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Abstract— Signal separation at fluctuation-enhanced sensing 

improves speed, selectivity and sensitivity. We analyze a 
(symmetrical) two-sensor arrangement with a joint boundary 
line between the sensors for fluctuation-enhanced sensing. We 
show a way to separate the adsorption-desorption signal 
components from the diffusive signal component. Thus the 
method generates two independent output spectra which double 
the sensor information for pattern recognition. A two-sensor 
arrangement with submicron size is modeled by computer 
simulations, and the key features of the sensing method are 
demonstrated. 
 

Index Terms— adsorption-desorption, diffusive, chemical 
separation, fluctuation enhanced sensing 
 

I. INTRODUCTION 
LUCTUATION-ENHANCED sensing (FES) to analyze 
chemical mixtures was proposed almost a decade ago [1]. 
It utilizes the omnipresence and great sensitivity of low-

frequency conductance fluctuations and conductance 1/f noise 
with regard to structural and environmental changes and 
inhomogenities/defects in solid state materials [2,3]. In FES 
we use the stochastic signal component due to the statistical 
interaction between the chemical agent and the sensor 
material/structure. Since its introduction [1], the history of 
FES has shown that this way of sensing is a complex task 
which includes not only many aspects of sensor development 
but also advanced signal processing issues [4-10].  

The present paper introduces a new method which is able to 
distinguish between the adsorption-desorption and diffusive 
fluctuations in FES devices as a result of the surface 
occupancy of sensors by agent molecules [11,12]. This feature 
results in a doubling of sensor information and higher speed 
and/or selectivity.  
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II. THE NEW METHOD 
Figure 1 shows a sketch of the two-sensor system [11]. The 

adsorbed molecules can diffuse freely and the particles can 
freely enter from one of the sensor surfaces into that of the 
other sensor. The space occupied by the two zones may be 
surrounded by a diffusion barrier which limits the diffusion to 
these subspaces. If there is no diffusion boundary around the 
whole system, then the particles which leave/enter the system 
contribute to the adsorption-desorption noise of the given 
sensor. Other geometries may also be used but they are less 
simple to fabricate. The time-dependent output signals of the 
two sensors are stochastic and defined as follows: 

   U1(t) = KN1(t)      U2(t) = KN2(t)             (1) 

where K is a calibration constant and N1(t) and N2(t) are the 
instantaneous numbers of molecules over sensor-1 and sensor-
2, respectively.  
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Figure 1. Two-sensor arrangement with enhanced joint boundary. Sensor-1 
and sensor-2 share an extended joint boundary to enhance cross-correlations 
of surface diffusion noise. Particles can absorb/desorb over to the surface and 
they execute a random walk (diffusion) over the sensor surface and diffuse 
over the other sensor, too. If there is no diffusion boundary around the whole 
system, then the particles which leave/enter the system contribute to the 
adsorption-desorption noise of the given sensor.  

The main claims of our study are as follows [1]: 

(i) The spectrum of  U1(t) + U2 (t)  has only absorption-
desorption noise. Then the total adsorption-desorption 
spectrum is 

   ( )
12 1 2( ) ( ) ( )a a aS S f S f S f+= = +  ,                      (2) 

where S1a ( f ) and S2a ( f )  are the adsorption-desorption 
spectra over sensor-1 and sensor-2, respectively. 

    (ii) The spectrum of  U1(t) - U2 (t)  is the sum of absorption 
and diffusion fluctuations, i.e.,  

  S
(- ) ( f ) = S1a ( f ) + S2a ( f ) + 4S1d ( f )  ,             (3) 
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where S1d ( f ) is the diffusion spectrum over sensor-1 (equal 
to the diffusion spectrum of sensor-2). 

     (iii) After generating the spectra in (i) and (ii), the total 
diffusion fluctuation spectrum can be obtained by a simple 
subtraction: 

 S12d ( f ) = 4S1d ( f ) = S (−) ( f ) − S (+) ( f )  .           (4) 

     The FES information will be S12a ( f ) and S12d ( f ), which 
are separated adsorption-desorption and diffusion spectra. 

    In this work we computer simulate adsorption/desorption 
processes on nanoscale sensors (such as gateless MOSFETs) 
as a representation of the system depicted in Fig. 1 and, as a 
demonstration, we use this computer simulated data to verify 
the accuracy of equations (2)-(4). 

III. DEMONSTRATION BY COMPUTER SIMULATIONS 
In this simplified demonstration, the system in Fig. 1 is 

simulated by two types of particles. One type is doing only 
diffusion and the other type is doing only absorption. There 
are two time-domain simulation data, representing 
  U1(t) + U2 (t)  and   U1(t) - U2 (t) . Each of these time-domain 
data consists of 1,048,576 points. The Welch spectrum 
method is applied for computing the Power Spectral Density 
patterns of the two time domain data (a window size of 8192 
is applied, using Hamming window). 

•   S
(+)( f )  corresponds to the spectrum of   U1(t) + U2 (t)  

and has only absorption-desorption noise. 

•   S
(- ) ( f )  corresponds to the spectrum of   U1(t) - U2 (t)  

and is the sum of absorption and diffusion fluctuations.  

• The extracted diffusion fluctuation spectrum then is 

obtained by   S
(- )( f ) - S (+ ) ( f ) .  

       Figure 2 shows that the extracted spectrum 
S (−) ( f ) − S (+) ( f )  is very close in value and shape to the actual 
diffusion fluctuation spectrum. A least-squares approach 
yields a coefficient value of 1.0031. 
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Figure 2.  S
(- ) ( f ) - S (+) ( f )  = 1.0031 x the actual diffusion fluctuation 

spectrum. There is a 0.3 % error as a result of strong “background noise” 
caused by the absorption-desorption noise. 
 
       Figure 3 shows that the spectrum S (+) ( f )  is very close in 
value and shape to the real absorption-desorption spectrum 
(after multiplication with the computed least-squares 
coefficient). A least-squares approach yields a coefficient 
value of 1.9825.  
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Figure 3.  S

(+) ( f )  = 1.9825 x the absorption-desorption spectrum. This is less 
than 2 % error as the result of strong “background noise” caused by the 
diffusion noise. 

IV. CONCLUSION 
The new method utilizes the joint presence of surface 

diffusion and adsorption-desorption in submicron-size 
fluctuation-enhanced sensors. In the classical way, the joint 
presence of the two noises would be distractive and reduce the 
sensory information. By using the new method, the sensory 
information is doubled and the output is enhanced by two 
independent types of patterns. The method has a potential in 
field effect transistor sensor arrangements and similar surface-
active structures, such as micro-surface-acoustic-wave (SAW) 
sensors. 
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