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Abstract 

 

A novel wavelength locking method for tunable diode lasers based on a photoacoustic (PA) 

detection unit is presented. A wavelength modulated laser is repeatedly tuned over an absorption 

line of a small molecule in the gaseous phase and the generated PA signal is recorded. In the 

phase variation curve of the recorded PA signal there is a 180 degree phase reversal around the 

peak of the absorption line and the corresponding inflection point is a characteristic wavelength 

feature to be used for wavelength locking. An automated algorithm has been developed which 

has less than two seconds execution time if the optical absorption coefficient at the peak of the 

absorption line is at least 210
-5 

cm
-1

. With this algorithm the wavelength of a near-infrared 

distributed feedback (DFB) diode laser can be locked with an absolute accuracy of 60 fm (i.e. 

relative accuracy of 410
-8

) or better even at atmospheric sample gas pressure. As there is no 

need to stabilize the gas pressure or temperature or the concentration of the light absorbing 

component and the PA detection unit can be easily integrated into various experimental set-ups, 

the proposed method has the potential to be applicable even under demanding industrial or field 

conditions.  
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1. Introduction 

In various applications of single mode tunable diode lasers it is crucially important to 

lock the laser wavelength with high accuracy. A typical example is optical absorption 

spectroscopy based gas concentration measurements, e.g. with distributed feedback (DFB) single 

mode diode lasers in the near-infrared region. In this application the wavelength stability and 

accuracy of the laser is especially critical whenever the measurement is performed either at 

varying total gas pressures or on a multi-component gas sample which contains components with 

overlapping optical absorption spectra at the wavelength(s) of the measurement [1-2]. Another 

important example is the telecommunication industry [3-4].  

The wavelength of DFB diode lasers can vary directly due to variations in the 

environmental conditions, especially of the ambient temperature [5]. Furthermore the variations 

of the environmental temperature due to the non-zero temperature coefficients of electronic 

components and their ageing can cause drifts of the set laser temperature and set operational 

current causing a wavelength variation. Moreover the wavelength can vary spontaneously due to 

the so called ageing effects [6-7]. Due to the non-controllable ageing effects the stabilization of 

all the environmental parameters which effect the wavelength of the laser is insufficient and the 

use of an active wavelength locking mechanism is required.  

DFB diode lasers can be tuned by changing either the temperature or the applied driving 

current. Temperature tuning can be performed with the help of a Peltier element and an NTC 

(negative temperature coefficient) thermistor integrated into the laser package [8]. With 

temperature tuning the wavelength of the diode laser can be tuned with response time typically in 

the seconds range, and with tuning efficiency of 0.1 nm/K. The laser driving current can also be 
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used for wavelength tuning with a typical efficiency of 5 pm/mA and with a response time in 

the sub-millisecond range. The numerical values of these tuning efficiencies vary from laser to 

laser but they are characteristic to a given one.  

The possibility of laser wavelength locking with relative accuracy of λ/λ=10
-14

 has 

already been demonstrated [9] which even makes possible to measure the fortuitous drift of 

fundamental physical constants like Plank constant or electron charge [10]. The goal of the work 

presented here is not to concur with the best available accuracy, but rather to propose a simple, 

robust, widely usable and for many applications sufficiently accurate method operable even 

under non-laboratory conditions.  

This paper is organized as follows. A brief overview of the available wavelength locking 

techniques is followed by the description of the applied photoacoustic (PA) detection unit and its 

supplementary experimental setup. Next the suggested wavelength locking method is presented 

followed by the results of the test measurements. In the appendix a theoretical description of the 

proposed method is given. 

 

2. Overview of the currently available wavelength locking methods  

Wavelength locking is usually performed by comparing the wavelength of a light source 

to a reference wavelength followed by the elimination of the measured difference. By 

illuminating through a wavelength etalon with the laser beam and recording the output light 

intensity spectrum, a characteristic spectral feature which e.g. belongs to a local extreme value 

for the transmitted light power can be searched and the laser wavelength can be locked to this 

wavelength feature. All the commonly used wavelength etalons, e.g. high finesse Fabry-Perot 
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interferometers, high resolution monochromators, narrow bandwidth Lyot-filters [11] have 

certain disadvantages. In general it is rather challenging to build them into a sufficiently robust 

construction applicable outside optical laboratories and they are usually rather expensive 

especially whenever highly accurate wavelength locking is required. Very often the uncertainty 

of the wavelength locking is increased considerably by the wavelength instability of the etalon 

itself.  

Using the absorption or emission spectra of atoms or small molecules in the gaseous 

phase for wavelength locking purposes is a straightforward approach as these absorption lines 

are fairly narrow and under stable environmental conditions (i.e. constant pressure, temperature 

and gas composition) their spectral characteristics do not vary. As an example with Lamb dip 

spectroscopy based wavelength locking on low pressure gases having Doppler broadened 

absorption lines relative accuracy of λ/λ=10
-10

 can be achieved [12]. However it is rather 

difficult to apply this method either on pressure broadened absorption lines or under non-ideal 

measurement conditions e.g. outside of an optical laboratory. 

Recently an alternative wavelength locking method which is based on photoacoustic (PA) 

signal generation and detection has been suggested [13]. In the proposed method the wavelength 

of a wavelength modulated laser is tuned over an absorption line of water vapor and a 

characteristic feature in the recorded PA signal is used as wavelength reference. The relative 

accuracy with which the wavelength of the laser can be locked was found to be about λ/λ 

=310
-7

 while the method also has the advantage of short execution time especially compared to 

step by step recording the absorption spectra. However the method has certain disadvantages too: 

the wavelength of the selected absorption feature was found to be rather sensitive to the 
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environmental conditions especially to the gas pressure, and in some cases the wavelength 

determination with the method is equivocal. That is why a similar but improved method is 

presented here which is also based on simultaneous wavelength modulation and tuning over a 

molecular absorption line combined with PA signal generation and detection, but instead of the 

amplitude rather the phase of the generated PA signal is used for wavelength locking purposes as 

it will be described below.  

 

3. The photoacoustic effect 

The PA effect, discovered by A.G. Bell [11-12], is the conversion from light to acoustic 

energy through the consecutive processes of light absorption, non-radiative molecular relaxation, 

local heating, thermal expansion and sound wave generation. If a gas sample is illuminated by a 

train of light pulses, or by intensity or wavelength modulated light, which are at least partially 

absorbed by the sample, the absorbed light energy generates acoustic waves. In most of the PA 

experimental arrangements the measured gas sample is introduced into an acoustic resonator, 

which amplifies the acoustic signal which in turn is measured by a sensitive microphone. The 

microphone signal is usually processed by using either lock-in or synchronized sampling 

technique. Nowadays tunable lasers or optical parametric oscillators are commercially available 

from the near UV to the mid IR. This huge variety of light sources and the development of 

sensitive and stable microphones has given the possibility of developing sensitive and selective 

gas analysis systems based on PA spectroscopy [13]. 

Rosencwaig and Gersho [14] have shown that the amplitude of the acoustic wave 

generated by the PA effect is proportional to the modulated part of the absorbed light power. In 
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case of neglecting an instrument specific phase shift, from the theory of Fourier transformation it 

follows that the PA signal is proportional to the time derivate of the absorbed laser power: 

 abs

d
PA P

dt
 , (1) 

where Pabs is the absorbed light power and t is time. In case of week absorption the amplitude of 

the microphone signal is a linear function of the absorbance. Indeed linearity over several orders 

of magnitude of concentration was observed in various PA measurements [15].  

 

4. Experimental 

4.1. The PA detection unit for wavelength locking 

The PA detection unit consists of a DFB diode laser, a longitudinal differential PA 

detection cell [19] supplemented with a pressure transducer and a computer controlled DSP 

(digital signal processing) based electronic unit, which controls the diode laser and amplifies and 

processes the microphone signal. Furthermore it performs signal generation and evaluation for 

the wavelength locking method as it is described below. This unit has been already successfully 

used in various gas detection applications [16]. 

The PA detection cell is filled with atmospheric air and the wavelength locking is 

performed on one of the absorption lines of water vapor. The diode laser (NEL NLK1E5E1AA) 

used in the reported demonstration measurements is tunable in the 1392±1 nm wavelength range. 

The tuning efficiencies of the diode laser have been determined by tuning it through this 

wavelength range, recording the PA spectrum of water vapor absorption lines and comparing this 

spectrum with that is listed in the PNNL spectroscopic database [20]. Based on this comparison 
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the temperature and current tuning efficiencies of the laser are 101 pm/K, and 4.9 pm/mA, 

respectively. The temperature of the laser chip has been actively stabilized by the electronics 

with an estimated accuracy of 1 mK or better, i.e. the wavelength instability of the laser due to 

temperature instability is equal or less than 100 fm. The laser current can be set by the electronics 

with a resolution of about 4 μA, i.e. the laser wavelength can be set by the driving current with a 

resolution of about 15 fm. For wavelength locking the absorption line of water vapor 

corresponding to the J’K’_1K’1=660←J’’K’’_1K’1=661 transition within the 1+3 combination 

band has been used. The peak optical absorption coefficient and the half width of the absorption 

line at atmospheric pressure are 3.3×10
-4

 cm
-1

 (@ 1% water vapor concentration) and 25 pm, 

respectively.  

 

4.2. The wavelength locking method 

Simultaneous wavelength modulation and tuning over the absorption line can be 

generated by repeatedly feeding the diode laser with the following driving current waveform: 

 ep0 Tt0)ft2sin(hgtI)t(I   , (2) 

where I0 is the time independent part of the current, g is the slope of the current ramp, h is the 

amplitude of the current modulation, f is the frequency of the modulation and Tep is the temporal 

length of an excitation period. The temporal variation of the absorbed light power by the sample 

gas generates the PA signal in accordance with Equation 1. The signal to noise ratio of the 

wavelength locking procedure has been increased by repeating the excitation sequence and 

averaging together the generated microphone signal sequences by using synchronized sampling 
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technique. Parameters of the wavelength locking procedure applied in the reported measurements 

are listed in Table 1. 

 The generated microphone signal S(t) is processed by performing a numerical Gabor-

transformation [21] on it at the laser modulation frequency as follows: 

   






2

T
t

2

T
t

'ft2i 'dte)'t(S
2

1
)t(SG 


, (3) 

where T is the temporal length of one laser modulation period (T=1/f). The phase variation curve 

is calculated as:  

 
  
  




 2mod
T

t2

)t(SGRe

)t(SGIm
arctan)t(   (4) 

where Im and Re denotes the imaginary and real parts, respectively and the second term on the 

right hand side accounts for the phase of the laser modulation. Finally, the laser driving current 

which corresponds to the inflection point of the phase variation curve (which is called in the 

following as locking current and the corresponding wavelength as locking wavelength) is 

determined numerically by searching for the maximum value of the derivative of the phase 

variation curve.  

 

4.3. Supplementary set-up  

In order to study the effect of the temperature and pressure of the sample gas on the 

performance of the wavelength locking algorithm the PA detection unit was supplemented with 

the following components. First of all a heating unit was applied with which the temperature of 
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the PA detection cell and consequently also the temperature of the measured gas sample could be 

stabilized to any value between 290 and 330 K with an accuracy of ±0.1 K. Furthermore a gas 

handling unit was added with which the pressure of the sample gas could be varied between 100 

and 1000 mbar. As it can be seen on Figure 1 the gas handling unit contains a humidifier for 

generating variable water vapor concentration in the measured gas, a stepper motor controlled 

needle valve for setting the gas pressure in the PA cell, a mass flow controller ensuring a stable 

gas flow rate through the cell and a vacuum pump for sucking the humidified air through the PA 

cell. 

4.4. Characterization and testing 

Dependence of the accuracy of the wavelength locking method on temperature: the 

wavelength locking procedure was repeatedly performed at PA detection cell temperatures of 

295, 305, 315, and 325 K. During this test the gas pressure was stabilized at 950±1 mbar. 

Dependence of the accuracy of the wavelength locking method on pressure: as the 

primary planned application of the proposed wavelength locking method is atmospheric water 

vapor measurement with a photoacoustic instrument operated on-board of a research or 

passenger aircraft [22], pressure dependence was studied in the pressure range typical for this 

application, i.e. at pressures between 100 and 1000 mbar. During this test the PA cell 

temperature was stabilized at 325±0.1 K.  

Long term accuracy test: The wavelength locking procedure was continuously repeated 

for 30 days, while the temperature and the pressure of the gas was stabilized to 325 ± 0.1 K and 

to 950 ± 1 mbar, respectively. Furthermore every day once the PA spectrum of the water vapor 

absorption line was also recorded by setting the ramp parameter (g in Equation 2) to zero and by 
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changing the un-modulated part of the diode laser driving current (I0 in Equation 2) step-by-step. 

On the recorded spectrum a centered Voigt profile was fitted. In comparison with the proposed 

wavelength locking procedure this measurement has the disadvantage of being rather time 

consuming and the fitting algorithm requires rather large computational capacity. On the other 

hand one of the fitting parameters, i.e. the current value which corresponds to the center of the 

absorption line varies in perfect correlation with the variation in the locking current therefore it 

can be used as a reference.  

Dependence of the accuracy of the wavelength locking method on the optical absorption 

coefficient: In this test the wavelength locking algorithm was repeatedly executed while with the 

help of the humidifier the water vapor concentration was gradually increased from 10 to 10000 

ppmV corresponding to the variation of the peak optical absorption coefficient in the range of 

3.310
-7

 –3.310
-4

 cm
-1

. Each microphone signal sequence generated by the excitation sequence 

of Equation 2 was recorded for post-processing. During post-processing subsequent microphone 

signal sequences were averaged together before performing the Gabor transformation based 

wavelength locking algorithm as described above. In the following the symbol N denotes the 

number of microphone signal sequences averaged together and the accuracy of wavelength 

locking as a function of N at various peak optical absorption coefficients was investigated. 

During this test the temperature and the pressure of the gas were stabilized to 40 ± 0.1 C and 

950 ±1 mbar, respectively. 

 

5. Results and discussion 
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An example of the measured microphone signals and the calculated phase variation 

curves can be seen on Figure 2. a-b.  

During the temperature test the numerical value of the locking current was found to be 

independent from the PA cell (and correspondingly to the gas) temperature. This proves that in 

the studied temperature range neither the temperature induced line broadening nor the central 

wavelength shift of the absorption line has measurable effect on the wavelength locking 

procedure. Consequently the temperature stabilization of the PA detection cell is actually not 

required for the proposed wavelength locking method.  

Contrary to the temperature, the gas pressure was found to influence the locking 

wavelength as it can be seen on Figure 3, where the y-axis was calculated by multiplying the 

relative variation of the locking current with the current tuning rate of the diode laser. The 

measured pressure dependence can be accurately approximated with a parabola:  

 2

0 5.405 0.00188p p        (5) 

where λ is the variation of the locking wavelength in fm, λ0 is the extrapolated locking 

wavelength at 0 mbar, p is the pressure in mbar. It should be noted that this pressure dependence 

coincides quite well to the results of Hejie et al [23] who measured the pressure dependent line 

shift of the same absorption line. This pressure dependence necessitates the continuous 

measurement of the gas pressure and the application of a correction on the locking wavelength in 

accordance with Equation 5. With a commercially available general purpose pressure sensor the 

gas pressure can be measured with an accuracy and precision of 1 mbar, which according to 

Equation 5 corresponds to a locking wavelength inaccuracy of less than 4 fm throughout the 
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entire measured pressure range.  

During the long term stability test, due to the aging effect of the diode laser, a linear drift 

in the locking current with a slope of 3.36 μA/day was observed which can be converted to 16.46 

fm/day by multiplying it with the measured current tuning coefficient of the laser (Figure 4). The 

same variation was also observed in the laser current value corresponding to the center of the 

absorption line marked by closed circles in Figure 4. When this linear drift was subtracted from 

the measured locking currents, the resulting data had a normal distribution with a standard 

deviation of 10.6A i.e. 52 fm. This uncertainty can be considered as an upper limit on the 

accuracy of the proposed wavelength locking method.  

 The results of the measurements performed for determining the accuracy of the 

wavelength locking method on the optical absorption coefficient was evaluated in a way that for 

each optical absorption coefficient an averaging number (N) was searched above which the 

wavelength locking accuracy is equal to or better than the 52 fm determined during the long term 

accuracy test. As it can be seen on Figure 5 the measurement time (which is equal to NTep) 

varies with the square root of the optical absorption coefficient. However for optical absorption 

coefficients which are less than 1.910
-5

 cm
-1

 the 52 fm limit cannot be reached with any N. This 

limit corresponds to a microphone signal to noise ratio about 30. 

 

6. Conclusion  

A novel wavelength locking method, based on the simultaneous laser tuning and 

modulation over a pressure broadened absorption line, PA signal generation and detection, and a 
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numerical Gabor transformation based signal processing has been introduced. Results of 

measurements proved that for a water vapor absorption line in the near infrared the proposed 

method has an absolute accuracy of at least 52 fm (which corresponds to a relative accuracy of 

λ/λ = 410
-8

). This accuracy is at the limit of the wavelength setting capability of the 

electronics due to its finite current resolution. Besides water vapor, the absorption lines of other 

small gaseous molecules can be used for wavelength locking with the proposed method as well. 

The selected reference feature in the phase of the PA signal is univocal and therefore it can be 

used as a fully automatic wavelength locking method. Besides the short execution time and the 

accuracy, the main advantage of the method is that it does not require the use of a precise and 

expensive optical set-up. As the method is insensitive to the gas temperature and has well 

controllable pressure dependence due to the collisional shifting of the absorption line, there is no 

need to stabilize the temperature of the PA cell while the gas pressure in the cell can vary as well 

provided that it is measured and the pressure dependence of the locking wavelength is properly 

corrected.  

Due to the high sensitivity of the PA cell, the proposed method can be executed even on 

gas samples with low optical absorption coefficient (in the range of 10
-4

 cm
-1

) at the locking 

wavelength. In such cases the laser beam in the PA cell suffers almost no attenuation (the length 

of the PA cell is about 10 cm) and thus the beam leaving the cell is ready for further use. In other 

words the proposed method does not require the use of e.g. a beam splitter or any moving optical 

elements, i.e. the wavelength locking unit can be easily integrated into various optical set-ups. As 

the mechanical stability in case of a PA system is not a critical issue, the method can be applied 
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even in a rough industrial environment without increasing considerably the complexity of the 

system into which it is integrated. 
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Appendix: Theoretical background 

In the following a calculation method is presented with which the observed variation in 

the phase signal is verified theoretically.  

Above the threshold current of diode lasers the wavelength and power of the laser as the function 

of temperature and current can be given as: 

 
  0,I T aT bI    , (A1) 

 
  0laserP I P fI  , (A2) 
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where 0 is a virtual wavelength for 0 K temperature and 0 mA current, a is the temperature 

tuning coefficient, T is the temperature in K, b is the current tuning coefficient, and I is the 

applied laser diode current, P0 is the negative virtual power at 0 mA current and f is the slope of 

the power-current curve above the threshold limit. 

The simultaneous wavelength modulation and tuning can be produced with the 

previously discussed current waveform (2, Fig 6. a.). 

The absorption line is described as a Lorentzian profile which is a good approximation for 

pressure broadened single absorption lines under atmospheric circumstances: 

  
 

2

max 2
2

peak


  

  


 
 (A3) 

where max is the maximum value of the absorption,  is the FWHM of the absorption line, and 

peak is the wavelength of max. 

The absorbed power in case of week absorption can be approximated as: 

      abs laserP t P t t  (A4) 

As described previously the PA signal is proportional to the time derivate of the absorbed light 

power (1). Using the above described model (1, 8-10) the photoacoustic signal can be calculated 

analytically (Fig 6. b) and subsequently the Gabor transform and the phase variation curve (Fig 

6. c) can be evaluated numerically. There is a good qualitative agreement between the measured 

and the calculated phase variation curves. In order to achieve quantitative agreement the applied 

model has to be extended by taking into account the linewidth of the laser, the modulation 

broadening properties of the laser, the acoustic properties of the PA cell while a more realistic 
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mathematical model for the absorption line like Voigt, Rautain or Galatri ones has to be used as 

well [24].



 18 

References: 

 

1. Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of 

methane gas by differential absorption measurement using a wavelength tunable DFB 

LD,” Photonics Technology Letters 3, 86 (1991)  

2. Y. Sakai, S. Sudo, T. Ikegami, “Frequency stabilization of laser diodes using 1.51-

1.55 μm absorption lines of 
12

C2H2 and 
13

C2H2 molecules,” Qantum Electronics 28, 

75 (1992) 

3. Y. Park, S. T.  Lee, C. J. Chae, “A novel wavelength stabilization scheme using a 

fiber grating for WDM transmission” Photonics Technology Letters 10, 1446 (1998) 

4. L. Colace, G. Masini, G. Assanto, “Wavelength stabilizer for telecommunication 

lasers: design and optimization,” Journal of Lightwave Technology, 21,0 1749 (2003) 

5. H. Ghafouri-Shiraz, “Distributed Feedback Laser Diodes and Optical Tunable 

Filters,” (Willey 2003) 

6. R. Matthey, C. Affolderbach, G. Mileti, “Methods and evaluation of frequency aging 

in distributed-feedback laser diodes for rubidium atomic clocks,” Optics Letters 36, 

3311 (2011) 

7. S. L. Woodward, P. Parayanthal, U. Koren, “The effects of aging on the Bragg 

section of a DBR laser,” Photonics Technology Letters 5, 750 (1993) 

8. J. Seufert, M. Fischer, J. Koeth, R. Werner, M. Kamp, A. Forchel, “DFB laser diodes 

in the wavelength range from 760 nm to 2.5 µm,” Spectrochimica Acta Part A: 

Molecular and Biomolecular Spectroscopy  60, 3243 (2004) 



 19 

9. Th. Udem, R. Holzwarth, T.W. Hänsch, “Optical frequency metrology,”  Nature 416, 

233  (2002) 

10. M.Fischer, N. Kolachevsky, M. Zimmermann, R. Holzwarth, Th. Udem, T. W. 

Hänsch, M. Abgrall, J. Grünert, I. Maksimovic, S. Bize, H. Marion, F. Pereira Dos 

Santos, P. Lemonde, G. Santarelli, P. Laurent, A. Clairon,  C. Salomon, M. Haas, U. 

D. Jentschura, C. H. Keitel, “New limits on the drift of fundamental constants from 

laboratory measurements” Physical Review Letters 92, 230802 (2004) 

11. W. Demtröder, “Laser Spectroscopy,” (Springer, 2002) 

12. W. E. Lamb, Jr., “Theory of an Optical Maser” Physical Review 134, A1429 (1964)  

13. M. Szakáll, J. Csikós, Z. Bozóki, G. Szabó, “On the temperature dependent 

characteristics of a photoacoustic water vapor detector for airborne application,” 

Infrared Physics & Technology 51, 113 (2007) 

14. A.G. Bell, “On the production and reproduction of sound by light: the photophone,” 

American Journal of Science 20, 305 (1880) 

15. A. G. Bell, “Upon the production of sound by radiant energy,” Philosophical 

Magazine and Journal of Science 11, 510 (1881) 

16. Z. Bozóki, A. Pogány, G. Szabó, “Photoacoustic instruments for practical 

applications: present, potentials, and future challenges,” Applied Spectroscopy 

Reviews 46, 1 (2011) 

17. Rosencwaig, A. Gersho, “Theory of Photoacoustic Effect with Solids,” Journal of 

Applied Physics 47, 64 (1976) 



 20 

18. Z.Bozóki, M. Szakáll, Á. Mohácsi, G. Szabó, Zs. Bor, “Diode laser based 

photoacoustic humidity sensors,” Sensors and Actuators B 91, 219 (2003) 

19. A. Miklós, P. Hess, Z. Bozóki, „Application of acoustic resonators in photoacoustic 

trace gas analysis and metrology,” Review of Scientific Instruments 72 1937 (2001) 

20. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, P. A. Johnson, 

“Gas-Phase Databases for Quantitative Infrared Spectroscopy,” Applied Spectroscopy 

58, 1452 (2004) 

21. I.N. Bronshtein, K.A. Semendyayev, G. Musiol, H. Mühlig, “Taschenbuch der 

Mathematik,” (Springer 1999) 

22. C. A. M. Brenninkmeijer, P. Crutzen, F. Boumard, T. Dauer, B. Dix, R. Ebinghaus, 

D. Filippi, H. Fischer, H. Franke, U. Frieß, J. Heintzenberg, F. Helleis, M. Hermann, 

H. H. Kock, C. Koeppel, J. Lelieveld, M. Leuenberger, B. G. Martinsson, S. 

Miemczyk, H. P. Moret, H. N. Nguyen, P. Nyfeler, D. Oram, D. O'Sullivan, S. 

Penkett, U. Platt, M. Pupek, M. Ramonet, B. Randa, M. Reichelt, T. S. Rhee, J. 

Rohwer, K. Rosenfeld, D. Scharffe, H. Schlager, U. Schumann, F. Slemr, D. Sprung, 

P. Stock, R. Thaler, F. Valentino, P. Van Velthoven, A. Waibel, A. Wandel, K. 

Waschitschek, A. Wiedensohler, I. Xueref-Remy, A. Zahn, U. Zech, H. Ziereis, 

“Civil Aircraft for the regular investigation of the atmosphere based on an 

instrumented container: The new CARIBIC system,” Atmospheric Chemistry and 

Physics 7, 18 (2007) 4976 

23. Hejie Li, A. Farooq, J. B. Jeffries, R. K. Hanson, “Diode laser measurements of 

temperature-dependent collisional-narrowing and broadening parameters of Ar-



 21 

perturbed H2O transitions at 1391.7 and 1397.8nm,” Journal of Quantitative 

Spectroscopy & Radiative Transfer 109, 132 (2008) 

24. J. Buldyreva, N. Lavrentieva, V. Starikov,” Collisional Line Broadening And Shifting 

Of Atmospheric Gases; A Practical Guide for Line Shape Modelling by Current 

Semi-classical Approaches” (Imperial College Press, 2010) 



 22 

Biographies: 
 

Biographies and photographs of the authors are not available. 



 23 

Table and caption 

Table 1:  

Amplitude of current modulation (h) 6 mA 

Modulation frequency (f) 7000 Hz 

Slope of the current ramp (g) 215 mA/sec 

Duration of one excitation and one sampling period (Tep) 9 msec 

PA signal sampling rate 56000 Hz 

 

Table 1 caption: : Modulation and sampling parameters of the reported wavelength locking 

procedure 

 

Figure captions: 

 

Figure 1. Schematics of the experimental setup. The PA detection unit (encircled with a dashed 

line) is supplemented with a temperature stabilization unit, a gas handling system and a 

humidifier which are used for varying the sample gas temperature, pressure and water vapor 

concentration, respectively. Thick, thin and wavy lines are representing the gas tubes, the 

electrical connections and the modulated light beam, respectively 

 

Figure 2. An example of the measured PA signals (a), and the calculated phase variation curves 

(b). 



 24 

 

 

Figure 3. Dependence of the locking wavelength on the gas pressure within the PA detection 

cell. 

 

Figure 4. Long term variation of the locking current (left side Y axis) and that of the relative 

wavelength (right side Y axis). The grey curve is the locking current determined by the proposed 

algorithm, while closed circles are the current values corresponding to the center of the 

absorption line determined by Voigt profile fitting. The black line is the result of line fitting to 

the locking current variation. 

 

 

Figure 5. The measurement (averaging) time needed for the accuracy of the wavelength locking 

method to reach the 52 fm limit. Symbols represent measurement results; line is the fitted square 

root dependence. 

 

Figure 6. The simultaneous wavelength tuning and modulation (a); the calculated PA signal (b), 

and the phase variation curve (c) with the inflection point. 
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Figure 6: 

 


