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Abstract

Monitoring large computer networks often involves aggregation of various sorts of data that are
distributed across network components. Finding extreme values, counting discrete observations or
computing an average or a sum of some parameter values are typical examples of such “background”
activities that provide input to monitoring systems. Another aspect of network management is fast
and reliable information dissemination, like propagation of alarm signals.

We present a novel approach to information aggregation and dissemination. It is based on a
concept of a highly distributed, anonymous, democratic and non-deterministic form of collaborative
information processing: newscast computing. The main properties of this approach are scalability,
robustness, adaptivity, and speed. The underlying protocol is very simple and can be implemented
and run on huge networks of small computing devices, such as mobile phones, PDA’s, sensors, etc.

The usefulness of the newscast approach is illustrated by two algorithms for finding the maximum
and the average of values that are distributed along the nodes of a network. The algorithms are formally
proven to converge exponentially fast and numerous simulation experiments provide additional insights
into their behavior. Finally, we demonstrate their applicability to several network monitoring tasks:
finding the size of a network, counting nodes that left or joined the network, system load estimation,
and fast propagation of alarms.

I. INTRODUCTION

The Internet has been exponentially growing from the start. This trend is not likely to stop
soon, partly due to recent developments in wireless technology and the IPv6 standard, which
will enable virtually all devices with a digital heartbeat to go online. The Internet is now
forming a platform for a wide variety of applications ranging from entertainment to business.
It can be expected that the number and importance of such distributed applications will grow
with time as the Internet is penetrating more and more into our lives.

Managing and controlling such applications poses new challenges for computer science. The
Internet is heterogeneous, unreliable, huge, and dynamic. Controlling applications by human
administrators will gradually become impossible. The situation is not unlike the difference
between flying a small plane and the space shuttle. The latter cannot be flown by humans at
all anymore due to the complexity of the task.
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Solving the problem of control and monitoring (analysis) in such an environment is a grand
scientific challenge. Working towards this goal, in this paper we are proposing a method for a
specific task: aggregating information in a large and highly dynamic distributed environment in
a robust, dependable manner. By aggregation we mean finding statistics over a set of numeric
values that are distributed over a wide-area application, like extremal values, average, sum,
count, variance, etc. In particular, in this paper we will emphasize the applicability of these
aggregated statistics for network monitoring.

In the context of network monitoring, our application model is the following. The distributed
environment is a network consisting of a possibly huge number of nodes. All nodes have
attributes, like memory size, disk size, CPU speed, network bandwidth, current load, etc. The
network is dynamic. Nodes can join and leave, and furthermore their attribute values can also
change.

Our solution to finding aggregates of attribute values of nodes is based on an epidemic
protocol we have recently developed. The protocol is called newscast. Newscast is a so-called
peer-to-peer protocol. All nodes are equivalent and run the same algorithm. The purpose of
the protocol is to maintain and disseminate up-to-date information in a robust, self-organizing
way, without any central intervention, in a possibly dynamically changing and large-scale
environment. The basic underlying idea is that all nodes periodically exchange information
with each other including membership information (addresses of other nodes) and application
specific information. Furthermore, each piece of information gets a timestamp when created
which is used to remove outdated items.

In this paper we will describe the newscast protocol and apply it to calculate aggregates
that are useful for network monitoring. In Section II we discuss related work. The purpose
of Section III is to give an intuitive introduction to the key ideas of the paper, in particular
the possibility of the application of epidemics and diffusion for calculating aggregates. These
ideas are elaborated upon in other sections. Section IV introduces the newscast protocol from
an algorithmic point of view, followed by Section V which demonstrates the robustness and
scalability of the protocol. Building on newscast, Sections VII and VIII elaborate on the ideas
introduced in Section III with theoretical analysis and simulation results. Various applications of
newscast computing to network monitoring and control are presented in Section IX. Section X
concludes the paper.

II. RELATED WORK

Our approach to network monitoring is related to several sub-areas of distributed computing.
They include the following.

a) Epidemic protocols: Epidemic protocols are becoming more and more popular since
the publication of the seminal paper by Demers et al. [1]. A recently completed survey by
Eugster et al. provides an excellent introduction to the field [2]. Epidemic algorithms have been
applied to solving several practical problems like database replication [1], failure detection [3]
and resource monitoring [4]. A large body of theoretical work is also available due to the
general importance of understanding epidemics [5] and its close relation to random graph
theory [6].
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b) Self-organizing topology management: There are countless protocols for managing
different kinds of topologies in an adaptive fashion. Here we focus only on those that maintain a
random (or unstructured) topology. The most well-know examples are SCAMP [7], lpbcast [8],
a method to build random expander graphs [9], [10]. Newscast is targeted at extremely large
and dynamic environments. In its approach and scope, the closest to newscast is lpbcast. The
lpbcast protocol is also based on epidemic-style information dissemination, it is also proactive
and maintains a regular random topology. However, the resulting communication graph shows
rather significant differences from that of newscast. This difference is important because the
communication graph defines crucial constraints on possible applications.

c) Aggregation in distributed environments: The field of distributed computation of ag-
gregates is less established than epidemic protocols. An overview of the problem can be found
in [11].

A prominent approach is Astrolabe [4] which is a hierarchical architecture for aggregation
in large distributed systems. Our approach is substantially different in that it is extremely
simple, lightweight, and aimed at unstructured, highly dynamic environments. In the case of
our protocol the overhead of installation and maintenance is virtually negligible. A related
work is [12] which is also based on a hierarchical approach. While building hierarchies
indeed reduces the cost of finding the aggregates, it introduces additional overhead having
to maintain this hierarchical topology in a dynamic distributed environment. Moreover, due to
being hierarchical, it also needs extra effort and protocols to broadcast the result continuously
over the network if all nodes need to know the result continuously.

Another recent work [13] discusses many approaches, based on spanning tree induction
and using other, more redundant topologies. While being the closest to our approach, a main
difference is that the protocols described there are reactive: aggregation is initialized from
a certain point and the result is known by only that node. This makes it hard to adopt for
solving our present research problem, continuous network monitoring, similarly to the other
approaches mentioned above.

d) Network Monitoring: Network and systems monitoring has since long been part of
management architectures that tend to be large, complex, and difficult to scale across wide-area
systems (see, for example, [14]). Recently, new insights have led to completely decentralized
monitoring solutions, often involving mobile agents [15]. Also the research into scalable event-
notification systems that deploy peer-to-peer technology is highly relevant to our work.

Siena is arguably one of the first large-scale event-notification systems, which effectively
applies a combination of multicasting and content-based routing to efficiently notify events to
interested parties [16]. However, approaches such as followed in Siena require that a network
of servers is first installed before application-level multicasting can be deployed.

In this respect, more interesting is Scribe [17]. Scribe is an application-level multicasting
system that is built on top of Pastry, a structured peer-to-peer network [18]. Scribe allows
the formation of topic-based publish/subscribe groups in a fully dynamic and decentralized
fashion.

A step further in this direction is taken in PeerCQ [19]. It is a general-purpose information
monitoring system in which a client can formulate continual queries, that is, queries related
to possibly continuous changes of data over time. The key idea behind PeerCQ is to let an
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do forever {
e = waitForEvent();
if e is TIMEOUT {

nj = randomPeer()
send xi to nj

receive xj from nj

xi = aggregate(xi, xj)

}
if e is message xj from nj {

send xi to nj

xi = aggregate(xi, xj)

}
}

Fig. 1. The protocol run by each peer. It is assumed that a timer generates a TIMEOUT event regularly in every ∆T time
units.

arbitrary peer monitor the data and machines involved in a single query. Because each query has
a unique identifier, this scheme fits nicely with the identifier-based routing protocols inherent to
structured peer-to-peer systems. A drawback of this approach is that there may be many peers
monitoring the same data or machines, in turn introducing a potential scalability bottleneck.

Scalable liveness detection has very recently been proposed in [20]. The essence of the
proposed protocol is to offload the number of probes for a single device to its probing processes.
The latter are dynamically organized into an overlay network by letting the device, on each
probe, return the addresses of the last N processes that probed it as well. This approach will
permit a probing process to reduce its probing frequency, because it will be informed by one
its peers whenever the status of the monitored device changes.

III. DISTRIBUTED AGGREGATION: THE BASIC IDEA

As already mentioned, we will base our aggregation algorithms on the newscast protocol.
In this section, however, we focus only on the basic idea of our approach to aggregation,
abstracting away from newscast.

Consider a huge collection of nodes, where each node ni maintains a single number xi. The
goal is to let nodes compute some aggregate of these values in a fully decentralized way. The
algorithm in Figure 1 is at the heart of our aggregation approach and is executed by each peer.
We assume that a timer generates a TIMEOUT event every ∆T time units. When this happens,
a peer selects another peer at random, sends its current value, and waits for the response. Its
own value is then updated by aggregating it with the response. In this light, whenever a node
is contacted by another peer, it simply computes the aggregate of its own and the incoming
value. We will focus on two implementations of the function aggregate(): average and
maximum.

e) Average: In this case aggregate(xi, xj) = (xi + xj)/2. We will show that for each
node ni, xi converges exponentially fast to the overall average, provided we guarantee that the
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peers are indeed selected (more or less) randomly. Note that the algorithm results in diffusion-
like dynamics over a random topology. Thinking of the values as being the concentration of
some substance, the elementary averaging step is indeed equivalent to the equalization of the
concentrations at the two locations. Motivated by this analogy, we will call this approach
diffusion-based aggregation.

Being able to compute averages in a fully decentralized manner is by itself interesting.
However, with an appropriate choice of the semantics of the values xi, it is possible to calculate
the network size, the sum of values, the variance, etc. For example, if initially exactly one
node holds the value 1 and all the others hold 0, then it is obvious that eventually each node
will be able to estimate the size of the network which is 1/x.

f) Maximum: In this case aggregate(xi, xj) = max{xi, xj}. We will show that for
each node, xi converges super-exponentially fast to the overall maximum, again, provided we
guarantee that the peers are selected randomly.

To understand the dynamics better, consider that no matter which node holds the value which
turns out to be the maximum, the speed of dissemination of the true maximum value is exactly
the same as if it was effectively broadcast via a push-pull epidemic protocol. Motivated by
this observation, we will call this approach epidemic-based aggregation.

IV. THE NEWSCAST PROTOCOL

We shall call the basic entities which run the newscast protocol at each network node
correspondents. The motivation for this choice will be clarified later.

The newscast protocol is responsible for two functions at the same time. The first is
maintaining a possibly very large group of correspondents taking care of joining and leaving
members and failures (membership management). Second, it is responsible for a special form of
information dissemination among the group members, which we call newscasting. The protocol
is extremely simple: each correspondent knows only a (continuously changing) small set of
peers of which one is randomly chosen to exchange information. The newscast protocol is fully
distributed and symmetric: the algorithm run by all correspondents is completely identical.

The newscast protocol is not an application by itself, it provides only membership and
information dissemination services to applications. It is crucial to understand how an application
and newscast cooperate, in other words, understand the interface between an application and
newscast.

Obviously, newscast supports distributed applications. From now on we will refer to the
component of the application running at a fixed network node as an agent. Note that it is not
assumed that all agents of an application run identical algorithms. We consider the interface
between the correspondent and the agent running at the same node. Without loss of generality
we assume that each agent has exactly one correspondent attached to it.

The interface consists of two callback functions that have to be implemented by all agents.
The correspondent asks the agent regularly for news by means of the callback function get-
News(). In addition, the correspondent provides the agent with news collected by peer
correspondents from other agents of the application through the callback function newsUp-
date(news[]). The architecture is illustrated in Figure 2.
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Fig. 2. The conceptual organization of a newscast application.

AgentID Application−specific dataTimestampAddress
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News item

Fig. 3. The format of news items and cache entries.

The definition of what counts as news is application dependent. The agents simply live
their lives (perform computations, listen to sensors and the news, etc.) and based on the
computations they have completed and the information they have collected they must provide
the correspondent with news when asked.

A. Principal Operation

Each correspondent maintains a fixed-sized cache of c news items, where c is a parameter.
Whenever an agent passes a news item to its correspondent, the latter timestamps the item,
adds its own network address, and subsequently caches the item. A news item itself consists
of an agent identifier and the actual news as provided by the agent, as shown in Figure 3.

Correspondents regularly exchange caches as follows. Each correspondent executes the
following five steps once every ∆T time units.

1) Request a fresh news item from the local agent by calling getNews(). Create a new
cache entry and insert it into the cache.

2) Randomly select an accessible peer correspondent using the network addresses of other
correspondents as found in the cache and ask this peer to exchange information.

3) Send all cache entries to the selected peer, and, in turn, receive all the peer’s cache
entries (at most c items).
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4) Pass the received cache entries from the peer agent to the local agent by calling new-
sUpdate().

5) Merge the received entries into the local cache.
6) The correspondent now has at most 2c + 1 cache entries; it subsequently throws away

the oldest ones to keep the c freshest ones.
The merge and insert operations of the cache ensure that from one agent there is at most one
item in the cache after the operation, the one with the freshest timestamp.

The selected peer correspondent (the passive party) executes the same algorithm except, of
course, the peer selection step.

We call ∆T the cycle length. Even though the system is not synchronized, it is often
convenient to talk about cycles of the protocol, which are simply consecutive wall clock time
intervals of length ∆T counted from some convenient starting point.

The protocol does not require that the clocks of correspondents are synchronized, but only
that the timestamps of news items in a single cache are mutually consistent. This can be
achieved as follows. When a correspondent A passes its cache to B, it also sends along
its current local time, TA. When B receives the cache entries, it subsequently adds to the
timestamp of each entry the value TB −TA, effectively normalizing the time of each new entry
to those already cached. We assume that the communication time between two correspondents
is smaller than ∆T . This method introduces errors but exact synchronization is not necessary,
so this solution fully suffices.

Note that if ∆T is chosen to be so small that this assumption is violated then newscast will
not be able to work correctly anyway since in each cycle at least one communication has to
be completed according to the protocol.

B. Membership Management

The newscasting protocol disseminates correspondent addresses together with news items
submitted by the agents. This automatically provides us with membership management func-
tionality.

Subscriptions do not need any special sequence of communications, the new correspondent
simply has to initialize its cache with at least one known correspondent which is already a
member of the group, and start to execute the protocol. In Section V we will see that the
system is not sensitive to subscription patterns and tolerates the worst case when each new
member subscribes through the same fixed correspondent.

Unsubscriptions are treated as failures. An unsubscribing correspondent simply has to stop
communicating. Outdated information is quickly removed from the system so if a correspondent
does not keep communicating, it will be forgotten.

C. Newscasting is not Broadcasting

It is important to note that newscasting is different from epidemic broadcasting or flooding,
a difference that is easily overlooked and which may lead to confusion. A first observation is
that newscasting is proactive, that is, it is not initiated by a single node, nor will it ever end.
Second, unlike broadcasting, newscasting disseminates a given news item only to a random,
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relatively small group of peers. This limited dissemination is caused by the fact that, eventually,
a news item is removed from a cache in favor of a fresher item.

These observations do not imply that newscasting cannot be deployed for broadcasting
purposes. For example, a naive broadcasting scheme is to have an agent repeatedly return the
same news when it is called back through getNews(). This scheme, however, will only
slowly propagate news to all agents. A much better scheme is to let other agents store, and
subsequently forward an incoming news item when requested for fresh news. This store-and-
forward scheme effectively mimics a flooding algorithm. A more sophisticated solution is to
deploy constrained forwarding in order to avoid that nodes receive too many duplicates. These
alternatives are discussed later.

These examples illustrate the flexibility of newscasting which allows the implementation
of a wide range of communication mechanisms and computations; a flexibility we use for
computing aggregates as we explain later.

V. PROTOCOL ANALYSIS

We would like the newscast protocol to have the following (slightly interrelated) properties:
1) Self-organizing: In the presence of very different patterns by which nodes join and

(un)intentionally leave the system, it should continue to properly operate without manual
intervention.

2) Effective: Information should be disseminated to each member in a fast and predictable
manner.

3) Scalable: The same quality of service should be provided at acceptable costs even if the
group of members is very large.

4) Robust: The system should tolerate severe damage, such as a massive failure of nodes.
In this section we will present empirical evidence that the newscast protocol indeed has the
properties listed above.

It is important to stress that our approach to design was not developing a complex and
sophisticated protocol that can provably achieve a pre-determined list of properties. Instead,
we opted for keeping the design as simple as possible and analyzing its behavior afterwards as
if it was a biological or physical system. In other words, our goal is to explore the power of
emergence. There are no dedicated, specifically designed mechanisms to, for example, recover
the network after damage, or to react to growing network size or increasing unreliability. The
protocol performs the same simple operation irrespective of the circumstances and we will
argue that it still reacts appropriately in a wide variety of settings.

In most experiments we will consider the communication graph that is defined by the set of
participating correspondents (the nodes of the graph) and the addresses of peer correspondents
in their caches (targets of directed edges). In other words, there is a directed edge from
correspondent c1 to c2 if and only if the address of c2 is contained in the cache of c1. This graph
is extremely important since robustness and the effectivity of information dissemination depend
on its properties. We will denote this graph in cycle t by Dt. This graph could also be called
the “knows-about” graph, because the directed edges are defined by peers the correspondents
know about.
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The graph Dt is c-regular, that is, all correspondents have cache size c and therefore c
outgoing edges (provided the number of correspondents is larger than c). In the following we
will denote the number of correspondents by N .

Instead of examining the “knows-about” graph, we are more interested in the “can-communicate-
with” graph, which we get by simply dropping the orientation of the edges in Dt. This is
motivated by the fact that the information exchange performed by newscast is symmetric, it
does not matter which party initiated the connection. We will denote this undirected version
of the communication graph by Gt. Unlike Dt, Gt is not necessarily regular but the degree of
each node is at least c.

A. Bootstrapping and Dynamic Environments

Newscast is a protocol designed for dynamic environments, and is itself dynamic even if
the environment remains the same. The communication graph is constantly changing. We
are interested in whether important properties of the graph converge to a fixed value from a
wide variety of starting conditions, that is, is there a stable equilibrium with respect to that
property? In other words, is self-organization observable? In this section we focus on average
path length. This value is defined by averaging the minimal path lengths between all pairs of
nodes. This property is important because it is directly related to the efficiency of information
dissemination.

There are at least two cases when convergence is crucial. The first is bootstrapping, that is,
the scenarios when many new nodes join according to a possibly artificial non-random pattern.
The other case is recovery from damage. Figure 4 illustrates these two cases.

Figure 4(a) shows convergence after the network is initialized in three different ways: at
random, as a lattice, and as a growing structure. Random initialization fills the cache with
available peer addresses that are drawn at random. In the case of lattice initialization, the
initial network is defined as follows. If the correspondents are v1, . . . , vn then there are edges
from vi to v(i+j) mod n, where j = −c/2, . . . , c/2 (assuming c is even), and i = 1, . . . , n. In
the case of growing, the initialization process starts with only one correspondent, v0. Then in
each cycle 5% of all the nodes are added, until cycle 20. All the new nodes are initialized
with a single connection to the oldest node v0. This can be considered as a worst case scenario
because the network growth is maximally unbalanced.

Figure 4(b) shows convergence after a radical fluctuation of membership. During 20 cycles,
starting from cycle 20, in each cycle a random 10% of the nodes are replaced with new nodes.
This way the number of node removals reaches 2N during the 20 cycles. The new nodes are
linked to only a single fixed node, just like in the case of the worst case scenario of network
growth described above. Each time this fixed node is removed from the network a new one is
selected.

It can be observed that independently of the pattern of subscription or the initial graph
topology, the average path length quickly converges to the same value.

B. Information Dissemination

Having seen the convergent behavior of the newscast network, let us turn to the property
of average path length in more detail, which is a key feature that determines the efficiency
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Fig. 4. Convergence of the average path length. In all experiments c = 40 and N = 105 (see text for further explanation).

of information dissemination. All results presented here were obtained from the undirected
communication graph after running the protocol for 50 cycles to allow the average path length
to converge.

To allow efficient information dissemination, the average path length has to be small and it
should preferably grow only logarithmically with network size. Figure 5 shows that we clearly
have such a growth. Also, we can observe that, as expected, increasing the cache size decreases
the path length.

The newscast network cannot be modeled as a random network, however. As Figure 6
shows, the average clustering of the network is very high. The clustering coefficient of a node
is defined by the proportion of the number of edges between the neighbors of the node and
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all possible edges [21]. In other words, if a node has k neighbors, and the subgraph induced
by these neighbors has m edges, then the clustering coefficient is 2m/k(k − 1) since there
could be at most k(k − 1)/2 edges. The clustering coefficient of a graph is the average of
the clustering coefficients of its nodes. For comparison, in a random graph where each pair
of nodes is connected with probability 2c/n, the clustering coefficient is exactly 2c/n. This is
much smaller than the values shown, while in such a random graph the average degree is 2c,
approximately the same as in the undirected newscast graphs.

The large clustering coefficient is fortunately not problematic because the average path length
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is small. This means that information dissemination is still efficient because an arbitrary pair
of nodes are separated only by a few links. Furthermore, in Section VI we will show that from
the point of view of the applications presented here the newscast graph is a sufficiently good
approximation of a random graph.

C. Robustness

One important property of a communication network is robustness to random node removal.
As before, we examine the undirected version of the communication graph. Figure 7 shows
how the newscast network reacts to random node removal. It can be seen that with a cache
size of 80 practically all the remaining nodes are connected.

Even though it can be seen that most of the network remains connected forming one large
connected component, it is not clear from the figure when the first small components start
to disconnect from this large component. For cache sizes 20, 40 and 80 this happens after
removing 68%, 83% and 94% of the nodes, respectively.

D. Communication Costs

Let us begin with the global communication costs. The cycle length, ∆T , defines the wall
clock time of one newscast cycle. The communication cost of one cycle for the overall system
depends on the cache size c. In each ∆T time units each correspondent initiates exactly one
information exchange session which involves the transfer of 2c cache entries. The size of a
cache entry can be seen from Figure 3. It has a fixed-sized component and a news item, which
is application dependent. In the case of aggregation, a news item will generally be either empty
or a single floating point number. Clearly, the global communication costs of one cycle grows
linearly with the network size, but stays constant from the perspective of a single node.
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For the communication costs at a single node, we observe the following. Each node initiates
one connection in each cycle, and it is contacted by a random number k of peers. Assuming
unbiased random cache content, it can easily be shown that for large network size the distri-
bution of k is Poisson(1). Figure 8 shows that the distribution of the incoming connections is
close to the Poisson distribution.

An important consequence, which is valid for both local and global costs, is that there
are no performance peaks. The communication costs are evenly distributed over the set of
nodes and—more importantly—over time on one node. This feature is an important advantage
from the point of view of scalability: independently of system size, each correspondent will
experience the same predictable load without peaks.

VI. DISTRIBUTED AGGREGATION REVISITED

In this section we introduce the basic framework for Sections VII and VIII. These sec-
tions will present theoretical results about the convergence speed of the algorithm presented
in Section III for the two aggregation functions maximum and average. They also contain
experimental results of running these algorithms on top of newscast.

In both cases theoretical analysis will assume that the topology of the communication
network is random. We know from Section V that in the newscast network this assumption is
not true in a strict sense due to clustering. The purpose of the empirical analysis therefore is
to validate the theoretical results by showing that the newscast network is sufficiently random
from the point of view of the aggregation algorithms.

A. Theoretical framework

For the purpose of mathematical analysis we translate the networking terminology into
mathematical structures and concepts. In this framework, we can formulate our approach as
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// vector a is the input
do N times {

(i, j) = getPair()
a[i] = a[j] = aggregate(a[i], a[j])

}

Fig. 9. One cycle of the aggregation algorithm.

follows. We are given an initial vector of numbers a0 = (a0,1 . . . a0,N ). We shall model this
vector by assuming that a0,1, . . . , a0,N are independent random variables with identical expected
values and a finite variance.

The assumption of identical expected values is not so strong as it seems. The protocols
are not sensitive to the ordering of values, so after any permutation of the initial values
the statistical behavior remains the same. Starting with random variables a0,1, . . . , a0,N with
arbitrary expected values, after a random permutation the new value at index i, bi will have
the distribution

P (bi < x) =
1

N

N
∑

j=1

P (aj < x). (1)

That is, we obtain an equivalent probability model where the distribution of random variables
b0, . . . , bN is identical. Note that the assumption of independence is violated, but—in the case
of large networks—only to an insignificant extent.

When considering the network as a whole, one cycle of the aggregation algorithm in Figure 1
(i.e. any wall-clock interval of ∆T time units) can be looked at as an algorithm which takes
a vector as a parameter and produces a new vector of the same length (N ). Furthermore, the
consecutive cycles of the protocol result in a series of vectors a1, a2, . . .. The elements of
vector ai will be denoted by ai = (ai,1 . . . ai,N)

Figure 9 shows one cycle of the aggregation algorithm. Note that all the practical aspects
of the overlay topology, synchronization (or the lack of it), distributedness and possible node
failures can be modeled by properties and constraints of the method getPair. The distributed
and local nature of the epidemic protocol underlying this model (Figure 1) can be expressed
by the constraint that the returned pair cannot be determined (or affected) by some global
property of the value vector, like the maximum of the values for instance.

B. Implementation with newscast

Aggregation requires an accessible random peer in regular time intervals. Such a peer
is what newscast has to provide. In Figure 1 this requirement is expressed by the method
randomPeer; in the global version of the algorithm in Figure 9, it is expressed by the
method getPair. There are various ways that newscast can implement these methods. An
important observation is that newscast by itself performs two different functions. The first is
handling membership management through the exchange of addresses of correspondents when
exchanging caches. The second is disseminating information by means of the news items
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contained in the respective caches. The implementation of aggregation methods can either be
integrated with the dissemination function of newscast, or kept separate.

The weakest integration is to randomly select one or two peers from a correspondent’s
current cache, and return that as the result of randomPeer or getPair, respectively. Note
that this implementation makes cycle lengths of newscast and aggregation independent, and
that they can thus be different.

A stronger integration is to adopt the random peer as selected by the newscast protocol as
the one to use for aggregation, but not to make use of newscast’s functionality for information
dissemination. In this case, the data that is required from the peer is piggybacked with the
caches that are sent when the newscast exchange protocol is executed.

The strongest integration is to adopt newscast’s random peer selection, and to use the
information as stored in that peer’s cache for computing the aggregation function itself (i.e.
the function aggregate).

In the remaining part of the paper we will assume the simplest and weakest integration,
unless explicitly stated otherwise. In other words, we assume that the peer is selected randomly
from the cache. We also assume that the cycle length of newscast and aggregation is the
same (∆T ). However, we will show that there are ways of implementing aggregation as a
newscast application so that its performance is significantly improved and therefore the news
dissemination feature of newscast can also play an important role.

VII. DIFFUSION-BASED AGGREGATION

Let us first discuss the case when aggregate(x, y) = (x+y)/2. We introduce the following
notations for empirical statistics:

µi = µai
=

1

N

N
∑

k=1

ai,k (2)

σ2
i = σ2

ai
=

1

N − 1

N
∑

k=1

(ai,k − µi)
2 (3)

Only linear operations are performed on the vector elements so without loss of generality
we will assume that the common expected value of the elements of a0 is zero. The purpose of
this choice is merely to simplify our expressions. In particular, for any vector a, if the elements
of a are independent random variables with zero expected value then

E(σ2
a
) =

1

N

N
∑

k=1

E(a2
k). (4)

Furthermore, the elementary variance reduction step in which both selected elements are
replaced by their average does not change the sum of the elements in the vector so µi ≡ µ0 for
all cycles i = 1, 2, . . .. This property is very important because it guarantees that the algorithm
does not introduce any errors into the approximation. This means that from now on we can
focus on variance. Clearly, if the expected value of σ2

i tends to zero with i tending to infinity



16

then the variance of all vector elements will tend to zero as well so the correct average µ0

will be approximated locally with arbitrary accuracy by each node.
Let us begin our analysis of the convergence of variance with some fundamental observations.
Lemma 1: Let a

′ be the vector that we get by replacing both ai and aj with (ai + aj)/2 in
vector a. If a contains uncorrelated random variables with expected value 0 then the expected
value of the resulting variance reduction is given by

E(σ2
a
− σ2

a
′) =

1

2(N − 1)
E(a2

i ) +
1

2(N − 1)
E(a2

j). (5)

Proof: Simple calculation using the fact that if ai and aj are uncorrelated then E(aiaj) =
E(ai)E(aj) = 0.

Considering also (4), an intuitive interpretation of this lemma is that after an elementary
variance reduction step both participating nodes will contribute only approximately the half of
their original contribution to the overall expected variance, provided they are uncorrelated. In
the extreme case of maximal correlation (ai ≡ aj) the variance reduction is zero. From this it
can be seen that the assumption of uncorrelatedness is crucial.

In order to derive reduction rates for particular implementations of getPair, we introduce
a simplifying assumption:

E(σ2
a
− σ2

a
′) ≈ 1

2N
E(a2

i ) +
1

2N
E(a2

j). (6)

This formula will be applied instead of (5). This is completely harmless because it reduces
the reduction we consider and also because if N is large, the difference is insignificant. This
simplification serves the purpose of making our formulas more elegant.

First let us define random variable φk to be the number of times index k was selected as
a member of the pair returned by getPair during the calculation of ai+1 from the input ai

(i.e. during one cycle). In networking terms, φk is the number of peer communications node
k was involved in during cycle i.

Theorem 1: Let us assume that getPair has the following properties.
1) Each pair of values selected by the index pairs returned by each call to getPair are

uncorrelated.
2) The random variables φ1, . . . , φN are identically distributed. Let φ denote a random

variable with this common distribution.
3) After (i, j) is returned by getPair the number of times i and j will be selected by

the remaining calls to getPair has identical distribution.
Then the expected value of variance reduction during one cycle is given by

E(σ2
i+1) ≈ E(2−φ)

1

N

N
∑

k=0

E(a2
i,k) = E(2−φ)E(σ2

i ) (7)

Proof: The proper formal proof is long and technical but the following informal de-
scription is sufficient to reproduce it. The basic idea is thinking of the value E(a2i,k)/N as a
quantity of some material. Equation (6) tells us that each time index k is selected we loose
half of the material, if the value of the selected peer is uncorrelated to that of k, and the
remaining material will be divided among the locations. Using assumption 3 we can observe
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that it does not matter where a given piece of the original material ends up, it will have the
same chance of loosing its half then the proportion that stays at the original location. That
means that the original material will lose its half as many times on average as the expected
number of selection of k by getPair, hence the term 1

N
E(2−φk)E(a2

i,k) = 1
N

E(2−φ)E(a2
i,k).

Applying this for all k and summing up the terms we have the proof.
From this result it is clear that φ plays a key role, defining fully the rate at which the

variance is reduced in each cycle. We have seen in the previous section that in the case of
newscast φ can be approximated by φ = 1 + φ′ where φ′ has the Poisson distribution with
parameter 1, that is, for j > 0

P (φ = j) = P (φ′ = j − 1) =
1

(j − 1)!
e−1. (8)

and P (φ = 0) = 0. This is the probability distribution which describes the number of times a
correspondent participates in a newscast information exchange. Furthermore, this distribution
is independent of N , the network size. The implementation of diffusion-based averaging on
top of newscast as described in Section VI-B implies the same distribution. Substituting this
into the expression E(2−φ) we get

E(2−φ) =

∞
∑

j=1

2−j 1

(j − 1)!
e−1 =

1

2e

∞
∑

j=1

2−(j−1)

(j − 1)!
=

1

2e

√
e =

1

2
√

e
. (9)

Since the dynamics of the newscast protocol define a non-trivial complex network, we
have to verify the assumptions of Theorem 1 empirically. On one hand, we have seen that
in the newscast communication network there is significant clustering which might hurt the
assumption of uncorrelatedness. On the other hand, the average path length in the network is
low and the network itself changes constantly. These properties are useful to break possible
correlations.

Figure 10 illustrates the behavior of the diffusion-based averaging protocol on top of news-
cast. The implementation of diffusion-based averaging is as described in Section VI-B. Cycle
0 corresponds to the first cycle of the averaging protocol, not newscast. The newscast network
was already converged when starting averaging.

The figure compares the observed variance reduction with the theoretically predicted rate
1/(2

√
e). The network size is N = 106, the output of a single run is shown. We can see that in

the first cycle the observed rate matches the theoretically predicted rate. This is due to the fact
that the values stored at each node were initialized in an uncorrelated way. The consecutive
execution of the protocol introduces correlation.

It is clear from the observed data that this correlation seems to reduce dramatically at
a threshold of approximately c = 20. But even with c = 20 the variance reduction rate
is acceptable, although drifts away from the theoretically predicted rate. With c = 40 the
theoretical prediction has an acceptable accuracy which indicates that—besides taking care
of membership management—from the point of view of this protocol the newscast layer can
provide a sufficiently random sampling of available peers.
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Fig. 10. The variance reduction rate (σ2
i+1/σ2

i ) as a function of consecutive cycles of the averaging protocol on a dynamic
newscast network. The dotted line is at 1/(2

√

e), the theoretically predicted rate. N = 106.

VIII. EPIDEMIC-BASED AGGREGATION

Here we discuss the case when aggregate(x, y) = max(x, y). We would like to approxi-
mate the speed at which the maximum becomes known by the nodes in the newscast network.
Considering the simple implementation on top of newscast, as described in Section VI-B, it is
easy to see that the dynamics of this process is completely identical to that of broadcasting by
means of the push-pull anti-entropy epidemic protocol [1]. The reason is that it is guaranteed
that the overall maximum will be advertised by all nodes once they see it. Of course, if many
nodes hold the maximal value originally, the process is even faster. In the following we assume
that the maximum is unique.

We present a simple model of push-pull epidemic broadcast based on the models of push
and pull epidemic broadcasts presented in [1]. Let us assume that method randomPeer in
Figure 1 returns an unbiased sample of the whole network. Let pi denote the probability that
a fixed node does not know the maximum at cycle 0. If the maximum is unique originally (in
cycle 0), then p0 = 1 − 1/N . Let us express pi+1 as a function of pi. Clearly, a node will not
know the maximum in cycle i + 1 (1) if it did not know it in cycle i, (2) the peer node it
chose as a contact did not know it either (pull) and (3) no peer nodes that knew the maximum
contacted the node (push). Formally we can write this as

pi+1 = pipi

(

1 − 1

N

)N(1−pi)

(10)

From this equation it follows that

pi+1 < p2
i < p2i+1

0 =

(

1 − 1

N

)2i+1

(11)

This result suggests that pi decreases super-exponentially fast.
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Fig. 11. The proportion of nodes which have not learned about the maximum, as a function of consecutive cycles of the
maximum finding protocol. N = 105 , points are averages of 50 runs. Standard deviation is not shown, it is several orders of
magnitude lower than the average.

Note that these results make the fundamental assumption that a random sample of the
members of the network is available. In the original anti-entropy protocol this assumption
holds because a complete list of members at each node is available. Clearly, in newscast it
is not evident that this assumption is fulfilled with a reasonable accuracy. For this reason
empirical validation is necessary.

Figure 11 shows the convergence of pi when newscast is used as a source of random peers.
In all cases we can see that the convergence speed is faster than exponential. Somewhat
surprisingly, we see that convergence is much faster than predicted by the model in (10). The
reason is that the model assumed that in cycle i + 1 each node communicates its value from
cycle i. However, in reality, it is possible that when a node contacts its peer in cycle i + 1,
it has already completed information exchange steps with other peers in the same cycle, as a
passive partner. This way, it is possible that it learns about the maximum in cycle i + 1 and
passes this knowledge on in the same cycle, an effect the model does not account for.

IX. APPLICATIONS IN NETWORK MONITORING AND CONTROL

So far we have introduced the concept of newscast computing and analyzed two simple
algorithms for calculating the average and finding the maximum. Now we will demonstrate
that these algorithms can be used for monitoring network size, measuring the total amount of
resources, or distributing alarm signals.

1) Determining the Size of a Network: In Section III we briefly mentioned the possibility
of finding the number of nodes in a network by calculating the average of a peak distribution
x = (1, 0, . . . , 0), that is, the distribution where one node holds the value 1 and all the others
hold 0, and using 1/x as an estimate of the network size N . Now we will take a closer look
at this method.
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Fig. 12. The proportion of nodes that know the exact network size as a function of the number of cycles k and network
size N . Consecutive lines (from left to right) correspond to networks with 210, 211, . . . , 220 nodes.

The averaging algorithm that we have analyzed in depth in Section VII has two nice
properties: (1) the average of all node values does not change with the number of cycles,
and (2) the variance is dropping at rate αk, where k denotes the number of cycles, and α
is slightly smaller than 0.4 (see Figure 10). In other words, when the averaging algorithm
is applied to the peak distribution, node values converge exponentially fast to 1/N . To get
an idea about the actual performance of this approach we have run a number of experiments
using the idealized averaging algorithm from Figure 9, where the getPair method returns
two randomly selected nodes. We have focused on two aspects: accuracy and speed.

First, we looked at how the number of cycles affects the number of nodes that know the
exact size of the network. The averaging algorithm was applied to networks of size varying
between 210 and 220 nodes. After every cycle all nodes whose values (after rounding) were
equal to the size of the network were counted. Each experiment was repeated 100 times and
results were averaged. They are shown in Figure 12. We can see that for networks with size
ranging from 210 to 220 nodes there are about 25-45 cycles needed for full convergence to the
exact value N . (More precisely, as we represent real numbers by standard 64-bit floats, the
“exact value” means here the result of rounding to the closest integer.)

Although it is quite impressive that one can find the exact number of nodes with help of
a simple averaging algorithm, in practice much smaller accuracy is sufficient (e.g., 1%). To
get a better insight into the relation between this limited accuracy and the number of required
cycles we run simulations until all the nodes knew the approximate network size. Again, for
each setting 100 runs were performed. The results are summarized in Figure 13. We can see
that the average number of required iterations dropped from 25-45 to 20-32.

Notice that due to its fast convergence rate, the averaging algorithm can be regularly restarted
on a fresh peak distribution (e.g., every 100 cycles). In this way all the nodes are constantly
aware of the network size.
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Fig. 13. The number of cycles needed for all agents to learn the approximated network size. Boxes have lines at the lower
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rest of the data. Outliers are data with values beyond the ends of the whiskers.

2) Monitoring Total Amount of Resources: A simple equation:
∑

x = Nx now has an
important implication: once we know how to find N and the average x, we immediately know
how to find the sum of x’s. And in the light of results presented in the previous sections we
already know that both ingredients (i.e. N and x) can be found in a small number of cycles
and with an arbitrary accuracy. Therefore, we have an efficient algorithm that can be used for
finding the sum of all values that are stored by nodes.

In the context of network monitoring it means that one can constantly measure the total load
of all the nodes, the total capacity of their disk drives, the total number of files or amount of
data stored, etc.

3) Monitoring Migration of Agents: Yet another application of aggregation algorithms for
network maintenance is measuring the number of agents that joined the network within the last
epoch. By an epoch we mean here a fixed number of cycles (e.g., 1000). Counting agents that
joined the network is simple: every agent has to keep one bit of information: 1, if it joined the
network within the current epoch; 0, otherwise. At the end of every epoch the sum of these
bits is found, and 1’s are set to 0’s.

Combining this information with the network size one can calculate the number of agents that
left the network during the epoch. This way the fluctuation of the network can be monitored.

An additional mechanism could be built-in into every agent: whenever the number of failures
that are observed by a single agent exceeds a certain threshold, this agent may rise an alarm.

4) Alarm Processing: As a next example, consider the problem of efficiently broadcasting
an alarm signal. As we mentioned, broadcasting is just a special case of computing and
disseminating the maximum value across the network. In particular, we let a0 = (a, 0, . . . 0)
where a 6= 0 denotes the alarm value generated by node 1. In this example, we assume the
strongest integration between newscast and aggregation. In other words, we base aggregation
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(i.e. broadcasting) on the values contained in the cached news items. Whenever getNews() is
called, the current alarm value (which is either 0 or a) is passed as news item to the underlying
correspondent, who subsequently stores it in its cache. Likewise, when a correspondent calls
newsUpdate(), it passes all c news items stored in its cache to its associated agent. If
vi denotes the value of the ith news item, then the agent will adjust its current value to
max{v1, . . . , vc}.

We already showed that broadcasting can be done super-exponentially fast. However, this
dissemination speed comes at a price: there are many nodes that receive the alarm value more
than once. We can improve this situation by taking the age of a cached news item into account.
Whenever a news item is subject to a cache exchange, its age is incremented by 1.

Instead of randomly selecting a peer from the cache, a node adopts the following selection
policy. If a node has already seen the alarm signal, it will give preference to a peer whose
cached news item (1) has value 0, and (2) is young. The reasoning is that most likely this peer
has not yet seen the alarm signal, whereas other peers with a zero-valued, but old news item
are more likely to have already been contacted.

For the same reason, if a node is yet unaware of an alarm, it will give preference to a peer
whose cached news item is old. Note that the cache of nodes who are unaware of an alarm
contains only zero-valued news items.

The effect of this selective push-pull policy can be observed in Figure 14(a). The z-axis
shows the average number of delivered alarm signals per node. The x-axis shows the pull
threshold, which is relevant only for a node that is unaware of the alarm. The pull threshold
is the minimal age that a news item should have before its associated peer will be contacted.
Note that the pull threshold does not affect the average number of delivered alarm signals: no
node will ever see the value more than once. Likewise, the y-axis shows the push threshold,
which is relevant only for nodes that already have seen the alarm. The push threshold is the
maximum age a news item can have in order to for its associated peer to be contacted. From
this figure, it can be seen that the push threshold is indeed the only factor for determining the
average number of delivered alarm signals per node.

Lowering the number of deliveries comes at a price: the number of cycles needed to
disseminate the alarm to all nodes increases. Again, it is the push threshold that is the dominant
factor, as shown in Figure 14(b). In this case, the z-axis shows the number of cycles needed
to deliver the alarm to all nodes. The x-axis shows the push threshold; the y-axis the pull
threshold.

X. CONCLUSIONS

We introduced newscast computing, a general framework for distributed information pro-
cessing. The core of newscast computing is formed by the newscast protocol, which offers
membership management and information dissemination services to distributed applications.
Within this framework we developed several algorithms for data aggregation (averaging, count-
ing, summing) and information dissemination (propagation of extreme values or alarms). Using
an idealized model we were able to provide statistical analysis of the main properties of these
algorithms, namely convergence rate and accuracy. It turned out that the averaging algorithm
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Fig. 14. Performance of alarm signal propagation.

converges exponentially fast to the (exact) average, whereas single values (e.g., maximum)
can be propagated in epidemic style super-exponentially fast. Numerous experiments with the
actual implementation of the newscast model fully confirmed these theoretical findings.

A combination of the newscast protocol with aggregation algorithms resulted in a very robust,
scalable, adaptive, and yet very simple and efficient solution of typical network monitoring
problems: finding the network size, measuring migration of nodes (counting nodes that join
and leave the network), estimating the average load, or fast propagation of alarms. Modest
memory and CPU requirements make our solution particularly suitable for monitoring huge
networks of small computing devices like mobile phones, PDA’s or sensors, where a fully
decentralized approach seems to be inevitable.



24

REFERENCES

[1] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D. Terry,
“Epidemic algorithms for replicated database management,” in Proceedings of the 6th Annual ACM Symposium
on Principles of Distributed Computing (PODC’87). Vancouver: ACM, Aug. 1987, pp. 1–12. [Online]. Available:
http://www.acm.org/dl

[2] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulié, “From epidemics to distributed computing,” IEEE
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