
Abstract Runtime Monitoring with USE
Lars Hamann

University of Bremen
Germany

lhamann@informatik.uni-bremen.de

László Vidács
University of Szeged

Hungary
lac@inf.u-szeged.hu

Martin Gogolla
University of Bremen

Germany
gogolla@informatik.uni-bremen.de

Mirco Kuhlmann
University of Bremen

Germany
mk@informatik.uni-bremen.de

Abstract—We present a tool that permits developers to monitor
and verify assumptions at an abstract level about an application
running on a virtual machine. On the implementation level, a
so-called platform aligned model (PAM) described in the UML
(Unified Modeling Language) and enriched by OCL (Object
Constraint Language) requirements is used to formalize these
assumptions. Our solution allows a developer to concentrate on
verifying core parts of an implementation while ignoring major
parts of peripheral technical details. In order to easily detect a
PAM which characterizes the central requirements, we propose
a semi-automatic approach. First, a complete program model is
generated by analyzing the source code. Afterwards, this model
is reduced by the user to central classes and associations. This
reduced model is enriched by the assumptions about the expected
behavior of the system. The monitor connects to the running
system at a particular point in time and builds up an abstract
snapshot, i.e., an instance of the PAM, which corresponds to
the current state. When the application is further executed this
snapshot is synchronized by listening to changes in the running
system. During monitoring the stated assumptions are validated
and possible violations are reported to the user.

I. INTRODUCTION

Formal models are playing an important role in several
areas of software engineering. For example in model checking
a formal model of a system has to be specified to verify
properties of a system. This formal model needs to be a valid
abstraction of the concrete system to be able to exclude errors
which are introduced by the modeling task. In this paper we
present a tool-chain which is able to simulate an abstract
model by executing and monitoring its related implementation.
The model is automatically built from the source code of an
implementation. To be able to focus on central parts of the
application we present filtering techniques to reduce the overall
size of the system model. This reduced model is enriched by
the user with system assumptions which are formulated as
OCL [1] invariants, pre- and postconditions. The last model is
called a platform aligned model (PAM). If the monitor detects
a violation of a formulated assumption at runtime the user is
informed. She can now explore the monitored system in an
abstract way to identify the cause of the violation.

Several approaches on runtime verification exist. A detailed
comparison of runtime verification approaches using OCL can
be found in [2]. None of them uses the events provided by a
virtual machine to react on changes in the monitored system.
A runtime monitoring approach using other formal languages
is for example JavaMOP [3].

Extractor 

USE 

Monitor 

VM 

Implementation 

Assumptions Model (PAM) 

Instance 

Snapshot 

Fig. 1. Tools and artifacts

II. MONITORING APPROACH IN USE

The tools and artifacts used in our approach are shown
in Fig. 1. The artifacts are shown as solid rectangles. The
dashed rectangles are the tools and cover the artifacts which
are required by them.

A central part of our monitoring process is the UML and
OCL tool USE [4] placed at the bottom of the figure. It
uses a model and an instance of such a model to validate
constraints included in the model. In the context of our
monitoring approach the model instance is called a snapshot.
In the upper part of the figure a virtual machine (VM) is
shown, which executes an implementation. The runtime data
of the application (heap space, stack frames, etc.) is labeled
as the ‘instance’ of the implementation. The required parts
of an instance are read by the monitor and transformed into
a snapshot, i. e., an instance of the model provided to USE.
This model is generated by examining the source code of
the implementation and reducing it to central aspects of the
system. The central aspects depend on the assumptions a user
wants to check. Therefore, the generation task includes several
steps. Some of them can be done automatically while others
need user interaction. The result of this extraction process is
a model which concentrates on properties of the system by
ignoring irrelevant parts. After the extraction step the model is
enriched with assumptions that should be checked at runtime.

A. USE (UML-Based Specification Environment)

The main task for USE originally was to support the design
of systems in an early stage of development. A developer
can specify a model of a system with a subset of UML
and extend is with constraints formulated in OCL (Object
Constraint Language, c. f., [1]). The formulated constraints
can be validated by creating system states also called object

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE Publicatio Repozitórium - SZTE - Repository of Publications

https://core.ac.uk/display/35345753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


diagrams and examining the evaluation result of the constraints
against the specified system states. These system states can be
built manually as scenarios to validate if the specified model
behaves as expected. This manual checking is similar to unit
tests on the source level. Further, formal verifications can
be done to a certain degree by using a built-in system state
generator [5]. The most simple verification is to check if an
instance of a model exists, i. e., if the model is consistent. To
verify this, a user can search within predefined bounds for
a valid system state. If such a state is found, the model is
consistent which means no constraint contradiction occurs.

B. USE Monitor

The runtime monitor in USE [6] is realized as a plugin.
It currently supports the monitoring of applications running
inside a Java virtual machine (JVM). The monitor requires
a so-called platform aligned model (PAM) which specifies
central aspects of a system to monitor. It is called platform
aligned, because information about the implementation is
needed within the model, e. g., package names or attribute
names for association ends. The monitor can be attached to
a running system at any time. After it is connected it takes
a snapshot of the running system and maps instances inside
the virtual machine to instances of classes of the PAM. The
snapshot only contains instances of modeled classes, attributes
and associations. Therefore, a snapshot can be seen as a subset
of the central data of the running system. After this initial
snapshot has been taken a user can examine static aspects of
the system by checking structural constraints, e. g., specified
multiplicities or invariants. Dynamic validation can be done by
resuming the system which is monitored. After the application
has been resumed by the monitor, the monitor reacts on
several events coming from the virtual machine to keep track
of changes and to be able to synchronize the snapshot with
the running instance. When monitored operations (operations
specified in the PAM) are called inside the running system, the
monitor pauses the running system and validates the specified
preconditions for the operation. If a precondition fails the user
is notified and she can react on this violation by examining the
failed precondition and the current system state. Analogously
to normal testing, she has to decide whether the specified
constraint is erroneous or a feature of the implementation. If
no violation is encountered the execution is continued until
the operation is returning or other monitored operations are
called. When the operation is returning, the monitor pauses
the execution again and checks the specified postconditions
of the operation. At this point, a central benefit of reusing
USE as an execution environment for models gets visible. USE
records the system state before an operation was called which
allows the validation of postconditions including the usage of
the OCL-keyword @pre. In our previously published work [6]
the monitor was controlled by simple shell commands inside of
the USE shell. The approach was extended to a more intuitive
user interface (see Fig. 4). This also allows finer controlled
messages to the user and an elegant way to integrate model
breakpoints into the monitor in the future.

Fig. 2. Parts of a running FreeCol game

context Unit::buildColony(colony:Colony)
pre movesLeft: self.movesLeft > 0
pre noSurroundingColonies:
self.location.oclIsKindOf(Tile)and
self.location.oclAsType(Tile).
getNeighbours()->forAll(t |
t.settlement.isUndefined())

Fig. 3. PAM for FreeColonization and two assumptions

C. Sample monitoring process

To be able to compare the results of the semi-automatic
PAM extraction process to a hand written PAM we reuse the
example shown in [6]. In the example we build a PAM for the
open source computer game Free Colonization. We concen-
trate on monitoring the execution of one central functionality
of the game: the founding of colonies. The example game
situation is shown in Fig. 2. The left part is the state before
the founding of a colony, whereas the right part shows the state
after founding the colony Jamestown. A PAM for the game
with assumptions about the behavior formulated as pre- and
postconditions is shown in Fig. 3. In addition to the pre- and
postconditions introduced to the model, also a query operation
getNeighbours() was added to the PAM to be able to
reuse this expression. The presented preconditions in Fig. 3
state, that an operation call to buildColony is only valid, if
the unit has moves left and there are no surrounding colonies.
The screenshot of the USE system presented in Fig. 4 shows
the result of attaching the monitor to FreeCol when the game
is in the left state of Fig. 2 and monitoring the execution of
the founding of Jamestown which results in the right state of
Fig. 2. Parts of this state are shown as an object diagram in
USE on the right upper side of the screenshot. The execution
flow is shown in the center of the screenshot. Please note, we
used a more detailed PAM including additional operations for
the screenshot to make it more meaningful but we show only
a fragment in Fig. 3.



Fig. 4. System state presented in USE while monitoring

D. Support for PAM extraction

In our previous work the platform aligned model was
created manually by exploring the source code as shown
in Fig. 3. Although finding the appropriate part of a large
program remains a human task, it can be fairly supported by
reverse engineering techniques. The main problem with an
automatically extracted model is its size. Coping with huge
models at runtime is challenging: they cause severe perfor-
mance issues for modeling tools; and they hinder the visual
observation and program understanding of the developer.

We approximate the PAM model by a reverse engineered
class diagram. We extract the PAM of the whole application
from the source code and export it as a USE model. The
essential, important part of the model is achieved using further
filtering. Thus we employ filtering at two levels:

• pre-filtering - unnecessary details are filtered out during
the model building phase

• USE filtering - search/select the important part of the
model in USE

Figure 5 contains the overview of the tools used for auto-
matic extraction of PAM. Static analysis of source code is done
by the Columbus Java analyzer [7]. The obtained program
model is converted to a higher level, language independent

object-oriented model. The existing Columbus tool-chain is
extended with a new module, which computes the PAM and
exports it to a USE model.

USE model 
Java program 

model 

Columbus 
analyzer 

Converter 

Language 
Independent 
OO model 

PAM 

.java .java .java .java … 

Exporter 

Fig. 5. Tool architecture of the PAM Extractor

During PAM extraction we obtain facts from the source
code and convert them to a valid USE model. First, a base
class diagram is built consisting of classes, attributes, methods,
inheritance relationships and associations. Associations are
extracted as suggested by Kollmann et al. [8]. The final model
has to conform to several rules like source code traceability,



concise and consistent naming of elements and unique navi-
gability of associations. Source code elements at some points
break the well-formedness rules of USE models, e.g. when
an attribute is defined both in a base and in a descendant
class. To overcome these problems, the names in the model
are changed at several points - shortened or made unique
by appending unique identifiers to names. The source code
traceability of modified names is assured by name annotations
in the USE model. Pre-filtering currently consists of dropping
out attributes taking part in associations and filtering out Java
library classes and their references (attributes, methods with
library class parameters).

We validated our reverse engineering solution by extracting
the model of the FreeCol program. The extracted USE model
was filtered to be comparable to the model made previously
by hand. In the USE system there are several possibilities
to search classes and their neighbours; and to crop and hide
appropriate classes to get a reduced model showing essential
part of the application. A typical filtering step can be seen
in Fig. 6: the immediate neighbours of selected class Tile are
shown, while others are hidden.

Fig. 6. Examining neighbours of class Tile

Figure 7 shows the automatically extracted model after
filtering in USE. The main difference compared to Fig. 3 lies in
the discovered associations. Settlement and Tile are associated
in both directions, but there is also an additional association
from the direction of Tile pointing to the owning settlement.
Similar observations can be made with Unit and Location as
well. Furthermore, type : TileType is an attribute of class Tile
in the manual model, while it is generated as an association
according to the rules of automatic model extraction.

Finally, using the generated model we successfully re-
produced the same condition checking procedure as done
previously on manually the created models.

III. CONCLUSIONS

We have presented a tool-chain that allows developers to
monitor a Java application in form of a platform aligned
model (PAM) enriched by OCL requirements. With an exam-
ple we have shown that the tool-chain is capable of handling
non-trivial applications with several hundred classes. As future
work, larger case studies have to be carried out. In order to

Fig. 7. Extracted USE model of the Freecol example

find key classes and to support the PAM discovery, concept
location techniques could be applied. Furthermore, we think
of (what we would call) ‘model breakpoints’ which permit a
developer to force the application to pause at a certain point
in the model, not on a specified line in the code. Model
breakpoints may be employed in connection with particular
conditions. Another line of research would be to incorporate
traces in the approach so that certain operation call sequences
can be monitored. Last but not least we could check to what
extent the approach is applicable to other virtual machines like
CLR (Common Language Runtime) for .NET languages.

REFERENCES

[1] Object Constraint Language Specification Version 2.2, OMG -
Object Management Group, Feb. 2010. [Online]. Available: http:
//www.omg.org/spec/OCL/2.2

[2] C. Avila, A. Sarcar, Y. Cheon, and C. Yeep, “Runtime Constraint Check-
ing Approaches for OCL, A Critical Comparison,” in Proceedings of the
22nd International Conference on Software Engineering & Knowledge
Engineering (SEKE’2010). Knowledge Systems Institute Graduate
School, 2010, pp. 393–398.

[3] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Ros, u, “An Overview
of the MOP Runtime Verification Framework,” International Journal on
Software Techniques for Technology Transfer, 2011.

[4] M. Gogolla, F. Büttner, and M. Richters, “USE: A UML-Based Specifi-
cation Environment for Validating UML and OCL,” Science of Computer
Programming, vol. 69, pp. 27–34, 2007.

[5] M. Gogolla, M. Kuhlmann, and L. Hamann, “Consistency, Independence
and Consequences in UML and OCL Models,” in Proc. 3rd Int. Conf. Test
and Proof (TAP’2009), C. Dubois, Ed. Springer, Berlin, LNCS 5668,
2009, pp. 90–104.

[6] L. Hamann, M. Gogolla, and M. Kuhlmann, “OCL-Based Runtime
Monitoring of JVM Hosted Applications,” in Proc. Workshop OCL and
Textual Modelling (OCL’2011), J. Cabot, R. Clariso, M. Gogolla, and
B. Wolff, Eds., ECEASST. Electronic Communications, journal.ub.tu-
berlin.de/eceasst/issue/view/56, 2011.

[7] L. Schrettner, L. J. Fülöp, R. Ferenc, and T. Gyimóthy, “Visualization of
software architecture graphs of java systems: managing propagated low
level dependencies,” in Proceedings of the 8th International Conference
on Principles and Practice of Programming in Java, PPPJ 2010, Vienna,
Austria, 2010, pp. 148–157.

[8] R. Kollmann and M. Gogolla, “Application of the UML Associations and
Their Adornments in Design Recovery,” in Proc. 8th Working Conference
on Reverse Engineering (WCRE’2001), P. Aiken and E. Burd, Eds. IEEE,
Los Alamitos, 2001.

Acknowledgment: The work of László Vidács was supported by the DAAD.


