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Post-ischemic administration of diazoxide attenuates long-term microglial
activation in the rat brain after permanent carotid artery occlusion
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Abstract

Diazoxide is a putative mitochondrial, ATP-sensitive potassium channel opener that has been implicated in neuroprotection in cerebral
ischemia. Administered as pretreatment, diazoxide can attenuate ischemia-related neuronal injury, but little is known about the potential
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europrotective properties of the drug when it is given after the onset of an ischemic insult. In a previous study, we applied diaz
mposing chronic cerebral hypoperfusion by means of permanent, bilateral occlusion of the common carotid arteries (2VO) in rats. W
hat ischemia-induced learning impairment assessed in the Morris water maze, and microglial activation visualized by immunocyto
ere prevented by diazoxide as determined at 13 weeks after 2VO. However, dimethyl sulfoxide, the organic solvent of diaz
revented memory deficits, without any effect on microglial activity. Therefore, we have repeated our experiments with the use of an
olvent, aqueous NaOH solution in order to clarify the effect of diazoxide independent of dimethyl sulfoxide. The present results dem
hat diazoxide alone did not improve learning performance, but it prevented microglial activation in the hippocampus 13 weeks afte
f 2VO. These data provide evidence that post-treatment with diazoxide is not effective in impeding a long-term memory deficie
an attenuate ischemia-induced microglial activation, independently of the solvent used.
2005 Elsevier Ireland Ltd. All rights reserved.
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iazoxide (DIAZ), a benzothiadiazine derivative has long
een used as an antihypertensive and antihypoglycemic
rug [8]. DIAZ recently emerged as a selective, mitochon-
rial, ATP-dependent potassium channel opener that can
rotect cardiac myocytes and neurons against ischemia

1,2,11].
DIAZ has mostly been applied as pretreatment in various

n vivo cerebral ischemia models and in neuronal cell cultures
xposed to oxygen–glucose deprivation[1,4,9,11,15,16]. The
xperimental data unequivocally demonstrate the neuropro-
ective effect of the drug. For instance, pretreatment with
IAZ restricts the infarct size in experimental animals after
iddle cerebral artery occlusion[10,15], and preserves neu-
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ronal viability, probably via the induction of mitochondr
depolarization, free radical production and protein kina
activation in neuronal cell cultures[1,9,16]. Although pre
treatment with DIAZ has thus been proven to be a po
neuroprotective drug in experimental ischemia, it is of inte
from a therapeutic point of view to learn whether a p
ischemic administration of the drug can also exert bene
effects on the nervous tissue.

In order to investigate this possibility, in a previo
study, we imposed chronic cerebral ischemia by perman
occluding the common carotid arteries of rats. Directly a
surgery, DIAZ dissolved in dimethyl sulfoxide (DMSO) w
applied, in a post-operative manner. Thirteen weeks late
observed that DIAZ dissolved in DMSO successfully p
vented a hypoperfusion-induced spatial learning impairm
and restored the microglial activation in the hippocampu
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Table 1
Survival rate and the incidence of CNS lesions

Experimental group Survival rate (%) CNS lesions (%)

Hippocampus Cerebral cortex

SHAM/C 81.81 (9/11) 00.00 (0/9) 00.00 (0/9)
2VO/C 69.23 (9/13) 00.00 (0/9) 11.11 (1/9)
SHAM/DIAZ 72.72 (8/11) 00.00 (0/8) 00.00 (0/8)
2VO/DIAZ 60.00 (9/15) 11.11 (1/9) 22.22 (2/9)

the baseline. However, the organic solvent DMSO given alone
also improved the spatial learning of animals with cerebral
hypoperfusion, but it did not alter the microglial activation
[7]. In order to determine the specific effects of the post-
treatment with DIAZ independently of the biologically active
DMSO, we have repeated the experiments with the use of an
inorganic solvent, an aqueous solution of NaOH.

Thirty-five male Wistar rats (290± 45 g) were used for the
study. All animal experiments were approved by the ethical
committee of the University of Szeged. Chronic, experimen-
tal cerebral hypoperfusion was imposed on half of the animals
by permanent bilateral occlusion of the common carotid arter-
ies (2VO); the other half served as sham-operated controls
(SHAM) [5]. Prior to surgery, the animals were anesthetized
with 400 mg/kg chloralhydrate given i.p., followed by 0.05 ml
atropine (1 mg/ml) i.m. The common carotid arteries were
exposed via a ventral cervical incision, separated from their
sheaths and vagal nerves, and permanently ligated with surgi-
cal sutures. The same procedure was performed on the SHAM
group, but without the actual ligation. The survival rates for
the groups are presented inTable 1.

Half of the animals in each surgical group underwent
post-operative treatment with 0.5 mg/kg diazoxide (DIAZ)
dissolved in 0.25 ml 0.1N NaOH as vehicle. The other half
of the animals received 0.25 ml vehicle alone. The animals
were injected i.p. on five consecutive days. The first injection
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the swimming distance traveled before reaching the platform
were analyzed.

Seven days after the beginning of the Morris water maze
training, the animals were anesthetized with an overdose of
chloralhydrate (i.p.), and perfused transcardially with 100 ml
saline followed by 400 ml 3.5% paraformaldehyde and 0.5%
picric acid in 0.1 M phosphate buffer (PB, pH 7.4). The brains
were removed and postfixed in the same solution for up to
1 h, and then stored in 0.1 PB containing 0.1% sodium azide.

Free-floating coronal sections at the level of the dorsal
hippocampus were cut at a thickness of 20�m on a cryo-
stat microtome. Synaptophysin (a synaptic vesicle protein)
labeling was performed on the first set of sections as follows.
First, endogenous peroxidase activity was blocked with 3%
H2O2. Nonspecific binding sites were covered with 5% nor-
mal porcine serum (NPS) and membrane permeability was
enhanced with 0.5% Triton X-100. The sections were incu-
bated overnight at room temperature (RT) in primary anti-
body solution containing rabbit anti-synaptophysin antibody
(DAKO), 1:2000, 20% NPS and 0.3% merthiolate in 0.01 M
PBS (pH 7.4). Next, incubation was performed in a solution of
goat anti-rabbit biotinylated IgG (Jackson) 1:400, 10% NPS,
5% normal rabbit serum and 0.03% merthiolate in 0.1 M Tris
buffer for 1 h at RT. Finally, the signal was amplified by STA-
PER (Jackson), 1% NPS, and 0.03% merthiolate in 0.1 M Tris
buffer for 1 h at RT. The color reaction was developed with
n
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as applied directly after surgery. The final composition
he experimental groups are presented inTable 1.

Twelve weeks after surgery, the animals were traine
he Morris water maze[3,7]. This consisted of a circular po
diameter: 160 cm, height: 35 cm) filled with water (22◦C),
ade opaque with milk so that the rats were unable to
n underwater platform 2 cm below the water surface. V
ues were placed on the wall of the testing room, and a
tant source of auditory stimulus with a fixed location
witched on throughout the testing. All rats performed
rials per day, with a constant intertrial interval of 4 h, for fi
onsecutive days. The animals were placed in the wa
ne of four starting quadrant points, which was varied
omly over the trials. The rats were given 2 min to find
latform and sit on it for 15 s. Rats that failed to find the lo

ion within the given time were gently guided to the platfo
nd were allowed to stay on it for 15 s. Swimming paths w
ecorded by a computerized video imaging analysis sy
EthoVision, Noldus Information Technology BV, Wagen
en, The Netherlands). In each trial, the escape latency
ickel-diaminobenzidine (Ni-DAB) and H2O2.
A second set of sections was immunocytochemic

tained for glial fibrillary acidic protein (GFAP) to vis
lize astrocytic proliferation. Briefly, sections were trea
ith 3% H2O2 and 0.5% Triton X-100 in 0.01 M PBS, a
reincubated in 20% NPS. The samples were then incu
vernight at RT in a primary antibody solution contain
ouse anti-GFAP antibody (Sigma), 1:40,000, 20% N
nd 0.03% merthiolate in 0.01 M PBS. The secondary
ody solution consisted of goat anti-mouse biotinylated
Jackson), 1:400, 10% NPS, 5% normal rabbit serum
.03% merthiolate in 0.01 M PBS. Finally, the sections w

ncubated in STA-PER (Jackson), 1% NPS and 0.03% me
late in 0.1 M Tris buffer, and the color reaction was de
ped conventionally with DAB and H2O2.

To detect and analyze microglial activation over the
ocampal areas, OX-42 antibody was used on a thir
f sections. The procedure started with rinsing and pret
ent of the sections with 0.5% Triton X-100 and 3% H2O2

n 0.01 M PBS, followed by preincubation in 20% norm
PS and 0.5% Triton X-100 in 0.01 M PBS for 1 h. The s

ions were incubated overnight in a primary antibody solu
ontaining biotinylated mouse anti-CD11b antibody (OX
erotec), 1:500, 20% NPS and 0.03% merthiolate in 0.0
BS at RT. Next, the sections were rinsed, and incub

n a solution of STA-PER (Jackson), 1% NPS and 0.0
erthiolate in 0.1 M Tris buffer for 1 h at RT. Finally, t

olor reaction was developed with Ni-DAB and H2O2. All the
ections were mounted on gelatin-coated microscopic s
ir-dried, dehydrated and coverslipped with DPX.
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The percentage surface areas of synaptophysin-labeled
terminals, GFAP-positive astrocytes and OX-42 immunore-
active microglia in the dorsal hippocampus were quantified
by using an image analysis system (Olympus BX50, DP50,
software: ImagePro Plus, Media Cybernetics). Briefly, three
consecutive coronal sections at Bregma−3.60 mm[13] were
selected for the analysis. Hippocampal regions of interest
were manually delineated at 10× magnification, after back-
ground subtraction and gray-scale threshold determination.
The area covered by immunoreactive material was calculated
as a percentage of the total area delineated. Measurements
were carried out on the hippocampus in both hemispheres.
Six values per area per animal were averaged for use in further
statistical analysis. Synaptophysin labeling was measured in
the hippocampal CA3 str. lucidum. GFAP and OX-42 signals
were measured in the CA1 str. radiatum, CA1 str. oriens, CA3
str. radiatum, CA3 str. oriens, the inner and outer molecular
layers of the dentate gyrus, and the hilus.

The Morris maze test results were statistically analyzed by
repeated measures of the general linear model of the software
SPSS. Individual day comparisons were performed by analy-
sis of variance (ANOVA). The immunocytochemical results
were analyzed statistically with two-way ANOVA, followed
by the LSD post hoc test.

As in our previous study[7], tendencies to a decreased
survival rate and a higher prevalence of macroscopic cere-
b the
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Fig. 1. Learning curves of the Morris water maze spatial learning test.
Values are given as mean± S.E.M.; statisticalF values are based on a
two-way repeated measurement ANOVA model (* p < 0.05,** p < 0.01). Indi-
vidual days were analyzed in ANOVA and LSD post hoc tests (* p < 0.05,
** p < 0.01). Asterisk (*) indicates a significant difference between SHAM-C
and 2VO-C, hash (#) indicates a significant difference between SHAM-DIAZ
and 2VO-DIAZ. Abbreviations: 2VO: bilateral carotid artery occlusion,
DIAZ: diazoxide, SHAM: sham operation.

was attained in concert with the organic solvent, DMSO
[7].

The present experimental data obtained with the Morris
water maze test revealed no definite protective effect of the
post-treatment with DIAZ on the learning impairment, which
suggests that the neuroprotective action of DIAZ recorded
in our previous study was a synergistic effect of DIAZ and
DMSO. This conclusion is supported by the finding that
DIAZ dissolved in aqueous NaOH solution did not prevent
the development of macroscopic lesions in the hippocampus
and cerebral cortex after 2VO. The result that the treated 2VO
group performed as well as the SHAM group on day 4 in the
Morris maze cannot be taken as sufficient evidence of the
protective properties of the post-operative administration of
the drug. The present results raise two possible explanations.
First, it may be assumed that DIAZ could not prevent the
deterioration of the spatial learning because it was given after
(and not before) the onset of ischemia. Secondly, the possi-
bility may be considered that DIAZ appeared to be ineffec-
tive on the learning performance because memory capacity
was assessed at a rather late time point in chronic cerebral
hypoperfusion. The first suggestion stands in line with the
previously identified pharmacological action of DIAZ, i.e.
the fact that the neuroprotective properties of DIAZ lie in
its preconditioning effect. At a neuronal level, pretreatment
with DIAZ can increase neuronal viability and moderate
t h an
i hibi-
t otein
k een
a t an
i ious
rocortical and hippocampal lesions were observed in
VO groups (Table 1).

The Morris water maze test confirmed the previous
n that the learning performance of the control 2VO

als was significantly worse than that of their SHAM c
rols throughout the entire training period. While the SH
nimals gradually learned the platform’s location, the 2
nimals showed hardly any day-to-day improvement.
ost-operative administration of DIAZ did not improve

earning capacity in the 2VO group except on day 4, w
he 2VO group treated with DIAZ performed similarly to t
HAM groups (Fig. 1).
Synaptophysin labeling quantified in the CA3 str. lucid

emonstrated an insignificant, small increase in syn
ensity in the nontreated 2VO group as compared wit

he other experimental groups. GFAP immunocytochem
evealed no astrocytic proliferation due to either cere
ypoperfusion or treatment with DIAZ in any of the se
ippocampal areas investigated (Fig. 2A–E). In contrast, OX
2 immunoreactivity reflecting microglial activation show
moderate but consistent, 15–25% increase in the nontr
VO group as compared with its respective SHAM con
pecifically in the CA1 area and the dentate gyrus (Fig. 2F–J).
reatment with DIAZ restored the microglial activation co
letely to the baseline level.

Our present experiments were aimed at resolving
uestion of whether the administration of DIAZ after
nset of chronic cerebral ischemia can really cause imp
ents in spatial learning and the histological paramete
hether the beneficial effect observed in our previous s
he deleterious outcome of an ischemic attack throug
ncreased production of reactive oxygen species, the in
ion of succinate dehydrogenase and the activation of pr
inases[1,9,12]. However, direct evidence has not yet b
cquired that pretreatment with DIAZ can actually preven

schemia-induced learning dysfunction. In fact, our prev



E. Farkas et al. / Neuroscience Letters 387 (2005) 168–172 171

Fig. 2. GFAP and OX-42 immunocytochemistry. Panels A–C: representative photomicrographs of GFAP-labeled astrocytes in the dorsal hippocampus. Panels
D and E: quantitative analysis of astrocytic proliferation. Panels F–H: representative photomicrographs of OX-42-labeled microglia in the dorsalhippocampus.
Panels I and J: quantitative analysis of microglial activation. Data are shown as mean± S.E.M. Abbreviations: 2VO: bilateral carotid artery occlusion, DIAZ:
diazoxide, or: str. oriens, rad: str. radiatum, SHAM: sham operation.

study is the only one to have tackled the question of whether
the effect of DIAZ can be retrieved at a behavioral level[7].
This is also the reason why it cannot be debated whether
the time point for the testing (which we did not alter for our
present study) is most appropriate. Therefore, our ongoing
experiments have the goal of testing the animals at an earlier
time point following the onset of 2VO and the administration

of DIAZ, and to compare the test results obtained after pre
and post-treatment with DIAZ.

Similarly as in our earlier study, the present data demon-
strated an increased level of microglial activation in the
hippocampus due to cerebral hypoperfusion, which could
be prevented by the post-operative administration of DIAZ
[7]. Besides the hippocampus, the same pattern of microglial
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reaction was observed in the corpus callosum[6]. In this
respect, DIAZ emerges as a potent drug for the attenuation
of microglial activation in chronic ischemia, irrespective of
the solvent used.

Although the action of DIAZ on cultured neurons and
astrocytes has been repeatedly tested and comprehensively
described[1,9,12,14], there are virtually no data on the
potential mechanisms to account for the effects of DIAZ
on microglia. Further, the in vivo nature of our experiments
may raise the possibility that, even though microglia are most
probably a primary target of DIAZ, reduced microglial acti-
vation may also be a secondary outcome of a protective effect
of DIAZ on neurons. Nevertheless, this latter assumption
appears to be unlikely, since the degree of microglial acti-
vation did not correlate with the spatial learning score, or
the survival of labeled neurons in the hippocampus[7]. For
the above reasons, the molecular and functional significance
of decreased microglial activation due to DIAZ remains a
subject for further investigation.
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