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Abstract— A new method to generate fingerprints of agents 

has been introduced. The method is based on using the zero 
crossing statistics at fluctuation-enhanced sensing. It is a new 
version of Ben Kedem’s original method based on low-pass 
filters. To improve computation time and energy efficiency, high-
pass filtering is used and in doing that in the simplest possible 
way, local zero levels for short-time sub-windows are defined and 
a zero crossing counting by the use of such windows is carried 
out. The method turns out to be an effective tool to identify noise 
processes with different spectra or amplitude distribution, with 
at least 1000 times less calculation and correspondingly lower 
energy need than that of the Kedem or the FFT methods. We 
demonstrate the usability of the method by the analysis and 
recognition of different stochastic processes with similar and 
different spectra. 
 

Index Terms— zero crossing, high speed, low power, 
fluctuation enhanced sensing 
 

I. INTRODUCTION 
LUCTUATION-ENHANCED sensing methods generate a 

fluctuation-fingerprint of the stochastic component of 
sensor signals which can be identified by pattern recognizers 
[1,2]. Typical FFT and bispectrum methods involved a large 
amount of data processing steps and therefore significant 
processing time and energy requirements [1]. For wireless, 
palmtop, and similar low-power and low-processor-speed 
systems there is consequently a need for analysis in a more 
time and energy efficient way. In this paper we modify Ben 
Kedem’s method of combining low-pass filtering and zero 
crossing analysis to determine spectra of Gaussian noise. 
Kedem’s method needs practically the same amount of data 
processing as the standard FFT analysis for spectral 
estimation. Our goal is to achieve fluctuation-fingerprinting 
with data processing needs being much smaller than in the 
Kedem or the FFT methods in order to achieve high speed and 
low power dissipation. 
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II. THE NEW METHOD 
The Rice formula for stationary Gaussian stochastic 

processes provides the mean zero crossing frequency as [3] 
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where 0F  is the mean zero crossing frequency, and S( f )  is 
the power density spectrum of the process, U(t) . The new 
method to generate a fingerprint determined by S( f )  is 
described below. It should be noted that in the new method, 
the Gaussian nature of the process is not required because the 
methods test the empirical zero crossing frequency. 

       The measurement window is divided into short sub-
windows with identical length (digital sampling step number) 
Nj and a local averaging is done within each window to define 
a local, short-term, zero value U0(Nj):  

 
 
U0 (N j ) =

1
N j

U(ti
i=1

N j

Â )  .      (2) 

Then the average local zero crossing frequency is determined 
for each sub-window and the local values are averaged over 
the whole measurement window. In this way, frequencies 
below the reciprocal of the sub-window length are removed 
from the obtained zero-crossing frequency value F0(Nj). This 
is a very computationally and energetically efficient high-pass 
filtering, and the resulting zero crossing frequency depends on 
the power density spectrum. 

Subsequently the whole process is repeated with different 
sub-window sizes over the achievable range of sub-window 
sizes and the zero crossing frequency fingerprint F0(Nj) is 
found for all sub-window sizes Nj. This is a computationally 
and energetically efficient stochastic fingerprinting technique. 

The method turns out to be an effective tool to identify 
noise processes with different spectra or amplitude 
distribution with (practically) at least 1000 times less 
calculation and correspondingly lower energy need than the 
FFT method. 
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III. COMPUTER-SIMULATED DATA AND PATTERN GENERATION 
FOR CLASSIFICATION 

Four computer-simulated stochastic processes, each of 
which interpreted to be a different agent, have been used to 
demonstrate the efficiency of the new method. These 
processes are: 

• A is a Gaussian Lorentzian noise. It is generated by a first 
order digital filtering of white noise. This represents a 
macroscopic adsorption-desorption noise or can be 
thought of as sensor/amplifier background noise. 

• B is a Random Telegraph signal and represents a single 
molecule adsorption-desorption noise in a nano-sensor. 

• C is a single molecule diffusion noise in a nano sensor. 
Diffusion noise is generated on the basis of a one-
dimensional random walk. 

• D is a single molecule diffusion noise in a nano sensor 
with 25 times greater diffusion coefficient than that of C. 
Diffusion noise is generated on the basis of a one-
dimensional random walk. 

Ten mixture cases have been formed that contain the four 
stochastic processes. These are: A + A (the sum of two 
independent A processes), B + B (the sum of two independent 
B processes), C + C (the sum of two independent C 
processes), D + D (the sum of two independent D processes). 
The other mixture cases that contain the above agents are as 
follows: A+B, A+A+B, A+B+B, C+D, C+C+D, C+D+D. 

Fig. 1-Fig. 6 show the computed zero-crossing patterns 
obtained by the new method and the power spectrum density 
(PSD) patterns for the 4 single and 10 mixture cases. In 
computing the PSD spectrum patterns, Welch spectrum 
method is applied with a window size of 8192 and using 
Hamming window. A visual comparison of the zero-crossing 
and PSD patterns in Fig. 1-Fig. 6 indicate that zero-crossing 
patterns yield more distinct signatures with respect to each 
other, while PSD patterns look similar in waveform shape. 

0 0.5 1 1.5 2 2.5 3 3.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

log(total lenghth/length)

R
el

at
iv

e 
fre

qu
en

cy

Zero-crossing patterns (averaged) for Train Data

 

 
A
B
C
D
A-A
B-B
C-C
D-D

 
Fig. 1  Zero-crossing patterns (averaged) for stochastic signals (A, B, C, D, A-

A, B-B, C-C, D-D) 
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Fig. 2  PSD patterns for the same stochastic signals as in Fig. 1 
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Fig. 3  Zero-crossing patterns (averaged) for stochastic signals  (A, B, A-A, B-
B, A-B, A-A-B, A-B-B). 
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Fig. 4  PSD patterns for the same stochastic signals as in Fig. 2. 

 



Submitted to IEEE Sensors Journal 
 

3

0 0.5 1 1.5 2 2.5 3 3.5
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

log(total lenghth/length)

R
el

at
iv

e 
fre

qu
en

cy
Zero-crossing patterns (averaged) for Train Data

 

 

C
D
C-C
D-D
C-D
C-C-D
C-D-D

 
Fig. 5  Zero-crossing patterns (averaged) for stochastic signals  (C, D, C-C, D-

D, C-D, C-C-D, C-D-D). 
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Fig. 6  PSD patterns for the same stochastic signals as in Fig. 3. 

 

IV. CLASSIFICATION  
 
A. Training and testing data set generation 

A classification study has been performed to evaluate the 
efficiency of the zero-crossing patterns of the new method 
with respect to using classical PSD patterns. It should be 
recalled that there is a total of 14 different cases (A, B, C, D, 
A+A, B+B, C+C, D+D, A+B, A+A+B, A+B+B, C+D, 
C+C+D, C+C+D), which can be thought of as 14 classes. 
Time domain data in each of the 14 cases consist of 1,048,576 
points. The data for each case is partitioned into 121 
overlapping data segments. Each of these overlapping data 
segments consists of 65,536 data points. The number of non-
overlapping data points in a data segment is 8,192 (number of 
overlapping data points between two consecutive data 
segments is thus equal to 57,344). Among the 121 partitioned 
data segments, the first 60 data segments is used for training 
(classifier model generation) and the last 61 is used for testing. 
That is, for 14 cases, there are 840 training data files and 854 
testing data files.  

B. Pattern recognizers 

Two pattern recognizers have been used in the classification 
study. The first one is a minimum-distance classifier.  Suppose 

ia  is the zero-crossing pattern for class i (which is obtained 
by averaging of zero-crossing patterns of train data), where 

1,...,14i = , and jb  is the test data zero-crossing pattern which 
belongs to class j (where 1,...,14j = ). The minimum-distance 
classifier computes the Euclidian distance between  jb  and 

ia  ( 1,...,14i = ), Dist( , )j ib a , and assigns the class label to the 
test data, jb , that yields the minimum value. That is, the 

decision class label for  jb  is equal to ( )argmin Dist( , )j i
i

b a . 

As a second pattern recognizer, Support Vector Machine 
(SVM) is used. SVMs have been extensively used as a highly 
effective tool for pattern recognition and regression tasks [4]. 
One important attribute of SVM is that it uses the Structural 
Risk Minimization (SRM) principle in its formulation. SRM 
has been shown to be superior to traditional Empirical Risk 
Minimization (ERM) principle, which has been used by 
conventional neural networks [5]. For a detailed theoretical 
explanation of SVM, one should see [4], but in summary, 
SVM uses an optimal hyperplane to separate clouds of data in 
the feature space. A nonlinear mapping from inner products of 
the pattern space to a higher dimensional feature space is 
conducted via the use of kernel functions. Mapping from 
pattern space to a higher dimensional feature space results in 
linear separation of the clouds of data. Only the data points 
near the optimal hyperplane are used as a basis for the model 
and these are called support vectors. SVMs have been used in 
a number of applications such as: isolated handwritten digit 
recognition [6], [7], object recognition [8], speaker 
identification [9], and face detection in images [10]. 

C. Classification results       

The minimum-distance classifier when using zero-crossing 
patterns as features yielded a correct classification rate of 
78.22% for the test data (correct classification rate was 
85.48% when case A and case “A + A” are considered as one 
same class; it should be noted that since A corresponds to a 
Gaussian Lorentzian process, the mixture of A with itself, 
A+A, shows the same stochastic characteristics as case A). 
The confusion matrix for the min-distance classifier using 
zero-crossing patterns is shown in Table 1. 

    The same minimum distance classifier has been applied but 
this time with the PSD patterns used as the features. With this 
configuration, a correct classification rate of 72.01% has been 
observed (correct classification rate was 78.81% when case A 
and case “A + A” are considered as one class). It can be 
recognized that the use of zero-crossing patterns provided 
better correct classification performance when compared to 
the use of PSD patterns in the same classifier. The confusion 
matrix for the min-distance classifier with PSD patterns is 
shown in Table 2. 

Finally, a nonlinear SVM Classifier with a radial basis 
kernel function has been applied using the zero-crossing 
patterns as the features (the two parameters in the SVM 
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classifier are set as: gamma = 2, C= 0.5). The correct 
classification rate with the SVM classifier was 80.91 % 
(correct classification rate was 87.47% when case A and case 
“A + A” are considered as one class). Table 3 shows the 
corresponding confusion matrix.  

The classification results indicated that the zero-crossing 
patterns of the new method are highly promising for 
generating distinct fingerprints of chemical agents, and their 
performance exceeded the PSD patterns.  

 
Table 1 Confusion Matrix for Test Data using the Minimum-Euclidian-Distance Pattern Classifier with Zero-Crossing Patterns  

 A B C D A+A B+B C+C D+D A+B A+A+B A+B+B C+D C+C+D C+D+D 
A 0.49 0.00 0.00 0.00 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
B 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C 0.00 0.28 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
D 0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 

A+A 0.51 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
B+B 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C+C 0.00 0.21 0.00 0.00 0.00 0.00 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
D+D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.18 0.08 
A+B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

A+A+B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 
A+B+B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

C+D 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.38 0.00 
C+C+D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.25 0.36 0.05 
C+D+D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.87 

 
 

Table 2 Confusion Matrix for Test Data using the Minimum-Euclidian-Distance Classifier with PSD Spectrum Patterns 
 

 A B C D A+A B+B C+C D+D A+B A+A+B A+B+B C+D C+C+D C+D+D 
A 0.62 0.00 0.00 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
B 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
D 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

A+A 0.57 0.00 0.00 0.00 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
B+B 0.00 0.00 0.00 0.00 0.00 0.62 0.00 0.00 0.00 0.36 0.02 0.00 0.00 0.00 
C+C 0.00 0.00 0.02 0.00 0.00 0.00 0.74 0.02 0.00 0.00 0.00 0.21 0.02 0.00 
D+D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.11 0.00 0.00 
A+B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

A+A+B 0.00 0.00 0.00 0.00 0.00 0.56 0.00 0.00 0.00 0.30 0.15 0.00 0.00 0.00 
A+B+B 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 

C+D 0.00 0.00 0.00 0.07 0.00 0.00 0.03 0.31 0.00 0.00 0.00 0.34 0.20 0.05 
C+C+D 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.03 0.00 0.00 0.00 0.02 0.46 0.28 
C+D+D 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.26 0.70 

 
 

Table 3 Confusion Matrix for Test Data using SVM classifier with Zero-Crossing Patterns  
 

 A B C D A+A B+B C+C D+D A+B A+A+B A+B+B C+D C+C+D C+D+D 
A 0.66 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
B 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C 0.00 0.30 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
D 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

A+A 0.57 0.00 0.00 0.00 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
B+B 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C+C 0.00 0.15 0.00 0.00 0.00 0.00 0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
D+D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.18 0.07 
A+B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

A+A+B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 
A+B+B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

C+D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.67 0.15 0.00 
C+C+D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.20 0.39 0.07 
C+D+D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.03 0.87 

 

V. CONCLUSION 
In this paper, we introduced and tested zero-crossing 

analysis as a new method for generating fingerprints from 

stochastic signals. The tests were carried out by use of 
practical types of sensor signals and pattern recognition 
techniques are applied to the generated fingerprints. Pattern 
recognition tests indicated that the zero-crossing patterns yield 
more distinct signatures with respect to each other. By using 
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more advanced classifiers such as “SVM (Support Vector 
Machines)”, the accuracy of the pattern recognition could be 
even further improved, which we have observed in our results. 
Therefore our method turned out to be an 
effective tool to identify noise processes 
with different spectra or amplitude 
distribution with at least 1000 times less 
calculation and correspondingly lower 
energy need than that of the Kedem or the 
FFT methods.  
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