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Abstract—Vehicle detection and classification is a very 
actual problem, because vehicle count and classification 
data are important inputs for traffic operation, pavement 
design, transportation planning and other applications. In 
this work the results of a new detection and classification 
method using a single magnetic sensor based system are 
presented. Vehicle classes are determined using a 
feedforward neural network which is implemented in the 
microcontroller of the detector, together with the detection 
algorithm and the algorithm used for determining the 
neural network inputs. The gathering of training samples 
and testing of the trained neural network have been done in 
real environment. For the training of the neural network the 
back-propagation algorithm has been used with different 
training parameters. 
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I. INTRODUCTION 
The need for automatic traffic monitoring is 

increasing, which urges the manufacturers and 
researchers to develop new technologies and improve the 
existing ones, to provide speed monitoring, traffic 
counting, presence detection, headway measurement, 
vehicle classification, and weigh-in-motion data. 

Vehicle count and classification data are important 
inputs for traffic operation, pavement design, and 
transportation planning. In traffic control, signal priority 
can be given to vehicles classified as bus or an 
emergency vehicle. 

In this work, a new detection and classification method 
for a single magnetic sensor based system is discussed. 

Magnetic sensors measure the change in the Earth’s 
magnetic field caused by the presence of metallic objects. 
Magnetic vehicle detectors use the changes generated by 
the metallic content of vehicles when they are near the 
sensor as written in Reference [1]. Two sensor nodes 
placed a few feet apart can estimate speed as described in 
Reference [2]. A vehicle’s magnetic ‘signature’ can be 
processed for classification. 

Advantages and disadvantages of magnetic detectors 
are shown in Table 1. 

 
 

II. THE USED SENSOR 
The used magnetic sensor is an HMC5843 based unit 

developed by “SELMA” Ltd. and “SELMA Electronic 
Corp” Ltd., companies from Subotica, Serbia. Two types 
of magnetic detectors have been developed, one with 
cable and one with wireless communication. 

For classification sample collection and detection and 
classification efficiency testing, a unit with cable 
communication has been mounted in Subotica, on the 
main road passing through the town. The place is ideal, 
because all vehicles classes can be found passing on that 
road. The sensor has been mounted 5 centimeters beneath 
the pavement surface. The direction of the axis is very 
important, because the network inputs are calculated by 
axis, and if changed, the waveforms will not be the same. 
The X axis points to the movement direction, the Y axis 
points to the neighboring lane, and Z is orthogonal with 
the pavement surface. 

The Honeywell HMC5843 is a small (4x4x1.3 mm) 
surface mount multi-chip module designed for low field 
magnetic sensing. The 3-Axis Magnetoresistive Sensors 
feature precision in-axis sensitivity and linearity, solid-
state construction with very low cross-axis sensitivity 
designed to measure both direction and magnitude of 
Earth’s magnetic fields, from tens of micro-gauss to 6 
gauss. The highest sampling frequency is 50Hz. 

Wireless magnetic sensor networks offer an attractive, 
low-cost alternative to inductive loops, video and radar 
for traffic surveillance on freeways, at intersections and 
in parking lots as written in Reference [3]. 

 

TABLE I. 
ADVANTAGES AND DISADVANTAGES OF MAGNETIC SENSOR BASED 

VEHICLE DETECTORS 

Advantages Disadvantages 
 Insensitive to inclement 

weather such as snow, rain, 
and fog 

 Less susceptible than loops 
to stresses of traffic 

 Some models transmit data 
over wireless RF link 

 Some models can be 
installed above roads, no 
need for pavement cuts 

 Difficult to detect stopped 
vehicles 

 Installation requires 
pavement cut or tunneling 
under roadway 

 Decreases pavement life 
 Installation and maintenance 

require lane closure 

 

mailto:sarcevic@inf.u-szeged.hu,
mailto:pszilvi@vts.su.ac.rs
Administrator
Typewritten Text
2nd Regional Conference - Mechatronics in Practice and Education (MECHEDU 2013), Subotica, Serbia, December 5-6(ISBN:978-86-7892-565-8) 



III. VEHICLE DETECTION ALGORITHM 
As written in References [4] and [5], magnetic 

detectors are capable of very high, above 97 percent 
detection accuracy with proper algorithms. In Reference 
[6] 97% of detection accuracy has been achieved using 
neural networks and fuzzy data fusion. Most of the 
algorithms use adaptive thresholds as used in Reference 
[7]. 

In Reference [4] it is described that HMC magnetic 
sensor measurements are affected by temperature. As the 
temperature on the pavement can change a lot in the 
course of a day, but the changes in the measured values 
are very slow. 

The developed vehicle detection algorithm uses 
thresholds which can change when no detection is 
available to avoid the effects of temperature changes.  
The principles of the algorithm: 
 A calibration process is run when the unit is turned on. 

Maximum and minimum values are determined in a 
period of time at all three axis (if even at one axis the 
difference between the maximum and minimum 
exceeds a previously defined width, the calibration 
starts from the beginning). After this stage, the range is 
equally stretched to the previously defined width, and 
the upper and lower thresholds are now determined at 
all three axis. This method makes the further algorithm 
immune to noise. 

 If the measures at all three axis exceed the range 
determined by the thresholds, a detection is generated 
(detection flag is “1”). If only one or two axis exceed 
the range, probably a vehicle is passing in the 
neighboring lane. 

 In case of a detection, the detection flag goes back to 
“0” if measures in all three axis are between thresholds 
for a previously defined number of measures. 

 If all three axis are in the range determined by the 
thresholds, and no detection is available, the algorithm 
calculates new thresholds. 
The axis along the direction of travel can be used to 

determine the direction of the vehicle, what is shown in 
Reference [8]. When there is no car present, the sensor 
will output the background earth’s magnetic field as its 
initial value. As the car approaches, the earth’s magnetic 
field lines of flux will be drawn toward the ferrous 
vehicle. 

A. Efficiency 
For testing the efficiency of the algorithm a one hour 

test has been done. The results have been divided by 
vehicle classes, and are shown in Table 2. As seen, the 
algorithm is effective, only motorcycles can cause 
failures. The reason of failures in motorcycle detection 
can be the low metallic content, and the distance from the 
detector. Vehicles passing in the neighboring lane with 
high metallic content, usually trucks, can cause false 
detections. The filtering of these vehicles can be done by 
increasing the width of the detection ranges, but this can 
affect the motorcycle detection efficiency.  

 
 

IV. CLASSIFICATION ALGORITHM 
The basic idea was to collect the measurement values 

when the detection flag is “1”, and calculate specific 
parameters from the magnetic signature, which can be 
applied to the inputs of the neural network. 

A. Other classification algorithms 
Classification stations with highly calibrated inductive 

loops are very popular. However, the infrastructure and 
maintenance costs of such a vehicle classification station 
are high. 

In Reference [9] an artificial neural network based 
method was developed to estimate classified vehicle 
volumes directly from single-loop measurements. They 
used a simple three-layer neural network with back-
propagation structure, which produced reliable estimates 
of classified vehicle volumes under various traffic 
conditions. In this study four classes (by ranges of length) 
were defined, and all classes had an own ANN. All 
networks had 19 nodes in the input layer, 1 node for the 
time stamp input and 9 pairs of nodes for inputting 
single-loop measurements (volume and lane occupancy). 
All networks had one output node (each was one class 
bin), but the number of hidden neurons differed for each 
class (35 for class1, 8 for class2, 5 for class3 and 21 for 
class4). 

Sun, in Reference [10] studied the use of existing 
infrastructure of loop detectors for vehicle classification 
with two distinct methods. The seven-class scheme was 
used for the first method because it targets vehicle classes 
that are not differentiable with current techniques based 
on axle counting. Its first method uses a heuristic 
discriminant algorithm for classification and multi-
objective optimization for training the heuristic 
algorithm. Feature vectors obtained by processing 
inductive signatures are used as inputs into the 
classification algorithm. Three different heuristic 
algorithms were developed and an overall classification 
rate of 90% was achieved. Its second method uses Self-
Organizing Feature Maps (SOFM) with the inductive 
signature as input. An overall classification rate of 80% 
was achieved with the four-class scheme. 

In the last few years a big number of studies have been 
made with classification algorithms using magnetic 
sensors. 

The rate of change of consecutive samples was 
compared with a threshold in Reference [11] and declared 
to be +1 (–1) if it is positive and larger than (negative 

TABLE II. 
EFFICIENCY OF THE DETECTION ALGORITHM DURING A ONE HOUR 

TEST 

Vehicle class Passed Detected Rate 
Motorcycle 4 3 75% 

Car 168 168 100% 
Van 10 10 100% 

Truck 15 15 100% 
Bus 6 6 100% 

Other 2 2 100% 
False detections caused 

by vehicles passing in the 
neighboring lane 

 13  

Σ 205 217 94,15% 
 



with magnitude larger than) the threshold, or 0 if the 
magnitude of the rate is smaller than the threshold. The 
second piece of information was the magnetic length of 
the vehicle. 82% efficiency was achieved, with vehicles 
classified into five classes.  

Reference [12] achieved a vehicle detection rate better 
than 99 percent (100 percent for vehicles other than 
motorcycles), estimates of average vehicle length and 
speed better than 90 percent, and correct classification 
into six types with around 60 percent, when length was 
not used as a feature.  

In Reference [13], with x and z dimension data and 
without vehicle length information, a single magnetic 
sensor system, with a Multi-Layer Perceptron Neural 
Network, 93.5 percent classification efficiency was 
achieved, but vehicles were only separated into two 
classes. In a double sensor system 10 classes were 
selected for development, and 73.6 percent was achieved 
with length estimation and a methodology using K-means 
Clustering and Discriminant Analysis. 

B. The used neural network and the input parameters 
A three-layer feedforward neural network has been 

used for vehicle class estimation. The neurons in the 
hidden layer have logarithmic sigmoid transfer functions, 
while the output layer neurons use saturating linear 
functions. The structure of the used neural network can be 
seen on Figure 1. Bias values have not been used in the 
network because the network has to be implementable in a 
neural network, and the bias values would need big 
memory space. 

The networks have been trained using the 
backpropagation algorithm. During the training, weights 
have been modified after every sample. Using this 
network the error of the output layer output can be 
calculated with the next formula: 

훿 = 푇푎푟푔푒푡 − 표푢푡    (1) 
where 훿  is the error of 훼 output neuron, 푇푎푟푔푒푡  is the 
target value, and 표푢푡  is the current output of the neuron. 
The output neuron weights have to be modified the next 
way: 

푊 = 푊 + 휂 ∗ 훿 ∗ 표푢푡       (2) 
where 푊  is the modified weight between 퐴 hidden and 
훼 output neuron, and 휂 is the learning rate. 

 
Figure 1. The structure of the used neural network 

The error of the hidden layer neurons can be calculated 
using the errors of the output neurons, the weights 
between the hidden neuron and each output neuron, and 
the output of the hidden neuron: 

훿 = 표푢푡 ∗ (1 − 표푢푡 ) ∗ (훿 ∗푊 + 훿 ∗ 푊 )   (3) 
The modifications of the weights between the input and 
the hidden layer can be done with the next formula: 

푊 = 푊 + 휂 ∗ 훿 ∗ 푖푛    (4)   
where 푖푛  is the input of the 휆 input neuron.  

Network training has been done with different number 
of neurons in the hidden layer, and different learning rates. 

The network has 6 outputs, because 6 vehicle classes 
had been defined to be classified: motorcycles, cars, vans, 
trucks, buses and other. The class with the biggest output 
will be declared as the class of the passed vehicle. 

The input layer consists 16 neurons. These are 
parameters calculated of the waveforms at each axis. The 
network inputs are the next: 

 1 input – Detection length (number of measures 
made while the detection flag is “1”) 

 6 inputs - The biggest differences between measured 
values and thresholds at each axis (the difference 
between the highest measured value and the upper 
threshold (5), and the difference between the lower 
threshold and the smallest measured value (6) ) 

푋 _ = 푋 _ − 푋 _   (5) 
푋 _ = 푋 _ −푋 _   (6) 

 6 inputs – Number of local maximums (if the 
measured values are above the upper threshold), and 
local minimums (if the values are under the lower 
threshold) at each axis. 

 Range changes at each axis. The thresholds define 
three ranges, one above the upper threshold, one 
under the lower, and one between them. 

C. Sample collection 
Measurement data for 130 samples per class have been 

collected for network training. The measurement values 
and a detection number, which has been incremented at 
every rising edge of the detection flag, have been saved 
into a database. 

The classes (network targets) of the samples have been 
defined using images made by a camera mounted beside 
the road. The images have been saved at every falling 
edge of the detection flag, and have been named using the 
detection number. 

D. Neural network training 
The network training has been done in three series 

depending on the learning rates of the layers. The used 
rates were the next: 

 0.11 at the output and 0.1 at the hidden layer 
 0.08 at the output and 0.06 at the hidden layer 
 0.05 at the output and 0.04 at the hidden layer 

Every learning rate pair has been tested with 1 to 25 
hidden layer neurons. Every of the 75 trainings has been 
done in 1000 epochs. 

Of 130 samples per class, 90 have been used for 
training, and 40 for validation. 



During the training process the matching rates and the 
mean squared errors at training and validation samples 
have been calculated after every sample in the epoch. The 
highest matching rates and the smallest mean squared 
errors have been saved. When finding a better value of 
each parameter, all current values of other performance 
parameters have also been saved together with a matrix 
containing the current places of the misses. The current 
number of the iteration and the sample number have also 
been recorded to see are more iterations needed. 

The highest matching rates with all learning rate pares 
depending on the number of hidden layer neurons can be 
viewed on Figure 2. The efficiency of the network both on 
training and validation samples has improved when 
learning rates have been reduced. The highest matching 
rate on training samples, 88.44%, has been recorded with 
18 hidden layer neurons. The highest efficiency on 
validation samples was 70.83%. The rate at training 
samples can be improved by increasing the number of 
iterations, because at most cases the biggest value was 
achieved near to the end of the training process. But this is 
not true for the validation samples, where in most of the 
cases the maximums were recorded around 300 epochs. 

On Figure 3 the smallest mean squared errors are 
shown found during the trainings. As seen, the smallest 
values were achieved also with the smallest learning rate 
pair. The values similarly as at matching rates, could have 
been improved at training samples by using a longer 
training process, but the smallest values at validation 
samples were also recorded around 300 iterations. 

The number of misses by classes in the case when the 
highest matching rate at training samples has been found 
are shown in Table 3 for training samples and Table 4 for 
validation samples. The places with most misses are very 
similar. The most misses are were made between classes 
2, 3 and 4. A possible reason can be that cars, vans and 
smaller trucks are almost the same length, the number of 
axles is also the same, and the distance between them is 
also similar. 

 
Figure 2. Highest matching rates achieved at training and 
validation samples with different number of hidden layer 

neurons and different learning rates. 

 
Figure 3. Smallest mean squared errors achieved at 

training and validation samples with different number of 
hidden layer neurons and different learning rates. 

E. Neural network implementation and testing 
During the implementation a very important factor 

was not to stop the measuring for the time of the network 
output calculating. The network input calculation and 
updating has been done after every measurement when the 
detection flag was “1”. 

After a falling edge on the detection flag, the network 
outputs are calculated, and the vehicle class is determined. 
This process is done until the next measurement is made, 
so the class is determined in 20ms, what is a measurement 
cycle. 

For testing, the weights of the 18 hidden neuron 
network has been implemented which achieved the 
highest matching rate on training samples. This network 
had 64.17% efficiency on validation data, the mean 
squared error of the training samples was 0.041736, and 
0.096034 of the validation samples. 
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TABLE III. 
PLACES AND NUMBER OF MISSES AT TRAINING SAMPLES 

Output 
\ 

Target 
1. 2. 3. 4. 5. 6. Rate 

1. 0 1 1 0 0 0 97,33% 
2. 1 0 9 7 0 0 77,33% 
3. 1 7 0 6 1 0 80% 
4. 2 4 4 0 4 1 80% 
5. 0 2 1 0 0 0 96% 
6. 0 0 0 0 0 0 100% 

 

TABLE IV. 
PLACES AND NUMBER OF MISSES AT VALIDATION SAMPLES 

Output 
\ 

Target 
1. 2. 3. 4. 5. 6. Rate 

1. 0 1 1 0 0 3 87,5% 
2. 1 0 9 9 0 0 52,5% 
3. 0 11 0 10 1 1 42,5% 
4. 3 7 5 0 9 1 37,5% 
5. 0 4 2 6 0 0 70% 
6. 2 0 0 0 0 0 95% 

 



The network was tested for 300 detections, and the 
results are shown in Table 5. As seen, the recognition rates 
are very similar to the values calculated on validation 
samples during training (Table 4). The testing was not 
ideal, because some classes had very small number of 
vehicles passing in this testing interval.  

V. CONCLUSION 
In this work a detection and neural network based 

vehicle classification method was presented. Measurement 
data had been collected for neural network training. 
Training has been done with different number of hidden 
layer neurons, and different learning rates. 

Training results showed that the recognition rates are 
not usable in real-life applications, but the results are 
perspective. For better recognition rates, changes are 
needed.  

Increasing the number of training samples could lead to 
better results.  

Another possible modification is to change the 
classification. Dividing the vehicles into more classes, or 
dividing them by length and axle number could also 
improve the accuracy.  

But probably the most efficient modification could be 
to include the changes of waveforms in time.  
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TABLE V. 
TEST RESULTS OF THE IMPLEMENTED NEURAL NETWORK 

 1. 2. 3. 4. 5. 6. Σ Recognition 
rate 

1. 2 0 0 0 0 0 2 100% 
2. 18 99 48 55 5 4 229 43,23% 
3. 0 1 6 5 0 0 12 50% 
4. 0 4 1 13 2 0 20 65% 
5. 0 1 0 2 3 1 7 42,86% 
6. 0 0 0 0 0 0 0 0% 

False 
Detection 11 1 1 6 0 11 30  

Σ 31 106 56 81 10 16 300  
 




