
Predictive Complex Event Processing: A conceptual
framework for combining Complex Event Processing and

Predictive Analytics

Lajos Jenő Fülöp
University of Szeged
Árpád tér 2. H-6720

Szeged, Hungary
flajos@inf.u-szeged.hu

Gabriella Tóth
FrontEndART Software Ltd.
3. I/5. Zászló str., H-6722

Szeged, Hungary
gtoth@frontendart.com

László Vidács
RGAI, University of Szeged &

Hungarian Academy of
Sciences

Árpád tér 2. H-6720
Szeged, Hungary

lac@inf.u-szeged.hu

Árpád Beszédes
University of Szeged
Árpád tér 2. H-6720

Szeged, Hungary
beszedes@inf.u-

szeged.hu

Hunor Demeter
Nokia Siemens Network

Hungary
hunor.demeter@nsn.com

Lóránt Farkas
Nokia Siemens Network

Hungary
lorant.farkas@nsn.com

ABSTRACT
Complex Event Processing deals with the detection of complex
events based on rules and patterns defined by domain experts. Many
complex events require real-time detection in order to have enough
time for appropriate reactions. However, there are several events
(e.g. credit card fraud) that should be prevented proactively be-
fore they occur, not just responded after they happened. In this
paper, we briefly describe Complex Event Processing (CEP) and
Predictive Analytics (PA). Afterwards, we focus on a major fu-
ture direction of CEP, namely the inclusion of PA technologies into
CEP tools and applications. Involving PA opens a wide range of
possibilities in several application fields. However, we have ob-
served that only few solutions apply PA techniques. In this paper,
we define a conceptual framework which combines CEP and PA
and which can be the basis of generic design pattern in the future.
The conceptual framework is demonstrated in a proof–of–concept
experiment. Finally we provide the results and lessons learned.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems;
I.5.4 [Pattern Recognition]: Applications

General Terms
Design, Experimentation

Keywords
CEP, Complex event processing, predictive analytics

1. INTRODUCTION
Complex Event Processing (CEP) deals with collecting events from
multiple sources, detecting patterns, filtering, transforming, cor-
relating and aggregating them into complex events. Examples of
complex events are: the 2009 Stock Market Crash (finance and
banking), the 2007 DOS attack of the Estonian IP network (se-
curity) and the churn rate increase at a Communication Service
Provider (telecom). Event processing is not a new concept; it is
widely used in the industry to solve problems (e.g. a substantial
part of the GSM and internet infrastructure processes events). Typ-
ically each problem domain will define its own event formats and
communication protocols. Understanding events semantics and re-
lationship requires deep domain expertise. CEP alone cannot solve
this problem, however, it can provide a platform, where all event
sources can be plugged in, the events can be transformed to a nor-
malized form, and event operators can be applied on them to pro-
duce complex events. It is important to understand that the value of
the complex events decreases with time (e.g. tsunami warning is-
sued in 10 minutes vs. in 10 hours). This imposes several technical
requirements on CEP platforms: high scalability, high computation
power and low latency.

An other research area is Predictive Analytics (PA) that deals with
the analyzation of historical data to give predictions about a future
event. For the prediction, PA applies several statistical and data
mining techniques, for example clustering, classification, regres-
sion and so on. By applying these techniques, PA builds predictive
models which represents certain circumstances between available
features or predictors related to the event. PA faces problems like
how to define predictors and how to calculate them, how to define
the event, and so on.

Synergy between CEP and PA offers valuable chances. PA deals
with every kind of prediction (long term, short term, classification,
regression, etc.), while CEP deals with detecting complex events
occurring in real time. By combining these two areas both can
support the other: (i) PA supports CEP because one could realize

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE Publicatio Repozitórium - SZTE - Repository of Publications

https://core.ac.uk/display/35345752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

complex events in the short term future, while (ii) CEP techniques
can ensure the calculation of predictors for PA.

The paper is organized as follows. In the next section a brief in-
troduction to these two areas are presented, followed by a section
on related work. In Section 4 we present the conceptual framework
for combining CEP and PA and it is demonstrated through a proof-
of-concept experiment. Next, we discuss threats to validity and in
the final section we draw conclusions.

2. BACKGROUND
Complex event processing. By definition an event is "anything
that happens, or is contemplated as happening" [5]. The events
can occur in the real world (e.g., an airplane has landed) or can
be virtual (e.g., an airplane has landed in an airplane simulator).
Physically, events can come from an external database, an RFID
data sensor, a service, an enterprise information system, etc. [16].
Events are distinguished based on their complexity: an event can
be either simple or complex. A complex event is the abstraction of
simple or complex events, for example, the landing of an airplane
is a complex event which is built up of several simple or complex
events: the pilot decreases the trust, increases the drag, controls the
crosswind, and introduces flare. The events can be linearly ordered
in event streams or partially ordered in event clouds. The events
travel from the event sources or producers through event channels
to the event sinks or consumers. An event processing engine acts as
event sink for simple events, and as event source of complex events.
While the events travel from sources to sinks, various Event Pro-
cessing Agents (EPAs) can perform computation on them. There
are different types of EPAs: simple event processing EPA (e.g. fil-
ter and routing), mediated event processing EPA (e.g. enrichment,
transformation and validation), complex event processing EPA (e.g.
pattern detection) and intelligent event processing EPA (e.g. deci-
sions). The EPAs can be connected to each other to form an Event
Processing Network (EPN).

Predictive analytics. Predictive analytics determine predictive mod-
els to exploit patterns found in historical and transactional data
and identify risks and opportunities. Models capture relationships
among many factors to allow assessment of risk or potential asso-
ciated with a particular set of conditions, guiding decision mak-
ing for candidate transactions. Predictive analytics is used in sev-
eral fields: financial services, insurance, telecommunication, retail,
travel, healthcare, pharmaceutical industry, etc. Predictive analyt-
ics methods based on complex event data can make predictions
about some attributes of the monitored system based on the pre-
viously monitored events. Generally a prediction process consists
of four steps: (1) collect and preprocess raw data; (2) transform
preprocessed data into a form that can be easily handled by the
(selected) machine learning method; (3) create the learning model
(training) using the transformed data; (4) report predictions using
the previously created learning model. By using recent data based
on the learning model trained for the previously monitored events,
future events can be predicted.

2.1 Comparison of CEP and PA
Both CEP and PA target the problems related to processing large
amount of runtime data of large software systems, usually collected
from execution traces, in order to detect undesired behavior (like
runtime failures or performance degradation) or other specific be-
havior patterns of interest. With these technologies, runtime data is
usually processed online, and the decision is made based on current
or past data, while sometimes the goal is the prediction of future

events. In order to apply CEP and PA together, we compare these
technologies by investigating their differences and common parts.

Time

V
a
lu
e
o
f
th
e
e
v
e
n
t

At eventBefore

the event

1sec 1min 1hour

Historical data
Long

term report

(Late)

reactions

Realtime

reactions

Proactive

actions

Figure 1: Value of the knowledge about the event

Aim. The value of complex events decreases over time, as already
mentioned through the example of the tsunami warning in the intro-
ductory section. A warning issued as earlier as possible in time is
an important factor in CEP, but considering the timeline of an event,
a warning issued before the event itself is even more valuable. Fig-
ure 1 shows the value of the information about the event. The x axis
represents the time while y represents the value of the information
about the event. Knowledge about the event before it happens is
an advantage, proactive actions can performed to precede the unde-
sired event. On the other side, Complex Event Processing detects
the event after it has happened and only posterior reactions can per-
formed. However, several situations require exact knowledge about
the event. In these cases, PA cannot be used because its uncertainty.

Automatization. The other most notable difference lies with the
fact that complex event processing engines require predefined rules
or patterns to calculate a complex event, which usually has to be
designed and deployed to the system manually, while the goal of
predictive analytics is to automate these processes, build rules and
patterns automatically. Based on this, there is an assumption that
rule or pattern developers have the required preliminary knowledge,
which sometimes is not available (in the case of unknown patterns)
or not so precise. The manual setting of the rules and patterns are
in a sense a weak point of complex event processing, which can
readily be supported by the techniques of predictive analytics. Pre-
dictive analytics is not a key part of most complex event processing
engines, but current CEP engines can be extended with PA.

Application. The application timeframe when the event data is
processed is different in the two cases also. In the case of PA, the
learning phase takes place much before the usage of the model,
and its techniques require certain computations in advance. On the
other hand, CEP techniques are most often applied in real-time.

3. RELATED WORK
Muthusamy et. al. [6] presented a work about predicting a sub-
scription in the future in publish/subscribe context. They applied
Markov model for learning and for prediction. In the presented ap-
plication it predicts the probability of that a given subscription will
occur in the future. They achieve good results, e.g. high precision.
An important experience was, that the machine learning model out-

performs a hand-crafted model defined by domain expertise.

There is a proposal mechanism for automating both the initial def-
inition of rules and the update of rules over time [12]. Henriques
et. al. [2] described their system, HOLMES. The system among
several things applies some machine learning capabilities as well.
They used machine learning in order to detect anomalies in time
series but in an unsupervised context.

In the industry, TIBCO Software Inc. has ambition to use event pro-
cessing technologies for prediction. They developed not only event
processing tool (TIBCO BusinessEvents) but predictive analytics
tool (TIBCO Spotfire Miner) as well, and they introduced predic-
tive business (TIBCO Predictive Business) [9] which identifies the
patterns in historical events, projecting them into the present and
future. Ammon et al. [8] connected the CEP to business activity
monitoring and business process management. Business process
management and real-time business activity monitoring are newly
discussed as the preconditions for a so-called predictive business
and the competitiveness of enterprises in the future.

Since the known event patterns can be derived from heuristics (e.g.,
from business activity monitoring view), the unknown event pat-
terns cannot. According to Widder et al.[14], unknown event pat-
terns can be found with the help of event processing agents (EPAs)
by analyzing the event cloud of an organization and using specific
algorithm to detect them. If an EPA detects an unknown pattern –
which seems to be a suspicious event combination – determined by
discriminant analysis, EPA sends an alert and this pattern is saved
in the database. Discriminant analysis analyzes multidimensional
data to discover relationship between data.

Previously, we published a poster about how to connect CEP and
PA [11], and a technical report [3] about CEP and PA.

4. CONCEPTUAL CEP - PA FRAMEWORK
CEP detects complex events in an event cloud. The basic compu-
tational unit is an Event Processing Agent (EPA) that performs a
predefined task on incoming events (e.g. filtering, aggregating, de-
tecting patterns etc.). EPAs can interconnect using event channels
to form Event Processing Networks (EPN). EPNs produce complex
events as output. We call the most important event as the primary
complex event. With a joint CEP and PA framework this primary
complex event can be predicted. The conceptual framework of the
interworking CEP and PA solution is illustrated in Figure 2. The
conceptual framework works on point-based events but it could be
adapted to interval based events as well. An ellipse denotes event
source or event sink, while a box represents an information pro-
cessor component and a line between the boxes denotes the infor-
mation flow. The boxes and lines drawn with straight lines are the
parts of a generic CEP application, while the boxes and lines drawn
with dashed lines represent the introduced PA components.

4.1 Requirements of the framework
Let us suppose, that we have a generic CEP application, represented
by the boxes drawn with straight lines in Figure 2. In this sys-
tem, raw events comes from event sources and processed by the
Event Processing Network. Then, EPN detects the Primary Com-
plex Event (PCE) and sent it to the registered event sink which trig-
gers reactions when the event occurs, e.g. notifies the business actor
or triggers an automatic reaction.

Our motivation for the CEP–PA synergy is that in many cases the

CEP engine

Event source Event source

EPN
PEPN

(calc. SCEs)

Event sink

Event source

PCE

PCE flag

Predicted PCE

Raw events Predictive Analytics
PCE flag

Predictors

Learning (training set)

Predicting

Model

Predictors

Predicted

PCE flag

Figure 2: CEP-PA conceptual framework

reaction should be triggered earlier, even before the complex event
occurs. In these cases, events can be predicted by PA models in-
corporated to the CEP solution. The initial CEP problem can be
extended with the PA component in several ways but first of all we
define requirements for the synergy:

• PA has to give the prediction for the CEP application about
future occurrences of PCE.

• CEP should ensure the prediction target (PCE) and the pre-
dictors for PA. The predictors are the key performance indi-
cators of the complex events. Note, that the prediction may
require additional sources. For example, different sources
required to detect or to predict rain.

• synergy of CEP and PA should be transparent: the generic
CEP application should not be modified and its interfaces
should not be affected.

• synergy should not affect the maintainability of the CEP en-
gine. The original cohesion, complexity and coupling of the
CEP engine should be affected as small extent as possible.

The first and second requirements can fulfilled easily. The third re-
quirement demands for the same event source with the same raw
input events, and the same event sink with the same (output) com-
plex event as in the generic CEP application has. In a conceptual
framework there are two ways to match this requirement: (1) by in-
troducing Predictive Event Processing Agents (PEPA) in the event
processing network that can deal with the synergy of CEP and PA
and (2) by introducing separate Predictive Event Processing Net-
work(s) (PEPN) that can deal with the synergy of CEP and PA.

Both techniques match the first, second and third requirements but
only the second approach fits the fourth requirement as well. By
introducing PEPA-s the maintainability of the CEP application de-
creases because the PEPAs decrease the cohesion and increase the
number of connections (by this way the coupling increases as well).
Therefore the best solution is to introduce a separate and specific
Predictive Event Processing Network (PEPN).

4.2 Synergy of CEP and PA
The boxes drawn with dashed lines in Figure 2 represent the new
components required for the PA extension. In the followings, we
describe the operation of the conceptual framework.

First, raw events come from the event sources. Afterwards, EPN
tries to detect PCE and send it to the event sink. At the same time,
EPN sends the PCE flag (PCEF) to the PEPN about whether PCE
occurs or not. Next, PEPN extends the training set of PA with
previously calculated predictors and with the PCEF. At the same
time, PEPN also sends the currently calculated predictors to PA
and then PA gives a prediction about the PCEF (Predicted PCEF –
PPCEF) based on the current learning model and on the predictors.
Finally, PEPN sends the predicted event to the event sink.

The PA component contains a machine learning part which works
on the continuously extended training set. A large set of predic-
tors is necessary for building the internal machine learning model.
In the conceptual framework, the PEPN itself produces the pre-
dictors (by this way fulfilling the second requirement). The PEPN
processes raw events and produces secondary complex events (i.e.
predictors for PA). Another requirement for PA is the target of the
prediction, which is the Primary Complex Event Flag (PCEF).

Training set

Model

PS

Predictors

Learning algorithm

Prediction algorithm

PPCEF by PA

Predictors

L
e

a
rn

in
g

p
h

a
s
e

P
re

d
ic

ti
o

n
 p

h
a
s
e

PCEF by CEP LNOW

PNOW

seldom refresh

Figure 3: CEP-PA events illustrated chronologically

Figure 3 demonstrates the working of the conceptual framework in
time. The x axis represents time, with measurement points. The
upper part of Figure 3 is a snapshot of the learning phase (made at
LNOW point), while its lower part is a snapshot of the prediction
phase (made at PNOW) of the conceptual framework.

During the learning phase, the training set is continuously extended
with predictors and with PCEF. Afterwards, the learning model is
refreshed. Because the model refreshment is a resource consum-
ing task therefore it should be performed seldom and on a separate
thread during the implementation. During the prediction phase, a
prediction (Predicted PCE flag – PPCEF) is given based on the cur-
rent model and on the predictors. On Figure 3 we have the follow-
ing intervals and points:

• predictors interval: predictors are calculated between predic-
tors’ startpoint (PS) and Prediction phase Now point (PNOW).
For the learning phase, these predictors represent the preced-
ing context before the PCE occurs. For the prediction phase,
these predictors represent the basis of the prediction.

• PCEF (PCE flag) is a boolean variable, it represents whether
the PCE is occured or not. It is calculated from the PCEF
time point or from an interval ended at PCEF time point (by
this way the conceptual framework supports both point or
interval based events)

• predicted PCE flag (PPCEF) represents the forecasted PCE.

PCEF and PPCEF represent the same time but in different context.
PCEF represents historical data during the learning phase, which
is used to extend the training set. PPCEF represent the unknown
future and the prediction about the future.

In the latter part of the paper we will see that every variable takes
values based on the absolute distance from PNOW. By this way,
PSD (PS distance) is defined as the distance between PS and PNOW,
while PCEFD (PCEF distance) is defined as the distance between
PNOW and PCEF. For example, a setting could be the following:
PSD = 5, PCEFD = 2.

Lastly, we note that the predicted event can be used to define further
complex events. For example, when depending on an other event
we do not want to consider the prediction, then a new complex
event may help.

4.3 Proof of concept
The experiments are performed on a CEP program which works on
an entry system of a building. Conferences and talks are held in the
building, by this way the incoming and outgoing traffic increase
randomly. The traffic data about incoming and outgoing persons
is supplied by the main entrance of the building in every half an
hour. The task of the CEP engine is to listen this traffic data, and
in case of too high incoming traffic it has to issue an Entry System
Overloaded (ESO) complex event. ESO fits to the primary complex
event (PCE) of the conceptual framework.

The entry system has two working states: low and normal. The low
state limits the number of entrants, but its maintenance cost is much
cheaper than the normal state’s one. Normal state has no limitation
considering the number of entrants. The default working state is
low. When the low state gets overloaded then the entry system
has to be switched to the normal state. There are several problems
which motivate the detection of the overloaded state. Too many en-
trants demand opening new entry doors. Opening new entry doors
requires relatively long time, because of the hurrying crowd. Too
many entrants could cause overload and shutdown in the wireless
entry system. The suppliers in the building (e.g. restaurants, clerks,
etc.) have to be notified to prepare for the unusually large number
of entrants (e.g. a new clerk should be called from his 10th floor
office to the ground floor, etc.)

The experiments are performed on the database of a public entry
system [13]. The developed CEP–PA proof–of–concept application
is based on the conceptual framework presented in Section 4.

4.3.1 The CEP solution
The original database contains information about concrete events
(conferences, talks). However, we define a special complex event
based on a special rule: when the number of entrants is greater than
25 during the last 1.5 hours, then ESO has happened. Note that
the half-hour measurements could be more frequent, e.g. it could
be 10 seconds. By this way it does not affect the validity of the
experiment, it is adaptable to a real–time problem as well. The
presented application is implemented with Esper.

Figure 4 shows the architecture of the conceptual framework’s proof–
of–concept implementation. In the current implementation, the
events for the CEP engine are simulated by the Entry system sim-
ulator which simply reads the database file [13] and forwards the
data to the CEP application. Afterwards, the application detects
the ESO based on the rule (number of entrants is greater than 25

Esper app.

Entry system

simulator

EPN

Sum(People)>25

In last 1.5 hours

PEPN

max, min, etc.

Security staffs’

HTML monitor

ESO

flag

Predicted ESO

Entry system

of a building

Action: Open

more doors

Entry System

Overloaded (ESO)

Logging

Weka

Training set

Model

(BFTree, DecisionTable, J48)

Predicted ESO flag

ESO flag

(event)

every monday

midnight

predictors

Figure 4: CEP-PA proof of concept

during the last 1.5 hours) and it writes the event into an HTML file
(in blue). Implementation of the conceptual framework’s EPN item
contains a simple query with an event listener. The query selects
the sum of the incoming people during the last 1.5 hours (which
means an three length interval because of the measurements are
performed at every half an hour):

select sum(PeopleCount), DateAndTime from
CalcEventTick.win:length_batch(3)

CalcEventTick.PeopleCount represents the number of incoming peo-
ple while CalcEventTick.DateAndTime represents the timestamp.
Finally, the event listener checks whether the sum is greater than.

4.3.2 Extension with PA
The prediction is based on predictors that are calculated from the
number of entries and exits, and the timestamp of the measurement.
So, we have the following raw events: entries - the number of in-
coming persons during the last half an hour; exits: the number of
outgoing persons during the last half an hour (exits); the timestamp
of the measurement.

Implementation of the conceptual framework’s PEPN item is also
really simple. The following five simple (secondary) complex events
have been defined and detected with the Esper application [1] to en-
sure the predictors for PA: (1) the summed number of persons com-
ing in during the Predictors interval (see Figure 3); (2) the differ-
ence between the entrants at PS and PNOW; we had presumed that
it increases when an event is approaching; (3)the day of the week
(e.g. Monday) at PNOW; (4) the maximum/minimum/average/median
of entries/exits during the Predictors interval; (5) the number of
people in the building at PNOW.

Note, that some predictors cannot be calculated with CEP (e.g. day
of the week), predictors like that are determined programatically.
During the first week, the synergy cannot provide any forecast, it
just extends the training set in the PA framework (in the presented
solution we applied Weka [15] internally, Figure 4 shows a frag-
ment of the Weka training set). At the beginning of the second week
(at Monday midnight), the first learning model is built, and after-
wards the training set is extended continually with the new data,
and the learning model is refreshed at every Monday midnight. Fi-
nally, the CEP–PA synergy can give forecasts in every half an hour.
The forecast is written to the HTML file (in red).

Table 1: Prediction results
Algorithm PSD PCEFD Precision Recall F-measure
BFTree 3 1 0,93 0,92 0,93
DecisionTable 3 1 0,91 0,94 0,92
BFTree 5 2 0,94 0,82 0,88
DecisionTable 3 3 0,91 0,83 0,87
DecisionTable 5 2 0,88 0,84 0,86
DecisionTable 8 3 0,92 0,79 0,85
BFTree 3 3 0,96 0,76 0,85
BFTree 8 3 0,94 0,77 0,85
DecisionTable 5 4 0,90 0,79 0,84
DecisionTable 8 5 0,88 0,78 0,83
BFTree 5 4 0,95 0,73 0,83
BFTree 8 5 0,92 0,72 0,81
J48 8 5 0,89 0,72 0,80
J48 5 4 0,85 0,67 0,75
J48 8 3 0,81 0,63 0,71
J48 3 3 0,80 0,63 0,70
J48 5 2 0,72 0,6 0,65
J48 3 1 0,65 0,56 0,60

Experiments and prediction results. We have performed
experiments with several settings of the PSD and PCEFD pa-
rameters (see Section 4) and with three machine learning algo-
rithms of Weka: (1) BFTree is the best-first decision tree classi-
fier [10]; (2) DecisionTable is a table that describes conditions with
actions to perform [4]; (3) J48 is the Java implementation of the
well-know C4.5 tree [7].

Values for PSD are 3, 5 and 8 while values for PCEFD are 1, 2,
3, 4 and 5. However, not every combination of the parameters are
tested. During the experiments we applied the well–known statisti-
cal indicators: precision, recall and f–measure. They are based on
the ratio of true positives, false positives and false negatives which
are defined as follows. True Positive (TP) occurs when PA predicts
an event that will occur in the future (correct prediction). False
Positive (FP) occurs when PA predicts an event that will not occur
in the future (false prediction). False Negative (FN) occurs when
PA not predict an event that will occur in the future (missed predic-
tion).

Based on True Positives and False Positives we can measure the
precision of the prediction: |TP |

|TP+FP | . Based on True Positives
and False Negatives we can measure the recall of the prediction:
Recall = |TP |

|TP |+|FN| . F-measure is the weighted harmonic mean
of precision and recall, so it represents an overall goodness of the
prediction: 2∗Precision∗Recall

Precision+Recall
.

We take into consideration that the PCE/ESO is defined on a three
point interval (number of entrants is greater than 25 during the last
1.5 hours while the measurements are taken at every half an hour).
Because of that, we accept a prediction as True Positive if the event
occurs at a wider range in the future:

future = [max(PNOW + 1, PCEFD − 3), PCEFD]

In Table 1 we give the prediction results in case of different pa-
rameters and different machine learning algorithms. The results
are ordered by F-measure. Considering the algorithms, the Deci-
sionTable and BFTree algorithms perform similarly, while J48 per-
forms really bad compared to the other two. The best choice for
the PSD parameter is 3 while the best choice for the PCEFD
parameter is 1 or 2. However, other parameter values perform good
results as well.

4.4 Discussion
The presented proof-of-concept is a simplified solution and it may
seems to not describe well the real world situation. In the follow-
ings, we show points against the demonstration presented previ-
ously, and we explain why these points do not decrease signifi-
cantly the validity of the presented proof of concept:

• In certain aspect, the original problem is not CEP related be-
cause the measurement is taken in every half an hours, which
cannot be named as a real-time problem. Irrespectively of
this fact, it was applicable as a demonstration (and not for a
case study), because the timeframe could be set smaller in an
other scenario, e.g. one second, making it a real-time PoC.

• Synergy with PA could cause performance problems? In
the PA framework the resource consuming task was only the
model refreshment (about 3-4 seconds), but it did not affect
the real-time work, because the model was refreshed period-
ically, not in every measurement point.

• "If you react before the complex event happens, you kill the
training set." This is a real threat but we predict the event
because we want to make some proactive and preventive ac-
tions before it happens. On the other side, after the prediction
it is difficult to determine that the event would have happened
if the proactive actions had not performed previously. How-
ever, this will not a problem if the event detection does not
depend on the proactive actions (for example, it is true for
the previously demonstrated proof–of–concept).

5. CONCLUSIONS
In this paper we investigated an open research direction of Com-
plex Event Processing: “the advantages of CEP can be enhanced
with the help of predictive analytics?”. We elaborated this question
in greater details, which is the major result of this work. We pre-
sented a conceptual framework for incorporating Predictive Analyt-
ics into Complex Event Processing, and afterwards the framework
was demonstrated through experiments performed on real-world
data using a proof-of-concept. The achieved results are promis-
ing, the CEP solution was extended with predictive capabilities and
most of the events were predicted successfully.

Furthermore, we also plan to make a case study on a large, real-
world CEP system because the presented solution for the synergy
is only validated on a proof-of-concept example. A real-world CEP
system defines more complex patterns, solves more complex prob-
lems and requires more complicated predictors than the presented
proof-of-concept.

6. ACKNOWLEDGEMENT
This research was supported by the Hungarian national grant GOP-
111-11-2011-0038.

7. ADDITIONAL AUTHORS
Additional authors: Tibor Gyimóthy (University of Szeged, email:
gyimothy@inf.u-szeged.hu), Gergő Balogh (University of
Szeged, email: geryxyz@inf.u-szeged.hu)

8. REFERENCES
[1] Homepage of Esper/NEsper.

http://www.espertech.com/.
[2] P. H. dos Santos Teixeira, R. G. Clemente, R. A. Kaiser, and

D. A. V. Jr. Holmes: An event-driven solution to monitor

data centers through continuous queries and machine
learning. In DEBS ’10: Proceedings of The 4th ACM
International Conference on Distributed Event-Based
Systems, pages 216–221. ACM, 2010.

[3] L. J. Fülöp, G. Tóth, R. Rácz, J. Pánczél, T. Gergely,
A. Beszédes, and L. Farkas. Survey on Complex Event
Processing and Predictive Analytics. Technical report,
University of Szeged, 2010.

[4] R. Kohavi. The power of decision tables. In ECML ’95:
Proceedings of the 8th European Conference on Machine
Learning, pages 174–189, London, UK, 1995.
Springer-Verlag.

[5] D. Luckham and R. Schulte, editors. Event Processing
Glossary – Version 1.1. Event Processing Technical Society,
2008. URL: http://www.ep-ts.com/component/
option,com_docman/task,doc_download/gid,
66/Itemid,84/.

[6] V. Muthusamy, H. Liu, and H.-A. Jacobsen. Predictive
publish/subscribe matching. In DEBS ’10: Proceedings of
The 4th ACM International Conference on Distributed
Event-Based Systems, pages 14–25. ACM, 2010.

[7] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA, 1993.

[8] C. S. Rainer v. Ammon and C. Wolff. Domain specific
reference models for event patterns for faster developing of
business activity monitoring applications. 2007. URL:
http://www.citt-online.com/downloads/
ReferenceModelsEventPatterns_with_
Appendix_v3.pdf.

[9] V. Ranadive. The Power to Predict: How Real Time
Businesses Anticipate Customer Needs, Create
Opportunities, and Beat the Competition. McGraw-Hill Pub.
Co., 2005.

[10] H. Shi. Best-first decision tree learning. Technical report,
University of Waikato, 2007.

[11] G. Tóth, L. J. Fülöp, L. Vidács, A. Beszédes, H. Demeter,
L. Farkas, and T. Gyimóthy. Complex event processing
synergies with predictive analytics. In DEBS ’10:
Proceedings of The 4th ACM International Conference on
Distributed Event-Based Systems, pages 95–96. ACM, 2010.

[12] Y. Turchin, A. Gal, and S. Wasserkrug. Tuning complex
event processing rules using the prediction-correction
paradigm. In DEBS ’09: Proceedings of the Third ACM
International Conference on Distributed Event-Based
Systems, pages 1–12, New York, NY, USA, 2009. ACM.

[13] UC Irvine Machine Learning Repository - CalIt2 building
people counts. http://archive.ics.uci.edu/ml/
machine-learning-databases/
event-detection/.

[14] A. Widder, R. v. Ammon, P. Schaeffer, and C. Wolff.
Identification of suspicious, unknown event patterns in an
event cloud. In DEBS ’07: Proceedings of the 2007
International Conference on Distributed Event-Based
Systems, pages 164–170, New York, NY, USA, 2007. ACM.

[15] I. H. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, San
Francisco, 2005.

[16] C. Zang and Y. Fan. Complex event processing in enterprise
information systems based on rfid. Enterp. Inf. Syst.,
1(1):3–23, 2007.

