important inputs for traffic operation, pavement 
design, transportation planning and other applications. 
Magnetic detector based sensors provide many advantages 
compared to other technologies. In this work a new vehicle 
detection and classification method is presented using a 
single magnetic detector based system. Due to the relatively 
big number of false detections caused by vehicles with high 
metallic content passing in the neighboring lane, a technique 
for false detection filtering is also presented. Vehicle classes 
are determined using a feedforward neural network which 
is implemented in the microcontroller of the detector, 
together with the detection algorithm and the algorithm 
used for determining the neural network inputs. The 
gathering of training samples and testing of the trained 
neural network have been done in real environment. For the 
training of the neural network the back-propagation 
algorithm has been used with different training parameters. 

Keywords— vehicle detection, false detection filtering, vehicle 
classification, magnetic sensors, neural networks 

I. INTRODUCTION 
To provide speed monitoring, traffic counting, 

presence detection, headway measurement, vehicle 
classification, and weigh-in-motion data, the need for 
automatic traffic monitoring is increasing. This urges the 
manufacturers and researchers to develop new 
technologies and improve the existing ones. Vehicle 
count and classification data are important inputs for 
traffic operation, pavement design, and transportation 
planning. In traffic control, signal priority can be given to 
vehicles classified as bus or an emergency vehicle. 

In this work, a new detection and classification method 
for a single magnetic sensor based system is discussed, 
and a technique for filtering the false detections caused by 
vehicles passing in the neighboring lane is also presented. 

Magnetic sensors can measure the changes in the 
Earth’s magnetic field caused by the presence of metallic 
objects. Magnetic vehicle detectors use the changes 
generated by the metallic content of vehicles when they 
are near the sensor as written in Reference [1]. Two sensor 
nodes placed a few feet apart can estimate speed as 
described in Reference [2]. A vehicle’s magnetic 

‘signature’ can be processed for classification. 
Advantages and disadvantages of magnetic detectors 

are shown in Table 1. 

II. THE SINGLE MAGNETIC DETECTOR BASED 
INTELLIGENT SENSOR 

The used magnetic sensor is an HMC5843 based unit 
developed by “SELMA” Ltd. and “SELMA Electronic 
Corp” Ltd., companies from Subotica, Serbia. Two types 
of magnetic detectors have been developed, one with 
cable and one with wireless communication. 

For classification sample collection and for detection 
and classification efficiency testing, a unit with cable 
communication has been mounted in Subotica, on the 
main road passing through the town. All vehicles classes 
can be found passing on the mentioned road, so the place 
is ideal. The sensor has been mounted 5 centimeters 
beneath the pavement surface. The direction of the axis is 
very important, because the network inputs are calculated 
by axis, and if the positioning is changed, the waveforms 
will not be the same. The X axis points to the movement 
direction, the Y axis points to the neighboring lane, and Z 
is orthogonal with the pavement surface. 

The Honeywell HMC5843 is a small (4x4x1.3 mm) 
surface mount multi-chip module designed for low field 
magnetic sensing. The 3-axis magnetoresistive sensors 
feature precision in-axis sensitivity and linearity, solid-
state construction with very low cross-axis sensitivity 
designed to measure both direction and magnitude of 
Earth’s magnetic fields, from tens of micro-gauss to 6 
gauss. The highest sampling frequency is 50Hz. 

Wireless magnetic sensor networks offer an attractive, 
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TABLE I.  
ADVANTAGES AND DISADVANTAGES OF MAGNETIC SENSOR BASED 

VEHICLE DETECTORS 

Advantages Disadvantages 
 Insensitive to inclement 

weather such as snow, rain, 
and fog 

 Less susceptible than loops 
to stresses of traffic 

 Some models transmit data 
over wireless RF link 

 Some models can be 
installed above roads, no 
need for pavement cuts 

 Difficult to detect stopped 
vehicles 

 Installation requires 
pavement cut or tunneling 
under roadway 

 Decreases pavement life 
 Installation and maintenance 

require lane closure 
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low-cost alternative to inductive loops, video and radar 
for traffic surveillance on freeways, at intersections and 
in parking lots as written in Reference [3]. 

III. VEHICLE DETECTION ALGORITHM 
As written in References [4] and [5], magnetic 

detectors are capable of very high, above 97 percent 
detection accuracy with proper algorithms. In Reference 
[6] 97% of detection accuracy has been achieved using 
neural networks and fuzzy data fusion. Most of the 
algorithms use adaptive thresholds as used in Reference 
[7]. 

In Reference [4] the effect of temperature on HMC 
magnetic sensor measurements is described. The 
temperature on the pavement can change a lot in the 
course of a day, but the changes in the measured values 
are very slow. 

The developed vehicle detection algorithm uses 
thresholds which can change when no detection is 
available to avoid the effects of temperature changes.  
The principles of the algorithm: 
 A calibration process is run when the unit is turned on. 

Maximum and minimum values are determined in a 
period of time at all three axis (if even at one axis the 
difference between the maximum and minimum 
exceeds a previously defined width, the calibration 
starts from the beginning). After this stage, the range is 
equally stretched to the previously defined width, and 
the upper and lower thresholds are now determined at 
all three axis. This method makes the further algorithm 
immune to noise. 

 If the measures exceed the range determined by the 
thresholds at axis X and Z, detection is generated 
(detection flag is “1”). If only one axis exceeds the 
range, probably a vehicle is passing in the neighboring 
lane. 

 In case of detection, the detection flag goes back to 
“0” if measures in all three axis are between thresholds 
for a previously defined number of measures. 

 If measures at all three axis are in the range 
determined by the thresholds, and no detection is 
available, the algorithm calculates new thresholds. 
The axis along the direction of travel can be used to 

determine the direction of the vehicle, what is shown in 
Reference [8]. When there is no car present, the sensor 
will output the background earth’s magnetic field as its 
initial value. As the car approaches, the earth’s magnetic 
field lines of flux will be drawn toward the ferrous 
vehicle. 

A. Efficiency 
For testing the efficiency of the algorithm a one hour 

test has been done. The results have been divided by 
vehicle classes, and are shown in Table 2. As seen, the 
algorithm is effective, only motorcycles can cause 
failures. The reason of failures in motorcycle detection 
can be the low metallic content, and the distance from the 
detector.  

As the results show, the number of false detections is 
high. This is caused by vehicles passing in the 
neighboring lane with high metallic content, usually 
trucks or buses. Filtering a part of these detections could 
be done by increasing the width of the detection ranges, 
but this can affect the motorcycle detection efficiency, and 

the classification algorithm could lose important parts of 
the waveforms. 

IV. SAMPLE COLLECTION 
For neural network training and false detection filtering 

samples have been collected using the mounted sensor. 
The measurement values and a detection number, which 
has been incremented at every rising edge of the detection 
flag, have been saved into a database. 

To declare the classes (neural network targets) of the 
passing vehicles, and to separate the good and false 
detections, we used the images made by a camera 
mounted beside the road. The images have been saved at 
every falling edge of the detection flag, and have been 
named using the detection number. 

Altogether measures of 11021 passing vehicles had 
been collected. 

V. FALSE DETECTION FILTERING 
The gathered samples had been divided into 3 groups 

using the images: good detections (10218 samples), false 
detections (345 samples), and vehicles passing between 
the two lanes (458 samples), which are also false 
detections. 

The basic idea of the filtering algorithm was to generate 
different rules, and to find optimal parameter values with 
which false detections can be determined. 18 rule types 
have been declared, and the optimization has been done 
for all types using specific parameters calculated of every 
sample.  

The optimizations have been done using genetic 
algorithms. Every optimization has been done in 3000 
generations with a population size of 50. The fitness 
functions determined the rate of misses at all samples. If 
the result of the rule is “true”, the detection is false. 

The used rules are shown in Table 3, where X, Y and Z 
are measurement values in the samples, Ylth is the 
number of measures where Y was continuously not 
between thresholds before the detection was declared, 
and YX, YZ, XY, Xd, Yd, Zd and YL are the optimized 
parameters. In types where X/Z has been used, the fitness 
function chooses between “<” and “>” using a further 
parameter. The rules which consist j, have j number of 
same parts with “or” between them, so if one part gives 
as result “true”, the output of the whole rule is “true”. 
This way the functions were able to filter out more 
groups of samples which have similar values. 
Optimization has been done at every type with 
j={1,2,…,10}. 

TABLE II.  
EFFICIENCY OF THE DETECTION ALGORITHM DURING A ONE HOUR TEST 

Vehicle class Passed Detected Rate 
Motorcycle 4 3 75% 

Car 168 168 100% 
Van 10 10 100% 

Truck 15 15 100% 
Bus 6 6 100% 

Other 2 2 100% 
False detections caused 

by vehicles passing in the 
neighboring lane 

 13  

Σ 205 217 94,15% 
 



X, Y and Z values are the distances between the 
measurement values at a specific point and the ranges 
specified by the thresholds.  

To try to declare false detections immediately, at the 
start of the detection, the optimizations have been done 
with X, Y and Z values calculated of the measurement 
values in the moment when X and Z first exceeded their 
ranges. The results showed that with this method almost 
none of the false detections can be filtered without 
declaring good detections as false. This is because the X 
and Z axis exceed their ranges too quickly to see bigger 
differences in Y. Range widths could be increased, but 
this would result information loss at the classification 
algorithm. 

As the false detections can not be declared immediately, 
the optimizations have been done with the highest X, Y 
and Z values during the entire detection. The results are 
shown on Fig.1. It can be seen, that the results are very 

similar, but the optimizations could not reach any usable 
parameters at types 13 and 14, where the optimized values 
were very small, and gave bad results for all good 
detections.  

The best results at all cases had been reached with type 
10, which achieved recognition rates of 95.9% all 
detections, 98.85% at good,  75.94% at false and 44.98% 
at detections where the vehicle passed between the two 
lanes, which were also declared as false. This means that 
58.28% of false detections have been filtered. 

The loss of around 1% of good detections could be the 
result of cases when a vehicle was passing in the 
neigboring lane with high metallic content beside the 
vehicle which should be detected. 

The results showed that types which were tested with 
different j values did not differ greatly with the added 
futher parts, only small improvements could be noticed 
when j was bigger then 1. 

 
Figure 1. Hit rates of false detection filtering after optimization of parameters for different rule types
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TABLE III.  
ADVANTAGES AND DISADVANTAGES OF MAGNETIC SENSOR BASED VEHICLE DETECTORS 

Number Rule 
1 (൫Y X⁄ >YX(j)൯	and	൫Y Z⁄ >YZ(j)൯	and	(X/Z<>XZ(j))j 
2 (൫Y X⁄ > YX(j)൯	and	൫Y Z⁄ > YZ(j)൯	and	(X/Z <> XZ(j)	and	(Ylth > YL(j)))୨ 
3 (൫Y X⁄ >YX(j)൯	and	൫Y Z⁄ >YZ(j)൯	)j 
4 (൫Y X⁄ >YX(j)൯	and	൫Y Z⁄ >YZ(j)൯	and	(Ylth>YL(j)))j 
5 (Y X⁄ >YXb)	or	(Y Z⁄ >YZb)	or	(Ylth>YLb) 
6 (Y X⁄ >YXb)	or	(Y Z⁄ >YZb)	or	(Ylth>YLb)	or	(൫Y X⁄ >YX(j)൯	and	൫Y Z⁄ >YZ(j)൯	and	(X/Z<>XZ(j))j 
7 (Y X⁄ >YXb)	or	(Y Z⁄ >YZb)	or	(Ylth>YLb)	or	(൫Y X⁄ >YX(j)൯	and	൫Y Z⁄ >YZ(j)൯	and	(X/Z<>XZ(j)	and	(Ylth>YL(j)))j 
8 (Y X⁄ >YXb)	or	(Y Z⁄ >YZb)	or	(Ylth>YLb)	or	(൫Y X⁄ >YX(j)൯	and	൫Y Z⁄ >YZ(j)൯	)j 
9 (Y X⁄ >YXb)	or	(Y Z⁄ >YZb)	or	(Ylth>YLb)	or	(൫Y X⁄ >YX(j)൯	and	൫Y Z⁄ >YZ(j)൯	and	(Ylth>YL(j)))j 

10 (൫X<Xd(j)൯	and	൫Y>Yd(j)൯	and	(Z<Zd(j))j 
11 (൫X<Xd(j)൯	and	൫Y>Yd(j)൯	and	(Z<Zd(j)	and	(Ylth>YL(j)))j 
12 (Y>Ydb)	or	(Ylth>YLb) 
13 (Y>Ydb)	or	(Ylth>YLb)	or	(൫X<Xd(j)൯	and	൫Y>Yd(j)൯	and	(Z<Zd(j))j 
14 (Y>Ydb)	or	(Ylth>YLb)	or	(൫X<Xd(j)൯	and	൫Y>Yd(j)൯	and	(Z<Zd(j)	and	(Ylth>YL(j)))j 
15 (൫Y X⁄ >YX(j)൯	and	൫Y Z⁄ >YZ(j)൯		and	൫Y>Yd(j)൯)j 
16 (൫Y X⁄ >YX(j)൯	and	൫Y Z⁄ >YZ(j)൯		and	൫Y>Yd(j)൯	and	(Ylth>YL(j)))j 
17 (Y X⁄ >YXb)	or	(Y Z⁄ >YZb)	or	(Y>Ydb)	or	(Ylth>YLb)	or	(൫Y X⁄ >YX(j)൯	and	൫Y Z⁄ >YZ(j)൯		and	൫Y>Yd(j)൯)j 
18 (Y X⁄ >YXb)	or	(Y Z⁄ >YZb)	or	(Y>Ydb)	or	(Ylth>YLb)	or	(൫Y X⁄ >YX(j)൯	and	൫Y Z⁄ >YZ(j)൯		and	൫Y>Yd(j)൯	and	(Ylth>YL(j)))j 

 



VI. CLASSIFICATION ALGORITHM 
The basic idea was to collect the measurement values 

when the detection flag is “1”, and calculate specific 
parameters from the magnetic signature, which can be 
applied to the inputs of the neural network. 

A. Other classification algorithms 
Classification stations with highly calibrated inductive 

loops are very popular. However, the infrastructure and 
maintenance costs of such a vehicle classification station 
are high. 

In Reference [9] an artificial neural network based 
method was developed to estimate classified vehicle 
volumes directly from single-loop measurements. They 
used a simple three-layer neural network with back-
propagation structure, which produced reliable estimates 
of classified vehicle volumes under various traffic 
conditions. In this study four classes (by ranges of length) 
were defined, and all classes had an own ANN. All 
networks had 19 nodes in the input layer, 1 node for the 
time stamp input and 9 pairs of nodes for inputting 
single-loop measurements (volume and lane occupancy). 
All networks had one output node (each was one class 
bin), but the number of hidden neurons differed for each 
class (35 for class1, 8 for class2, 5 for class3 and 21 for 
class4). 

Sun, in Reference [10] studied the use of existing 
infrastructure of loop detectors for vehicle classification 
with two distinct methods. The seven-class scheme was 
used for the first method because it targets vehicle classes 
that are not differentiable with current techniques based 
on axle counting. Its first method uses a heuristic 
discriminant algorithm for classification and multi-
objective optimization for training the heuristic 
algorithm. Feature vectors obtained by processing 
inductive signatures are used as inputs into the 
classification algorithm. Three different heuristic 
algorithms were developed and an overall classification 
rate of 90% was achieved. Its second method uses Self-
Organizing Feature Maps (SOFM) with the inductive 
signature as input. An overall classification rate of 80% 
was achieved with the four-class scheme. 

In the last few years a big number of studies have been 
made with classification algorithms using magnetic 
sensors. 

The rate of change of consecutive samples was 
compared with a threshold in Reference [11] and declared 
to be +1 (–1) if it is positive and larger than (negative 
with magnitude larger than) the threshold, or 0 if the 
magnitude of the rate is smaller than the threshold. The 
second piece of information was the magnetic length of 
the vehicle. 82% efficiency was achieved, with vehicles 
classified into five classes.  

Reference [12] achieved a vehicle detection rate better 
than 99 percent (100 percent for vehicles other than 
motorcycles), estimates of average vehicle length and 
speed better than 90 percent, and correct classification 
into six types with around 60 percent, when length was 
not used as a feature.  

In Reference [13], with x and z dimension data and 
without vehicle length information, a single magnetic 
sensor system, with a Multi-Layer Perceptron Neural 

Network, 93.5 percent classification efficiency was 
achieved, but vehicles were only separated into two 
classes. In a double sensor system 10 classes were 
selected for development, and 73.6 percent was achieved 
with length estimation and a methodology using K-means 
Clustering and Discriminant Analysis. 

B. The used neural network and the input parameters 
A three-layer feedforward neural network has been 

used for vehicle class estimation. The neurons in the 
hidden layer have logarithmic sigmoid transfer functions, 
while the output layer neurons use saturating linear 
functions. The structure of the used neural network can be 
seen on Fig.2. Bias values have not been used in the 
network because the network has to be implementable in a 
neural network, and the bias values would need big 
memory space. 

The networks have been trained using the 
backpropagation algorithm. During the training, weights 
have been modified after every sample. Using this 
network the error of the output layer output can be 
calculated with the next formula (1): 

δ஑ = Target஑ − out஑   (1) 
where ߜఈ is the error of ߙ output neuron, ܶܽݐ݁݃ݎఈ is the 
target value, and ݐݑ݋ఈ is the current output of the neuron. 
The output neuron weights have to be modified the next 
way (2): 

W୅஑
ା = W୅஑ + η ∗ δ஑ ∗ out୅      (2) 

where ஺ܹఈ
ା  is the modified weight between ܣ hidden and 

  .is the learning rate ߟ output neuron, and ߙ
The error of the hidden layer neurons can be calculated 
using the errors of the output neurons, the weights 
between the hidden neuron and each output neuron, and 
the output of the hidden neuron (3): 

δ୅ = out୅ ∗ (1 − out୅) ∗ (δ஑ ∗ W୅஑ + δஒ ∗ W୅ஒ) (3) 
The modifications of the weights between the input and 
the hidden layer can be done with the next formula (4): 

W஛୅
ା = W஛୅ + η ∗ δ୅ ∗ in஛   (4)   

where ݅ ఒ݊  is the input of the ߣ input neuron.  
Network training has been done with different number 

of neurons in the hidden layer, and different learning rates. 
The network has 6 outputs, because 6 vehicle classes 

had been defined to be classified: motorcycles, cars, vans, 
trucks, buses and other. The class with the biggest output 
will be declared as the class of the passed vehicle. 

 

 
Figure 2. The structure of the used neural network 



The input layer consists 16 neurons. These are 
parameters calculated of the waveforms at each axis. The 
network inputs are the next: 
 1 input – Detection length (number of measures 

made while the detection flag is “1”) 
 6 inputs - The biggest differences between measured 

values and thresholds at each axis (the difference 
between the highest measured value and the upper 
threshold (5), and the difference between the lower 
threshold and the smallest measured value (6) ) 

X୳୮୮ୣ୰_ୢ୧୤୤ = X୦୧୥୦ୣୱ୲_୴ୟ୪ − X୳୮୮ୣ୰_୲୦୰  (5) 
X୪୭୵ୣ୰_ୢ୧୤୤ = X୪୭୵ୣ୰_୲୦୰ − X୪୭୵ୣୱ୲_୴ୟ୪  (6) 

 6 inputs – Number of local maximums (if the 
measured values are above the upper threshold), and 
local minimums (if the values are under the lower 
threshold) at each axis. 
 Range changes at each axis. The thresholds define 

three ranges, one above the upper threshold, one 
under the lower, and one between them. 

C. Neural network training 
Measurement data for 130 samples per class have been 

collected for network training. 
The network training has been done in three series 

depending on the learning rates of the layers. The used 
rates were the next: 

 0.11 at the output and 0.1 at the hidden layer 
 0.08 at the output and 0.06 at the hidden layer 
 0.05 at the output and 0.04 at the hidden layer 

Every learning rate pair has been tested with 1 to 25 
hidden layer neurons. Every of the 75 trainings has been 
done in 1000 epochs. 

Of 130 samples per class, 90 have been used for 
training, and 40 for validation. 

During the training process the matching rates and the 
mean squared errors at training and validation samples 
have been calculated after every sample in the epoch. The 
highest matching rates and the smallest mean squared 
errors have been saved. When finding a better value of 
each parameter, all current values of other performance 
parameters have also been saved together with a matrix 
containing the current places of the misses. The current 
number of the iteration and the sample number have also 
been recorded to see are more iterations needed. 

The highest matching rates with all learning rate pares 
depending on the number of hidden layer neurons can be 
viewed on Fig.3. The efficiency of the network both on 
training and validation samples has improved when 
learning rates have been reduced. The highest matching 
rate on training samples, 88.44%, has been recorded with 
18 hidden layer neurons. The highest efficiency on 
validation samples was 70.83%. The rate at training 
samples can be improved by increasing the number of 
iterations, because at most cases the biggest value was 
achieved near to the end of the training process. But this is 
not true for the validation samples, where in most of the 
cases the maximums were recorded around 300 epochs. 

On Fig.4 the smallest mean squared errors are shown 
found during the trainings. As seen, the smallest values 
were achieved also with the smallest learning rate pair. 
The values similarly as at matching rates, could have been 
improved at training samples by using a longer training 

process, but the smallest values at validation samples were 
also recorded around 300 iterations. 

The number of misses by classes in the case when the 
highest matching rate at training samples has been found 
are shown in Table 5 for training samples and Table 4 for 
validation samples. The places with most misses are very 
similar. The most misses are were made between classes 
2, 3 and 4. A possible reason can be that cars, vans and 
smaller trucks are almost the same length, the number of 
axles is also the same, and the distance between them is 
also similar. 

D. Neural network implementation and testing 
During the implementation a very important factor 

was not to stop the measuring for the time of the network 
output calculating. The network input calculation and 
updating has been done after every measurement when the 
detection flag was “1”. 

After a falling edge on the detection flag, the network 
outputs are calculated, and the vehicle class is determined. 
This process is done until the next measurement is made, 
so the class is determined in 20ms, what is a measurement 
cycle. 

 
Figure 3. Highest matching rates achieved at training and 
validation samples with different number of hidden layer 

neurons and different learning rates. 

 
Figure 4. Smallest mean squared errors achieved at 

training and validation samples with different number of 
hidden layer neurons and different learning rates. 
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For testing, the weights of the 18 hidden neuron 

network has been implemented which achieved the 
highest matching rate on training samples. This network 
had 64.17% efficiency on validation data, the mean 
squared error of the training samples was 0.041736, and 
0.096034 of the validation samples. 

The network was tested for 300 detections, and the 
results are shown in Table 6. As seen, the recognition rates 
are very similar to the values calculated on validation 
samples during training (Table 4). The testing was not 
ideal, because some classes had very small number of 
vehicles passing in this testing interval. During this test 
period the false detection filtering has not been used. 

VII. CONCLUSION 
In this work a detection and neural network based 

vehicle classification method was presented. The number 
of false detections was pretty big, so a filtering algorithm 
has been also developed. The filtering algorithm can 
exclude almost 60 percent of false detections. 

Neural network training has been done with different 
number of hidden layer neurons, and different learning 
rates. Training results showed that the recognition rates 
are not usable in real-life applications, but the results are 
perspective. For better recognition rates, changes are 
needed. Increasing the number of training samples, 
dividing the vehicles into more classes, or dividing them 
by length and axle number could all lead to better results. 
Probably the most efficient modification could be to 
include the changes of waveforms in time.  
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TABLE VI.  
TEST RESULTS OF THE IMPLEMENTED NEURAL NETWORK 

 1. 2. 3. 4. 5. 6. Σ Recognition 
rate 

1. 2 0 0 0 0 0 2 100% 
2. 18 99 48 55 5 4 229 43,23% 
3. 0 1 6 5 0 0 12 50% 
4. 0 4 1 13 2 0 20 65% 
5. 0 1 0 2 3 1 7 42,86% 
6. 0 0 0 0 0 0 0 0% 

False 
Detection 11 1 1 6 0 11 30  

Σ 31 106 56 81 10 16 300  
 

TABLE IV.  
PLACES AND NUMBER OF MISSES AT VALIDATION SAMPLES 

Output 
\ 

Target 
1. 2. 3. 4. 5. 6. Rate 

1. 0 1 1 0 0 3 87,5% 
2. 1 0 9 9 0 0 52,5% 
3. 0 11 0 10 1 1 42,5% 
4. 3 7 5 0 9 1 37,5% 
5. 0 4 2 6 0 0 70% 
6. 2 0 0 0 0 0 95% 

 

TABLE V.  
PLACES AND NUMBER OF MISSES AT TRAINING SAMPLES 

Output 
\ 

Target 
1. 2. 3. 4. 5. 6. Rate 

1. 0 1 1 0 0 0 97,33% 
2. 1 0 9 7 0 0 77,33% 
3. 1 7 0 6 1 0 80% 
4. 2 4 4 0 4 1 80% 
5. 0 2 1 0 0 0 96% 
6. 0 0 0 0 0 0 100% 

 




