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Abstract—Low-rank matrix approximation is an important

tool in data mining with a wide range of applications includ-

ing recommender systems, clustering, and identifying topics in

documents. The problem we tackle is implementing singular

value decomposition (SVD)—a popular method for low rank

approximation—in large fully distributed P2P systems in a

robust and scalable manner. We assume that the matrix to be

approximated is stored in a large network where each node

knows one row of the matrix (personal attributes, documents,

media ratings, etc). In our P2P model, we do not allow this

personal information to leave the node, yet we want the nodes to

collaboratively compute the SVD. Methods applied in large scale

distributed systems such as synchronized parallel gradient search

or distributed iterative methods are not preferable in our system

model due to their requirements of synchronized rounds or their

inherent issues with load balancing. Our approach overcomes

these limitations with the help of a distributed stochastic gradient

search in which the personal part of the decomposition remains

local, and the global part (e.g., movie features) converges at all

nodes to the correct value. We present a theoretical derivation of

our algorithm, as well as a thorough experimental evaluation

of real and synthetic data as well. We demonstrate that the

convergence speed of our method is competitive while not relying

on synchronization and being robust to extreme failure scenarios.
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stochastic gradient descent; singular value decomposition; privacy

I. INTRODUCTION

Finding a low-rank decomposition of a matrix is an essen-
tial tool in data mining and information retrieval [1]. Prominent
applications include recommender systems [2], information
retrieval via Latent Semantic Indexing [3], [4], Kleinberg’s
HITS algorithm for graph centrality [5], clustering [6], [7],
and learning mixtures of distributions [8], [9].

Collaborative filtering forms one of the most prominent
applications of low rank matrix approximation. To implement
a recommender algorithm, one can define a matrix A of
dimensions m× n with one row assigned to one of m users,
and one column assigned to one movie out of a set of n
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movies. The essence of the ratings matrix A is given by a
low rank decomposition A ≈ XY T , where matrices X and
Y T are of dimensions m × k and k × n, respectively, and
where k is small [10]. A row of X can be interpreted as
a compressed representation (features) of the corresponding
user, and a column of Y T contains features of a movie. This
representation can be applied to calculate missing ratings to
offer recommendations. In addition to recommender systems,
low rank approximation finds applications in summarizing ad-
jacency matrices for social network analysis or term-document
matrices for text classification.

Data such as movie ratings, lists of friends, or personal
documents is often very sensitive. It is argued in [11] that it is
paramount for privacy that users keep their data (e.g. ratings
and user factors) local. Instead of uploading such data to cloud
servers, it is a natural idea to store it only on personal devices
and process it in place in a fully distributed way suitable for
P2P services. This would increase the level of privacy and
remove any dependence on central infrastructure and services.
However, such an algorithm has to be extremely robust as
networks of personal devices are unreliable with users entering
and leaving dynamically. In addition, the communication costs
should remain affordable as well.

A. Contribution

To meet these goals, we implement singular value de-
composition (SVD), an approach to low rank decomposition
with the attractive property that the matrices X and Y in
the decomposition consist of orthogonal vectors. We present a
stochastic gradient descent (SGD) algorithm to find the SVD,
where several instances of the matrix Y perform a random
walk in the network visiting the data (the rows of A), while
matrices A and X are stored in a fully distributed way with
each row at different nodes. The rows of matrices A and X are
accessed only locally by the node that stores them. Note that
the public matrix Y carries no sensitive information. When Y
visits a node, it gets updated based on the local row of A, and
the local row of X gets updated as well.

To the best of our knowledge, we present the first fully
distributed SGD algorithm that keeps X and A strictly local.
As a special feature, our algorithm updates several versions
of Y by sending them around over the network, resulting in
a convergence much faster than a single instance of SGD for
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SVD. The algorithm is fully asynchronous: messages can be
delayed or lost. We only rely on random walks that can perform
every transition in a bounded time. We show that the only
stable fix points of the search algorithm correspond to the
SVD. In addition, we perform an experimental analysis and
demonstrate the convergence speed and the scalability of the
protocol.

B. Related work

Calculating the SVD is a well studied problem. One
approach is based on considering it as an optimization problem
(see Section II) and using gradient search to solve it [12].
In general, parallel versions of gradient search often assume
the MapReduce framework [13] or a similar, less constrained,
but still centralized model [14]. In these approaches, partial
gradients are calculated over batches of data in parallel, and
these are either applied to blocks of X and Y in the map phase
or summed up in the reduce phase. Zinkevich et al. propose a
different approach in which SGD is applied on batches of data
and the resulting models are then combined [15]. Gemulla et
al. [16] propose an efficient parallel technique in which blocks
of X and Y are iteratively updated while only blocks of Y
are exchanged. In contrast to these approaches, we work with
fully distributed data: we do not wish to make X public, and
we do not rely on central components or synchronization, a
set of requirements ruling out the direct application of earlier
approaches.

Another possibility is using fully distributed iterative meth-

ods. GraphLab [17] supports iterative methods for various
problems including SVD. In these approaches, the communica-
tion graph in the network is defined by the non-zero elements
of matrix A, in other words, A is stored as edge-weights in
the network. This is feasible only if A is (very) sparse and
well balanced; a constraint rarely met in practice. In addition,
iterative methods need access to AT as well, which violates
our constraint that the rows of A are not shared. Using the
same edge-weight representation of A, one can implement
another optimization approach for matrix decomposition: an
iterative optimization of subproblems over overlapping local
subnetworks [18]. The drawback of this approach is, again,
that the structure of A defines the communication network
and access to AT is required. The approach of Ling et al. [19]
also needs global information: in each iteration step a global
average needs to be calculated.

The first fully distributed algorithm for spectral analysis
was given in [20] where data is kept at the compute nodes and
partial results are sent through the network. That algorithm,
however, only computes the user side singular vectors but
not the item side ones and hence insufficient, for example, to
provide recommendations. Similarly, [21] computes the low
rank approximation but not the decomposition. This drawback
is circumvented in [22] by assigning compute nodes not just for
users but for items as well. In their gradient descent algorithm,
item vectors are also stored at peers, which means that all items
must know the ratings they receive, and this violates privacy.

We overcome the limitations of earlier fully distributed
and gossip SVD algorithms by providing an algorithm without
item-based processing elements, i.e. our algorithm is fully dis-
tributed in the sense that processing is exclusively done at the
users, who may access their own ratings and approximations
of the item factor vectors.

II. PROBLEM DEFINITION

A. Low–Rank and Singular Value Decomposition

The problem we tackle is rank–k matrix approximation.
We are given a matrix A ∈ R

m×n. Matrix A holds our raw
data, such as ratings of movies by users, or word statistics
in documents. We are looking for matrices X ∈ R

m×k and
Y ∈ R

n×k such that the error function

J(X,Y ) =
1

2
‖A−XY T ‖2F =

1

2

m
∑

i=1

n
∑

j=1

(aij −

k
∑

l=1

xilyjl)
2

(1)

is minimized. We say that the matrix XY T for which this
error function is minimized is an optimal rank-k approximation
of A. Clearly, matrices X and Y T —and hence XY T —have
a rank of at most k. Normally we select k such that k ≪
min(m,n) in order to achieve a significant compression of
the data. As a result, matrices X and Y T can be thought of as
high level features (such as topics of documents, or semantic
categories for words) that can be used to represent the original
raw data in a compact way.

Singular value decomposition (SVD) is related to the above
matrix decomposition problem. The SVD of a matrix A ∈
R

m×n involves two orthogonal matrices U ∈ R
m×m and V ∈

R
n×n such that

A = UΣV T =
r

∑

i=1

σiuiv
T
i (2)

where the columns of the matrices U = [u1u2 · · ·um] and
V = [v1v2 · · · vn] are the left and right singular vectors, and
Σ ∈ R

m×n is a diagonal matrix containing the singular values
σ1, σ2, . . . , σr ≥ 0 of A (r = min(m,n)). The relationship
of SVD and low rank decomposition is that UkΣkV

T
k is an

optimal rank-k approximation of A, where the matrices Uk ∈
R

m×k and Vk ∈ R
n×k are derived from U and V by keeping

the first k columns, and Σk ∈ R
k×k is derived from Σ by

keeping the top left k × k rectangular area, assuming without
loss of generality that σ1 ≥ σ2 ≥ · · · ≥ σr [23].

Our goal in this paper is to find X∗ = UkΣU and Y ∗ =
VkΣV such that ΣU and ΣV are diagonal and ΣUΣV = Σk.
In other words, although X∗ and Y ∗ are not uniquely defined,
we require them to contain orthogonal columns that are scaled
versions of left and right singular vectors of A, respectively.

B. System Model and Data Distribution

Having defined the computational problem, we need to
elaborate on our assumptions on the network environment and
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Algorithm 1 P2P low–rank factorization at node i

1: ai ⊲ row i of A
2: initialize Y
3: initialize xi ⊲ row i of X
4: loop

5: wait(∆)
6: p← selectPeer()
7: send Y to p
8: end loop

9: procedure ONRECEIVEY(Ỹ )
10: Y ← Ỹ
11: (Y, xi)← update(Y, xi, ai)
12: end procedure

the distribution of the data. As our system model we consider
a network of nodes that are individual computational units
(e.g., personal computers, smart phones, etc.) and have unique
addresses. The number of nodes is potentially extremely large.
Every node can communicate to other nodes via passing
messages provided the address of the target node is known
locally. We assume that there is a peer sampling service in
our system which can provide addresses of live nodes from
the network selected uniformly at random (see e.g. [24] for a
fully distributed implementation). In addition, messages can be
lost or delayed and the nodes can leave the network and join
again without prior notice. When a node rejoins the network
it retains the state it had when leaving the network.

As for the data distribution, we assume that each node has
exactly one row (but note that our algorithms can be applied—
and in fact profit from it—if a node has several rows). Our
data distribution model is motivated by application scenarios
in which potentially sensitive data is available locally, such
as private documents or ratings that naturally define rows of
a matrix A, but where a decomposition needs to be found
collectively without blatantly exposing this private data.

III. ALGORITHM

Our algorithm has its roots in the GOLF framework [25].
Algorithm 1 contains a version of the GOLF algorithm adopted
to our problem. Each node i has its own approximation of the
full matrix Y ∗ and an approximation of row i of X∗: xi. Thus,
the nodes collectively store one version of the matrix X (the
approximation of X∗) distributed just like matrix A with each
node storing one row. At the same time, at every point in time
every node has a possibly different approximation of the full
matrix Y ∗ locally.

These different approximations of Y ∗ perform random
walks in the network and get updated at the visited nodes
using the local data of the given node (a row of A and X).
First, each node i in the network initializes Y and xi uniformly
at random from the interval [0, 1]. The nodes then periodically
send their current approximation Y to a randomly selected
peer from the network. The period is denoted by ∆. To select a
random peer, we rely on a peer sampling service as mentioned
in Section II-B. When receiving an approximation Ỹ (see

Algorithm 2 rank-k update at node i

1: η ⊲ learning rate
2: procedure UPDATE(Y, xi, ai)
3: err ← ai − xiY

T

4: x′

i ← xi + η · err · Y
5: Y ′ ← Y + η · errT · xi

6: return (Y ′, x′

i)
7: end procedure

procedure ONRECEIVEY) the node stores this approximation
and subsequently it updates both Y and xi using a stochastic
gradient rule.

The algorithm involves periodic message sending at every
node with a period of ∆. Later on, when we refer to one
iteration or round of the algorithm, we simply mean a time
interval of length ∆. Note that we do not require any syn-
chronization of rounds over the network. Messages are sent
independently, and they can be delayed or dropped as well. We
require only that the delays are bounded and that the message
drop probability is less than one. This allows the random walks
to progress.

Algorithm 1 requires an implementation of the procedure
UPDATE. We will now elaborate on two different versions that
implement different stochastic gradient update rules.

A. Update Rule for General Rank–k Factorization

Let us first consider the error function given in equation (1)
and derive an update rule to optimize this error function. The
partial derivatives of J(X,Y ) by X and Y are

∂J

∂X
= (XY T − A)Y,

∂J

∂Y
= (Y XT −AT )X. (3)

Since only xi is available at node i, the gradient is calculated
only w.r.t. xi instead of X . Accordingly, the stochastic gradient
update rule with a learning rate η can be derived by substituting
xi as shown in Algorithm 2. Although function J is not
convex, it has been shown that all the local optima of J are
also global [23]. Thus, for a small enough η, any stable fix
point of the dynamical system implemented by Algorithm 1
with the update rule in Algorithm 2 is guaranteed to be a global
optimum.

B. Update Rule for Rank–k SVD

Apart from minimizing the error function given in equa-
tion (1) let us now also set the additional goal that the algo-
rithm converges to X∗ and Y ∗, as defined in Section II. This
is indeed a harder problem: while (X∗, Y ∗) minimizes (1),
any pair of matrices (X∗R−1, Y ∗RT ) will also minimize it
for any invertible matrix R ∈ R

k×k, so Algorithm 2 will not
be sufficient.

From now on, we will assume that the non-zero singular
values of A are all unique, and that the rank of A is at least k.
That is, σ1 > · · · > σk > 0. This makes the discussion simpler,
but these assumptions can be relaxed, and the algorithm is
applicable even if these assumptions do not hold.
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Algorithm 3 rank-k SVD update at node i

1: η ⊲ learning rate
2: procedure UPDATE(Y, xi, ai)
3: a′i ← ai
4: for ℓ = 1 to k do ⊲ yℓ : column ℓ of Y
5: err ← a′i − xiℓ · y

T
ℓ

6: x′

iℓ ← xiℓ + η · err · yℓ
7: y′ℓ ← yℓ + η · errT · xiℓ

8: a′i = a′i − xiℓ · y
T
ℓ

9: end for

10: return (Y ′, x′

i)
11: end procedure

Our key observation is that any optimal rank-1 approxi-
mation X1Y

T
1

of A is such that X1 ∈ R
m×1 contains the

(unnormalized) left singular vector of A that belongs to σ1,
the largest singular value of A. Similarly, Y1 contains the
corresponding right singular vector. This is because for any
optimal rank-k approximation XY T there is an invertible
matrix R ∈ R

k×k such that X = X∗R and Y T = R−1Y ∗T

[23]. For k = 1 this proves our observation because, as defined
in Section II-A, X∗ ∼ u1 and Y ∗ ∼ v1. Furthermore, for
k = 1,

X1Y
T
1

= X∗Y ∗T = σ1u1v
T
1
, (4)

which means that (using equation (2)) we have

A−X1Y
T
1

=

r
∑

i=2

σiuiv
T
i . (5)

Thus, a rank-1 approximation of the matrix A − X1Y
T
1

will
reveal the direction of the singular vectors corresponding to the
second largest singular value σ2. A naive approach based on
these observations would be to first compute X1Y

T
1

, a rank-
1 approximation of A. After this has converged, we could
compute a rank-1 approximation X2Y

T
2

of A −X1Y
T
1

. This
would give us a rank-2 approximation of A containing the
first two left and right singular vectors, since according to the
above observations [X1, X2][Y1, Y2]

T is in fact such a rank-2
approximation. We could repeat this procedure k times to get
the desired decomposition X∗ and Y ∗ by filling in one column
at a time sequentially in both matrices.

A more efficient and robust approach is to let all rank-1
approximations in this sequential naive approach evolve at the
same time. Intuitively, when there is a reasonable estimate of
the singular vector corresponding to the largest singular value,
then the next vector can already start progressing in the right
direction, and so on. This idea is implemented in Algorithm 3.

C. Synchronized Rank–k SVD

As a baseline method in our experimental evaluation, we
will use a synchronized version of Algorithm 1 with the update
rule in Algorithm 3. In this version (shown in Algorithm 4),
the rank-1 updates are done over the entire matrix A at once,
and there is only one central version of the approximation
of Y as opposed to the several independent versions we had

Algorithm 4 Iterative synchronized rank–k SVD

1: A ⊲ The matrix to be factorized
2: η ⊲ learning rate
3: initialize Y
4: initialize X
5: while not converged do

6: A′ = A
7: for ℓ = 1 to k do

8: err ← A′ − xℓ · y
T
ℓ ⊲ xℓ : column ℓ of X

9: ⊲ yℓ : column ℓ of Y
10: x′

ℓ ← xℓ + η · err · yℓ
11: y′ℓ ← yℓ + η · errT · xℓ

12: A′ = A′ − xℓ · y
T
ℓ

13: end for

14: X = X ′; Y = Y ′

15: end while

TABLE I. THE MAIN PROPERTIES OF THE REAL DATA SETS

Iris Pendigits Segmentation

Number of instances (m) 150 10992 2310

Number of features (n) 4 16 19

Minimal k such that 2 10 5
∑

k

i=1
σ2

i
/
∑

n

i=1
σ2

i
> 0.9

previously. As in Algorithm 1, the matrices X and Y are
initialized with uniform random values from [0, 1]. Note that
this algorithm listing uses a different notation: here xℓ denotes
the ℓ-th column, not the ℓ-th row.

Note that—although it is formulated as a centralized se-
quential algorithm—this algorithm can easily be adopted for
the MapReduce framework, where the mappers compute parts
of the gradients (e.g., the gradients of the rows of A as in
Algorithm 3) while the reducer sums up the components of
the gradient and executes the update steps.

IV. EXPERIMENTS

Here we demonstrate various properties of our algorithm
including convergence speed, scalability and robustness. Our
testbed of matrices includes standard machine learning test
data sets as well as synthetic matrices with controllable prop-
erties.

In case of the distributed algorithms the number of nodes
in the network equals the number of rows of the matrix to be
factorized, since every node has exactly one row of the matrix.
We used the PeerSim [26] simulator with the event-based
engine, and we implemented the peer sampling service by
the NEWSCAST [24] protocol. Our implementation is publicly
available.1

A. Algorithms

Here we provide names for the algorithms we include
in our experiments. Algorithm 1 with the update rule in

1http://rgai.inf.u-szeged.hu/download/p2p14/svdsrc.zip, https://github.com/

RobertOrmandi/Gossip-Learning-Framework/tree/multicore
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Algorithm 3 (our main contribution) will be referred to as
Fully Distributed SVD (FUDISVD). Replacing Algorithm 3
with Algorithm 2 we get Fully Distributed Low Rank Decom-
position (FUDILRD). Recall that this algorithm will converge
to a rank-k decomposition that is not necessarily the SVD of
A. Algorithm 4 will be called Gradient SVD (GRADSVD).
Recall that this algorithm can be parallelized: for example, the
gradient can be calculated row by row and then summed up
to get the full gradient.

Finally, we introduce a baseline algorithm, Stochastic Gra-
dient SVD (SGSVD). This algorithm uses the update rule
in Algorithm 3 but we have only a single approximation Y
at any point in time, and there is only one process, which
repeatedly gets random rows of A and then applies the update
rule in Algorithm 3 to the current approximation Y and the
corresponding row of X .

B. Error measures

a) Cosine similarity: To measure the difference be-
tween the correct and the approximated singular vectors, we
used cosine similarity, because it is not sensitive to the scaling
of the vectors (recall, that our algorithm does not guarantee
unit-length columns in X and Y ). The formula to measure the
error of a rank-k decomposition XY T is

Error(X,Y ) =
1

2k

k
∑

i=1

1−

∣

∣

∣

∣

yTi vi
‖yi‖

∣

∣

∣

∣

+ 1−

∣

∣

∣

∣

xT
i ui

‖xi‖

∣

∣

∣

∣

, (6)

where xi, yi, ui and vi are column vectors of X,Y, Uk and
Vk, respectively. Matrices Uk and Vk are orthogonal matrices
defined in Section II.

b) Frobenius norm: Another measure of error is given
by function J(X,Y ) defined in equation (1). The advantage
of this measure is that it can be applied to Algorithm 2 as
well. However, obviously, this error measure does not reflect
whether the calculated matrices X and Y contain scaled
singular vectors or not; it simply measures the quality of
rank-k approximation. On the plots we call this error measure
FNORM.

C. Data sets

c) Synthetic data: We included experiments on syn-
thetic data so that we can evaluate the scalability and the fault
tolerance of our method in a fully controlled way. We first
generated random singular vectors producing matrices U and
V with the help of the butterfly technique [27]. Since matrices
to be decomposed often originate from graphs, and since the
node degrees and the spectrum of real graphs usually follow a
power law distribution [28], [29], the expected singular values
in the diagonal of Σ were generated from a Pareto distribution
with parameters xm = 1 and α = 1. This way we construct a
matrix A = UΣV T where we know and control the singular
vectors and values.
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Fig. 1. Convergence on the real data sets. Error is based on cosine similarity.

In the scaled version of GRADSVD the number of iterations is multiplied by

log10 m (see text).

d) Real data: These matrices were constructed from
data sets from the well known UCI [30] machine learning
repository. In these applications the role of SVD is dimension-
ality reduction and feature extraction. The selected data sets are
the Iris, the Pendigits (Pen-Based Recognition of Handwritten
Digits) and the Segmentation (Statlog (Image Segmentation))
data sets. Parameter k was set so that the approximation has
at least 90% of the information in the data set, that is, we
set the minimal k such that

∑k
i=1

σ2

i /
∑n

i=1
σ2

i > 0.9 [31].
Table I illustrates the main properties of the selected data sets.
In order to be able to compute the error over these matrices,
we computed the exact singular value decomposition using the
Jama [32] library.
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Fig. 3. Results on synthetic data sets using networks of different dimensions. We set k = 1, and all the matrices had a rank of 16.

D. Convergence

The experimental results are shown in Figures 1 and 2. We
tested the convergence speed of the algorithms over the real
data sets with parameter k set according to Table I.

Figure 1 illustrates the deviation from the exact singular
vectors. GRADSVD is the fastest to converge, however, it
either needs a central database to store A, or it requires a
synchronized master-slave communication model when paral-
lelized. We also show a reference curve that is calculated by
scaling the number of iterations by log

10
m for GRADSVD.

The motivation is a more scalable potential implementation of
GRADSVD in which there is a hierarchical communication
structure in place where nodes propagate partial sums of the
gradient up a tree (with a branching factor of 10) instead of
each node communicating with a central server as in [33]. This
curve almost completely overlaps with that of FUDISVD, our
fully distributed robust algorithm.

We also illustrate the speedup w.r.t. SGSVD. The major
difference between SGSVD and FUDISVD is that in FUD-
ISVD there are m different approximations of Y all of which
keep updating the rows of X simultaneously, while in SGSVD
there is only one version of Y . Other than that, both algorithms
apply exactly the same gradient update rule. In other words,
in FUDISVD any row of X experiences m times as many
updates in one unit of time.

Figure 2 illustrates the difference between FUDILRD and
FUDISVD. Both optimize the same error function (that is
shown on the plots), however, FUDISVD introduces the extra

constraint of aiming for the singular vectors of A. Fortunately
this extra constraint does not slow down the convergence
significantly in the case of the data sets we examined, although
it does introduce a bumpier convergence pattern. The reason is
that the singular vectors converge in a sequential order, and the
vectors that belong to smaller singular values might have to be
completely re-oriented when the singular vectors that preceed
them in the order of convergence have converged.

E. Scalability

For evaluating the scalability of FUDISVD we generated
a range of synthetic matrices of various sizes using the
method described earlier. Figure 3 shows the outcome of the
experiments. Clearly, the method is somewhat more sensitive
to changing the number of nodes (that is, to varying the first
dimension m) than to varying the second dimension n (the
length of a row). This is not surprising as the full row of A is
always used at once in an update step, irrespective of its length,
whereas a larger m requires visiting more nodes, which takes
more iterations.

However, when m is large, we can apply sampling tech-

niques [34]. That is, we can consider only a small sample
of the network drawn uniformly or from an appropriately
biased distribution and calculate a high quality SVD based
on that subset. To illustrate such sampling techniques, we
implemented uniform sampling. When we wish to select a
given proportion p of the nodes, each node decides locally
about joining the sample with a probability p. The size of the
resulting sample will follow the binomial distribution B(N, p).
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Fig. 2. Convergence on the real data sets. Error is based on the Frobenius

norm. Horizontal dashed lines in top-down order show the FNORM value for

the optimal rank-i approximations for i = 1, . . . , k.

Figure 4 shows our experimental results with p = 1/2
and p = 1/3. Clearly, while communication costs overall are
decreased proportionally to the sample size, on our bench-
mark both precision and convergence speed remain almost
unchanged. The only exception is the Iris data set. However,
that is a relatively small data set over which the variance of our
uniform sampling method is relatively high (note, for example,
that the run with p = 1/3 resulted in a better performance than
with p = 1/2).

F. Failure Scenarios

We used two different failure scenarios: a mild and a
hard one. In the two scenarios message delay was drawn
uniformly at random from between ∆ and 5∆ or 10∆ time
units, respectively. Messages were dropped with 20% or 50%
probability, respectively.
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Fig. 4. Results when only the 50/33% randomly sampled instances were

used from the data set.

Node churn was modeled taking into account statistics
from a BitTorrent trace [35] as well as known empirical
findings [36]. We draw the online session length for each node
independently from a lognormal probability distribution with
parameters µ = 5∆ and σ = 0.5∆. Offline session lengths are
determined implicitly by fixing the number of nodes that are
offline at the same time. For the two scenarios 50% or 80%
of the nodes were offline at the same time, respectively.

The results of the algorithms in these extreme failure
scenarios can be seen in Figure 5. As we can see, the different
types of failures (whether examined separately or combined
together) result in only delay on the convergence rate, but
the algorithm still converges. This is in sharp contrast with
competing approaches that require synchronization, such as
GRADSVD, for example.

An interesting observation is that when only churn is
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Fig. 5. Results in different failure scenarios using a 1024× 1024 synthetic

matrix with a rank of 16. We set k = 1.

modeled, at the beginning of the simulation convergence is
actually faster. This effect is due to the fact that since most
of the nodes are offline, the effective network is smaller, but
this small sample still allows for an approximation of the
SVD. However, convergence eventually slows down as full
precision cannot be reached without taking most of the nodes
into account in the particular matrix we experiment with.

V. CONCLUSION

In this paper we proposed an SGD algorithm with an update
rule that has stable fix points only in the SVD of a matrix
A. The output of the algorithm for rank k are two matrices
X and Y that contain scaled versions of the first k left and
right singular vectors of A, respectively. Matrices X and Y
are unique apart from the scaling of the columns.

The most important feature of the algorithms is a P2P
sense privacy preservation: we operate over fully distributed
data where each network node stores one full row of A as
its private data. The output matrix X is also fully distributed:
node i that stores row i of A computes row i of X , the private
model for the node. Matrices A and X are private in that only
the node that stores a given row has access to it. A version of
the matrix Y is available in full at all nodes.

Through experimental evaluation we studied the conver-
gence speed of the algorithm, and showed that it is competitive
with other gradient methods, that require more freedom for
data access. We also demonstrated the remarkable robustness
of the method in extreme failure scenarios.

Our future work includes addressing interesting challenges
such as dynamically changing data, and investigating methods
for further improving the efficiency of the protocol, for ex-
ample, through sampling from the rows and/or columns of A
using several sampling techniques.

ACKNOWLEDGMENTS

M. Jelasity was supported by the Bolyai Scholarship of
the Hungarian Academy of Sciences. This work was partially
supported by the European Union and the European Social
Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-
11/1/KONV-2012-0013), by the grant OTKA NK 105645, and
the “Momentum - Big Data” grant of the Hungarian Academy
of Sciences.

REFERENCES

[1] Y. Azar, A. Fiat, A. R. Karlin, F. McSherry, and J. Saia, “Spectral

analysis of data,” in Proc. 33rd Symposium on Theory of Computing

(STOC), 2001, pp. 619–626.

[2] P. Drineas, I. Kerenidis, and P. Raghavan, “Competitive recommen-

dation systems,” in Proc. 34th Symposium on Theory of Computing

(STOC), 2002, pp. 82–90.

[3] M. W. Berry, S. T. Dumais, and G. W. O’Brien, “Using linear algebra

for intelligent information retrieval,” SIAM Review, vol. 37, no. 4, pp.

573–595, 1995.

[4] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala, “Latent

semantic indexing: A probabilistic analysis,” Journal of Computer and

System Sciences, vol. 61, no. 2, pp. 217–235, 2000.

[5] J. Kleinberg, “Authoritative sources in a hyperlinked environment,” J.

ACM, vol. 46, no. 5, pp. 604–632, 1999.

[6] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay, “Clustering

large graphs via the singular value decomposition,” Machine Learning,

pp. 9–33, 2004.

[7] F. McSherry, “Spectral partitioning of random graphs,” in Proc. 42nd

Annual Symposium on Foundations of Computer Science (FOCS), 2001,

pp. 529–537.

[8] R. Kannan, H. Salmasian, and S. Vempala, “The spectral method for

general mixture models,” in Proc. 18th Annual Conference on Learning

Theory (COLT), 2005, pp. 444–457.

[9] D. Achlioptas and F. McSherry, “On spectral learning of mixtures of

distributions,” in Proc. 18th Annual Conference on Learning Theory

(COLT), 2005, pp. 458–469.

[10] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for

recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[11] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and

D. Boneh, “Privacy-preserving matrix factorization,” in Proc. 2013 ACM

SIGSAC Conf. on Comp. and Comm. Security (CCS’13). ACM, 2013,

pp. 801–812.

[12] G. Gorrell, “Generalized hebbian algorithm for incremental singular

value decomposition in natural language processing.” in Proc. 11th Con-

ference of the European Chapter of the Association for Computational

Linguistics (EACL), D. McCarthy and S. Wintner, Eds. The Association

for Computer Linguistics, 2006.

[13] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and

K. Olukotun, “Map-reduce for machine learning on multicore,” in

Advances in Neural Information Processing Systems 19 (NIPS 2006),

B. Schölkopf, J. Platt, and T. Hoffman, Eds. MIT Press, 2007, pp.

281–288.

[14] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean,

and A. Ng, “Building high-level features using large scale unsupervised

learning,” in Proc. 29th International Conference on Machine Learning

(ICML), J. Langford and J. Pineau, Eds. Omnipress, 2012, pp. 81–88.

8



14-th IEEE International Conference on Peer-to-Peer Computing

[15] M. A. Zinkevich, A. Smola, M. Weimer, and L. Li, “Parallelized

stochastic gradient descent,” in Advances in Neural Information Pro-

cessing Systems 23 (NIPS 2010), 2010, pp. 2595–2603.

[16] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale

matrix factorization with distributed stochastic gradient descent,” in

Proc. 17th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD). ACM, 2011, pp. 69–77.

[17] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.

Hellerstein, “Graphlab: A new parallel framework for machine learn-

ing,” in Conf. on Uncertainty in Artif. Intel., 2010.

[18] Y. Liao, P. Geurts, and G. Leduc, “Network distance prediction based

on decentralized matrix factorization,” in Proc. 9th Int. IFIP TC 6

Netw. Conf., ser. LNCS, M. Crovella, L. Feeney, D. Rubenstein, and

S. Raghavan, Eds., vol. 6091. Springer, 2010, pp. 15–26.

[19] Q. Ling, Y. Xu, W. Yin, and Z. Wen, “Decentralized low-rank matrix

completion,” in Proceedings of the 2012 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2012, pp.

2925–2928.

[20] D. Kempe and F. McSherry, “A decentralized algorithm for spectral

analysis,” in Proc. 36th Symposium on Theory of Computing (STOC).

ACM, 2004, pp. 561–568.

[21] S. B. Korada, A. Montanari, and S. Oh, “Gossip pca,” in Proc. ACM

SIGMETRICS joint int. conf. on Measurement and modeling of comp.

sys. ACM, 2011, pp. 209–220.

[22] S. Isaacman, S. Ioannidis, A. Chaintreau, and M. Martonosi, “Dis-

tributed rating prediction in user generated content streams,” in Proc.

Fifth ACM Conf. on Rec. Sys. ACM, 2011, pp. 69–76.

[23] N. Srebro and T. Jaakkola, “Weighted low-rank approximations,” in

Proc. 20th International Conference on Machine Learning (ICML).

AAAI Press, 2003, pp. 720–727.

[24] N. Tölgyesi and M. Jelasity, “Adaptive peer sampling with newscast,”

in Euro-Par 2009, ser. LNCS, vol. 5704. Springer, 2009, pp. 523–534.
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