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KEYWORDS Summary
Efzgﬁithﬁg?nee’. We examined the effects of dexamethasone on the expression of the inducible
Seizure'py ¢ transcription factor c-fos in 4-aminopyridine (4-AP) seizures. Induction of c-fos
o mRNA due to 4-AP-elicited convulsion was detected by means of the polymerase
Icm):ﬁ Z,nohistochemis- chain reaction (PCR) in samples from the neocortex. Adult male rats were pretreated
try: with different doses of dexamethasone (0.5, 1, 3, 5mg/kg body weight); 1h later
b4 bral . 5mg/kg 4-AP was injected intraperitoneally. Controls received the solvent of
Eg{e el @i, dexamethasone. Pretreatment with dexamethasone provided significant sympto-

matic protection against 4-AP-induced convulsions. Immunohistochemistry was used
to evaluate the presence of the c-fos protein. The number of Fos-immunoreactive
nuclei per section area was measured in the neocortex and hippocampus.
Pretreatment with dexamethasone resulted in a dose-dependent, significant
decrease of seizure-induced Fos-protein immunoreactivity in the neocortex, in the
hilum of the dentate fascia, as well as in regions CA1-3 of the hippocampus,
compared to control animals. Brains processed for mRNA isolation and PCR,
displayed a significant increase of c-fos mRNA following the 4-AP treatment, while
pretreatment with dexamethasone did not prevent or decrease this boosted c-fos
mRNA expression. We conclude that seizure-induced c-fos expression and intracel-
lular Fos-protein localization are mediated by transmitter and receptor systems, and
dexamethasone significantly decreases Fos immunoreactivity, probably by regulating
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the intracellular traffic of the protein. We also conclude that dexamethasone does
not interfere with the genomic regulation of c-fos mRNA synthesis.
© 2006 Elsevier GmbH. All rights reserved.

Introduction

Induction of neuronal gene expression has been
reported in conditions that lead to neuronal
plasticity and permanent changes in brain function,
such as learning and memory (Goelet et al., 1985;
Greenberg et al., 1986; Morgan and Curran, 1985).
In particular, the proto-oncogene c-fos can be
rapidly induced in response to a variety of stimuli
in neuronal cells (Hanley, 1988). Although many of
the stimuli act through the regulation of intracel-
lular calcium levels, c-fos induction may be a point
of convergence for a wide range of conditions. This
suggests that different cytoplasmic pathways must
interact with regulatory factors that impinge on the
c-fos gene (Hanley, 1988). The expression of the
proto-oncogene c-fos is induced in chemically and
electrically elicited seizures, indicating that the
activation of the c-fos promoter may be an early
common pathway of the pathological stimuli (Gass
et al., 1992; Herdegen and Leah, 1998; Mihaly
et al., 2005). Expression of c-fos in epileptic
seizures, is mediated principally by transmitters
acting on ionotropic receptors and voltage-depen-
dent calcium channels (Greenberg and Ziff, 2001;
Szakacs et al., 2003). NMDA (N-methyl-p-aspartic
acid) and AMPA (x-amino-3-hydroxy-5-methyl-4-iso-
xazole propionic acid) are the main candidates for
the induction of the c-fos proto-oncogene (Green-
berg and Ziff, 2001). Accordingly, blockade of the
NMDA receptor channel decreases seizure-induced
c-fos expression, which indicates the importance of
the postsynaptic effects of glutamate and the
concomitant of Ca®* influx (Szakacs et al., 2003).

There are extensive data regarding the genomic
effects of corticosteroids in the hippocampus. The
stress-induced increase in corticosterone secretion
leads to structural and functional neuronal
changes. Exposure to a high dose of exogenous
corticosterone has been shown to cause neuronal
atrophy (Woolley et al., 1990). In addition to their
classical genomic effects on neuronal structure
(effected in part via intracellular steroid recep-
tors), glucocorticoids act acutely on neuronal
excitability: they reversibly and biphasically mod-
ulate the excitability of hippocampal neurons, and
influence the magnitude of long-term potentiation
(LTP) (Pavlides et al., 1995; Kerr et al., 1994;
Diamond et al., 1992). High concentrations of

glucocorticoids suppress the LTP of the population
spike within 1h (Vidal et al., 1986). Additionally,
application of corticosterone for 20min signifi-
cantly inhibits the development of LTP in the CA1
region of rat hippocampal slices (Kawato et al.,
2001; Shibuya et al., 2003). The induction of LTP is
related to Ca?" influx via NMDA receptors. It has
also been demonstrated that 30 min preincubation
of hippocampal slices with corticosterone signifi-
cantly decreases NMDA-receptor-mediated Ca®*
accumulation in CA1 levels (Sato et al., 2004).
Data reported in the literature also indicate that
corticosteroids have beneficial effects in some
animal and human epilepsies (Edwards et al.,
2002).

Previous studies from our laboratory indicated
that immunohistochemical detection of Fos protein
in 4-aminopyridine (4-AP) convulsions serves as an
indicator of neuronal hyperactivity and seizure
spread in forebrain structures (Mihaly et al.,
2001, 2005; Szakacs et al., 2003). Seizure events
and c-fos expression were dependent on NMDA-
type glutamate receptors (Szakacs et al., 2003).
Moreover, we detected a slight discrepancy be-
tween the increase of Fos-immunolabeled cells and
the increase in c-fos mRNA level, indicating, that
the seizure signals act not only at genomic, but also
at cytoplasmic levels (Mihaly et al., 2005). In the
experiments reported here, we investigated the
possible beneficial effects of dexamethasone, a
highly potent synthetic corticosteroid, in seizures
elicited by 4-AP. We measured the expression of the
c-fos gene, using reverse transcription (RT) poly-
merase chain reaction (RT-PCR) to detect c-fos
mRNA. At the same time, we investigated the
intracellular appearance and distribution of the Fos
protein by means of semi-quantitative immunohis-
tochemistry.

Material and methods
Animal treatment

Male Wistar rats weighing 220-280g, bred in the
Central Animal House of Szeged University were
used. The animals were housed under standard
conditions with free access to water and food. The
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Experimental groups and the number of animals

Table 1.

Rats treated only

Rats treated
only with

Number of dexamethasone-pretreated plus 4-AP
injected rats

Number of  Number of rats

Number of rats
treated with

Experiments

with the solvent of

dexamethasone dexamethasone

rats treated treated with 4-

AP+solvent of

the solvent of 4- with 4-AP

AP (0.9% NaCl)

3mg/kg 5mg/kg

1mg/kg

dexamethasone 0.5 mg/kg

10
10

10 10
10

10

10
10

10
10

Behavioural analysis

10

12

3

Immunohisto-chemistry

RT-PCR

experiments were conducted in accordance with
the Hungarian Animal Act (1998). Written permis-
sion was obtained from the Faculty Ethical Com-
mittee on Animal Experiments, University of
Szeged.

For immunohistochemistry, a total of 81 animals
were used. To study the potential dose-dependent
effects of dexamethasone, experiments were per-
formed on animals in four groups, each of ten
animals. Dexamethasone (Sigma, USA) was dissolved
in 30% ethanol and injected intraperitoneally (i.p.)
at doses of 0.5, 1, 3 and 5mg/kg body weight (b.w.),
respectively (40 animals). One hour after the
administration of dexamethasone, seizures were
induced with a single i.p. injection of 4-AP (Sigma),
5mg/kg 4-AP, dissolved in physiological saline at a
concentration of 0.67 mg/ml. In our previous inves-
tigations, this dose proved to be epileptogenic
(Mihaly et al., 1990; Szakacs et al., 2003). Another
experimental group (10 animals) received similar
volumes of 30% ethanol (the solvent in which
dexamethasone was dissolved in for experimental
animals), then, 1h later, 5mg/kg b.w. 4-AP. The
control group (consisting of four sub-groups of three
animals each, giving a total of 12 animals) received
only dexamethasone (0.5, 1, 3 and 5mg/kg b.w.)
dissolved in 30% ethanol. Finally, an additional
control group of 10 animals received only the
solvent, 30% ethanol. Details of all groups are
summarized in Table 1. The behavioural outcome of
the experiments, and in particular the latency of the
onset of generalized tonic-clonic seizures (GTCS)
were recorded from the time of 4-AP injections.

At the end of the experiment (the control
animals were sacrificed 1h after the dexametha-
sone and/or ethanol injections), 1h after the i.p.
injections of 4-AP, the animals were deeply
anaesthetized with diethyl-ether and perfused
transcardially with 0.1 M phosphate-buffered saline
(PBS), pH 7.4, followed by 4% phosphate-buffered
paraformaldehyde, pH 7.4, as a fixative. The brains
were removed and postfixed in 4% paraformalde-
hyde for 24h at room temperature. Following
postfixation, the brains were cryoprotected over-
night in 30% sucrose in PBS, pH 7.4. 24 um-thick
serial sections were cut, between the interaural
coronal planes 5.40 and 6.70mm (Paxinos and
Watson, 1998) using a freezing microtome (Reich-
ert-Jung Cryocut 1800), and every fifth section was
processed for immunohistochemistry.

C-fos mRNA detection

In the RT-PCR experiments, which were performed
similarly to the behavioural and immunohistochemical
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experiments, we used three rats in each experi-
mental group. Controls received the solvent of 4-AP
(0.9% NaCl in distilled water, i.p.), and were
sacrificed 1h after the injection. The next three
animals were treated with 4-AP (5mg/kg, i.p.) and
were sacrificed 1h later. Finally, three rats were
pretreated with 5mg/kg dexamethasone (dissolved
in 30% ethanol and administered i.p.), and after 1h
they were injected with 5mg/kg 4-AP. These
animals were sacrificed 1h following the 4-AP
injection (see Table 1). We did not investigate the
effects of 30% ethanol in these experiments. We
used the 5mg/kg dexamethasone dose, because
the effects of this dose on Fos protein expression
were the most pronounced (see Results). The rats
were sacrificed by decapitation under deep diethyl-
ether anaesthesia. The brains were then dissected
on ice, and samples of the neocortex were
immediately frozen in liquid nitrogen. After homo-
genization of the tissue samples, the total RNA was
extracted by the AGPC method (Chomczynski and
Sacchi, 1987). The RT was made from 2 ug of RNA
(Zador et al., 1996). The RT product (1pul of
the 20ul) was submitted to multiplex PCR in
50ul volume of Taq reaction buffer containing
0.0.5uM glyceraldehyde-3-phosphate dehydrogen-
ase (GAPDH) primers, 0.5 uM c-fos primers, 200 pM
dNTP, 1.5mM MgCl, and one unit of DNA polymer-
ase. The sequence of GADPH primers (Zador et al.,
1996) and the sequence of c-fos primers (Arrieta et
al., 2000) have been described. Amplification was
carried out in 25 cycles after establishing the
linearity for both the GAPDH and c-fos fragments
between 20 and 30 cycles. Identity of the c-fos PCR
fragment (256bp) and the GAPDH fragment
(377 bp) was confirmed by cloning into pGEM-T easy
vector and sequencing. The RT-PCR products were
separated on 6% acrylamide gel and stained with
ethidium bromide. Quantification of the bands was
performed by densitometric scanning, using Im-
ageQuant (Typhoon™ 9400 Variable Mode Imager,
Molecular Dynamics, GE Life Sciences). The Stu-
dent’s t-test and Newman-Keuls multiple-compar-
ison test were used for statistical analysis. The
levels of c-fos transcripts in each of the samples
were normalized to the level of GAPDH mRNA
detected from the same amplification reaction.

Immunohistochemistry and analysis of the
immunohistochemical data

A streptavidin-peroxidase = immunodetection
technique was used to localize c-fos. Sections were
pretreated with 2% H,0, in 0.5% Triton X-100 to
block endogenous peroxidase, and then incubated

successively in 20% v/v normal pig serum, then
primary polyclonal antisera raised against c-fos
(raised in rabbit; Santa Cruz Biotechnology, USA),
diluted 1:2000 in 20% v/v normal pig serum, and
then in donkey anti-rabbit 1gG (Jackson Immuno-
Research, USA), diluted 1:40. The secondary anti-
body was detected using streptavidin-peroxidase
(Jackson Immuno-Research), diluted 1:1000. All
dilutions and washes between incubations were
performed in PBS (pH 7.4). The enzyme label,
peroxidase, was detected using nickel-chloride-
containing diaminobenzidine tetrahydrochloride
(Ni-DAB kit; Sigma) substrate, applied according
to manufacturer’s instructions, which yielded a
black reaction product. No counterstaining was
employed. The sections were dehydrated through a
graded ethanol series, cleared in xylene and
mounted with Entellan® (Fluka).

Quantitative analysis was performed on five
sections from every animal. The structures were
identified using stereotaxic coronal plane diagrams
(Paxinos and Watson, 1998). Areas of interest (AQOls)
for immunoreactive cell counts were selected from
the neocortex (S1Tr region), regions CA1, CA2 and
CA3 of the hippocampus, the hilum and the granule
cell layer of the dentate fascia. The AOIs were
determined using the rectangular image-capturing
field of the camera. Within the AOls, the immuno-
labelled neuronal nuclei were counted using a
Nikon Eclipse 600 microscope equipped with a
SPOT RT Slider digital camera (1600 x 1200dpi in
8 bits), using the Image ProPlus 4.0 morphometry
software (Media Cybernetics, Silver Spring, USA).
Following background subtraction, the threshold
was adjusted so that all labelled cell nuclei could
be recognized. The counting was performed by an
observer blinded to the identity of the sample.

In the neocortex, cell counts were done first using
a 10 x objective magnification, and the AOI (an area
of 1.20 mm?) included every neocortical layer (I-VI).
Cell counts were normalized to 1mm?. Then, the
different neocortical layers were analyzed using a
40x objective, the AOl being 0.05mm?. In the
hippocampus, counting was performed using a 40 x
objective. In areas CA1-3 of the Ammon’s horn, the
AOl (an area of 0.05mm?) included the stratum
pyramidale. The hilum of the dentate fascia was
outlined manually, according to Amaral (1978), and
used as AOI. Cell counts were normalized to 1 mm?.

The data were analyzed statistically comparing
sets of findings obtained with the same magnifica-
tion. Differences in the number of Fos-immunor-
eactive nuclei in the control, 4-AP-treated and
dexamethasone-pretreated animals were analy-
zed with one-way analysis of variance (ANOVA),
followed by the Bonferroni post hoc test.
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Table 2. Behavioural analysis of the effect of dexa-
methasone pretreatment on 4-AP seizures

Animal treatment GTCS latency S.E.M.

(min)
4-AP+solvent of dexamethasone  10.60 0.48
4-AP+0.5 mg/kg dexamethasone 18.00* 3.19
4-AP+1 mg/kg dexamethasone 18.66™ 1.61
4-AP+3 mg/kg dexamethasone 24.28* 2.29
4-AP+5mg/kg dexamethasone 15.50™ 0.99

The tests were conducted in groups of 10 animals each.
Dexamethasone was injected i.p. 1h prior to the application of
4-AP. The latencies of the onset of GTCS were measured from the
time of the 4-AP injection. Significant differences are indicated
with asterisks (*).

GTCS, generalized tonic-clonic seizures; S.E.M., standard error
of the mean.

*p<0.05; ANOVA followed by the post hoc Bonferroni test.

A significance criterion of 0.05 was used. The
statistical analysis was performed using the SPSS
9.0 computer programme.

Results

Behavioural analysis

As described in detail previously (Mihaly et al.,
1990, 2001; Szakacs et al., 2003), the i.p. admin-
istration of 4-AP caused characteristic behavioural
symptoms which culminated in GTCS. The symp-
toms of the first GTCS were always sudden and
clear-cut; therefore, the latency measurements
were reliable. Data are summarized in Table 2. The
latencies of the GTCS increased in the animals
pretreated with dexamethasone: the values chan-
ged significantly in all pretreated groups. The most
effective in this respect was pretreatment with
3mg/kg dexamethasone, with an average latency
of 24.29 +2.3 min (see Table 2). However, the GTCS
was not eliminated, and the symptoms preceding
GTCS (tremor of the vibrissal and masticatory
muscles, generalized tremor) were similar in the
4-AP-treated and dexamethasone-pretreated ani-
mal groups. Dexamethasone alone and the 30%
ethanol solvent of dexamethasone did not result in
any alteration of animal behaviour (the amount of
30% ethanol injected was between 0.6 and 0.8 ml,
depending on the body weight of the animal).

Expression of c-fos mRNA

The mMRNA of c-fos was detectable in the
neocortex of saline-treated, 4-AP-treated and

dexamethasone-pretreated rats, as was the inter-
nal control GADPH mRNA, illustrated in Fig. 1. In
saline-treated controls, minimal, basal c-fos mRNA
expression was detected. 1h following the 4-AP
injection, the level of c-fos mRNA increased
significantly compared to levels in the saline-
treated control rats (p<0.05). The c-fos mRNA
level in the dexamethasone-pretreated brains was
also significantly higher than that of the saline-
treated controls (p<0.05). There were no signifi-
cant differences between the c-fos mRNA levels of
the 4-AP-treated animals and the animals pre-
treated with 5mg/kg dexamethasone, as seen in
Fig. 1.

Immunohistochemistry

As described in previous studies (Mihaly et al.,
2001; Szakacs et al., 2003), areas CA1-3 of the
hippocampus and the granule cell layer of the
dentate fascia displayed strong immunolabelling
following 4-AP administration, illustrated in Fig. 2.
Most of the labelled nuclei in the Ammon’s horn
were observed in the pyramidal cell layer, whilst
the strata oriens, radiatum and lacunosum-mole-
culare contained few, scattered Fos-positive cell
nuclei. High packing density of Fos-labelled nuclei
was seen in the granule cell layer of the dentate
fascia, so that counting of the activated granule
cells was not possible. The hilum contained strongly
labelled, activated cells. Application of different
doses of dexamethasone 1 h prior to the convulsant
agent resulted in significant decrease of positive
Fos-immunolabelled cell nuclei in CA1, CA2 and
CA3 regions of the hippocampus, as well as in the
hilum of the dentate fascia, seen in Fig. 2, and
confirmed by the statistical evaluation. The num-
ber of immunolabelled cells in these areas was
markedly lower at 0.5mg/kg dexamethasone-pre-
treatment, and subsequently gradually decreased
in a dose-dependent manner.

Fos-immunoreactive cell nuclei were present in
every layer of the neocortex, as well as in the
hippocampus following 4-AP administration. In the
neocortex, strong immunolabelling was detected in
layers I, 1lI, IV, V and VI (data not shown).
Pretreatment with 0.5, 1, 3 and 5mg/kg dexa-
methasone prior to the administration of the
convulsant agent resulted in a dose-dependent
decrease of Fos-immunoreactive nuclei compared
to the 4-AP-treated animals. Regarding the im-
munolabelling pattern, dexamethasone caused an
overall decrease of Fos-positive cell nuclei, as seen
in Fig. 2. Quantitative analysis revealed that the
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Figure 1. (a) Polyacrylamide gel analysis of c-fos mRNA in neocortical samples. The upper bands show GADPH, the
lower bands c-fos. The first lane (MW) displays length markers; s, saline-treated; c, control (4-AP- treated); DEX,
dexamethasone. (b) Histogram illustrating c-fos mRNA signal densities in the cerebral neocortex in saline-treated, 4-
AP-treated and dexamethasone-pretreated (DEX+4-AP) animals. The columns show the mean values detected by
densitometry, the vertical bars indicate the standard error of the mean (S.E.M). The difference compared to saline-
treated animals is significant (*p<0.05). Dexamethasone-pretreatment did not cause a significant change in the level of
the c-fos mRNA in comparison to 4-AP-treated animals. However, the dexamethasone-pretreated group displayed
significantly higher values, compared to the saline-control group (**p<0.05).

number of Fos-immunopositive cell nuclei signifi-
cantly and consistently decreased in dexametha-
sone-pretreated animals in a dose-dependent
manner, and the most pronounced effect was
detected at the dose of 5mg/kg dexamethasone
pretreatment (Fig. 2). The analysis of the neocor-
tical layers resulted in similar results; however,
there were differences as to the effectiveness of
dexamethasone, seen in Fig. 3. Very pronounced
inhibitory effects were seen in layers II/lll - the
largest decrease of Fos immunolabelling was found
in layer Il. The decrease was very modest (although
significant) in layer IV. Layer V reacted similarly:
dose dependency was not clear-cut, because the
largest decrease was associated with the lowest
dose (0.5m/kg). Layer VI displayed a significant
decrease at the lowest (0.5mg/kg) dose. The
effects of the 1mg and 3mg doses were similar,

but the 5mg/kg dose resulted in a further decrease
in immunolabelling as seen in Fig. 3.

When given alone, dexamethasone did not cause
neocortical and hippocampal Fos induction (Fig. 3).
The number of Fos-labelled cell nuclei was con-
sistently very low in all the above regions, and the
different doses of dexamethasone had no impact on
Fos-immunoreactivity (Fig. 3). The effects of
ethanol were similar to those of dexamethasone:
no change in basal c-fos immunoreactivity was
detected (data not shown).

Discussion

Our previous studies indicated that immunohis-
tochemical detection and quantitative evaluation
of Fos-containing cell nuclei in 4-AP seizures serve
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Figure 2. (a-c) Low magnification images of the distribution of Fos-immunopositive cell nuclei in the hippocampus. The
sectors of Ammon’s horn (CA1, CA2 and CA3) are indicated. Arrow points to the granule cell layer of the dentate fascia,
while the asterisk shows the hilum: (a) treated with 4-AP; (b) effect of dexamethasone-pretreatment at a dose of 5mg/
kg; (c) treated only with dexamethasone. (d) Results of cell counts in the hippocampus (CA1, CA2, CA3) and hilum of the
dentate fascia in dexamethasone-pretreated and 4-AP-injected rats compared with animals injected with 4-AP only.
Asterisks denote significant differences (p<0.05); S.E.M. is indicated in every case; IR, immunoreactive. (e) Results of
the counting of Fos-immunopositive cell nuclei in the neocortex in dexamethasone-pretreated animals compared with
rats injected with 4-AP. The data were obtained from counting the whole thickness of the neocortex (every layer). The
concentrations below the figures indicate the different doses of dexamethasone. Note that the 4-AP-treated and
dexamethasone-pretreated groups differ significantly in a dose-dependent manner. Asterisks: significant differences
(p<0.05; ANOVA, post hoc Bonferroni test); vertical bars: S.E.M. Dotted line indicates the results of control animals,
treated with dexamethasone only. There are no significant dose-dependent alterations in these animals.

as an indicator of convulsive activity, and also that administration of 4-AP (Mihaly et al., 2005).
the 4-AP model is reliable for pharmacological = However, the c-fos mRNA displayed the first
investigations in vivo (Mihaly et al., 2001; Szakacs  significant rise 60min later, indicating that cyto-
et al., 2003). In a previous investigation (Mihaly et  plasmic Fos protein entered the neuronal cell
al., 2005), RT-PCR studies demonstrated the time- nuclei at the time when c-fos mRNA levels were
related changes of the c-fos mRNA in the cerebral not yet elevated (Mihaly et al., 2005). The seizure-
cortex following 4-AP injection. Acute brief, activated intranuclear translocation of the Fos
repetitive seizures elicited by 4-AP led to rapid protein depends on extracellular signals (Roux
and transient c-fos mRNA expression in forebrain et al., 1990), such as neuronal depolarization and
structures (Szakacs et al., 2003; Mihaly et al., Ca’" influx. The stimulated translocation of the
2005), resulting in marked increase of Fos protein cytoplasmic Fos protein to the nucleus, where it
immunoreactive cells by 30min following the binds to the AP-1 sequence (Herdegen and Leah,
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Figure 3. Analysis of the effects of dexamethasone on seizure-induced c-fos protein immunoreactivity in the different
layers of the neocortex (Roman numerals denote neocortical layers). Continuous line: animals pretreated with
dexamethasone and then with 4-AP (4-AP+dex). Dotted line: animals treated only with dexamethasone (dex). Vertical
bars: S.E.M.; asterisks: significant differences (p<0.05; ANOVA, post hoc Bonferroni test). Abscissa: doses of
dexamethasone; ordinate: c-fos-immunoreactive cell number per mmZ.

1998), will lead to a large induction of c-fos
transcription, resulting in elevated c-fos mRNA
levels for several hours (Mihaly et al., 2005).

It is important to emphasize that pretreatment
with dexamethasone reduced c-fos protein expres-

sion in the neocortex and hippocampus, and
simultaneously provided symptomatic seizure
protection. Our findings concerning seizure protec-
tion are in accord with literature data: dexametha-
sone pretreatment prevents u- and o-opioid
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peptide-induced hippocampal seizures in vivo (Di
Giannuario et al., 2001), and displays an antiepi-
leptic effect in picrotoxin-elicited seizures on
hippocampal slice culture (Duport et al., 1997).
Moreover, it has been reported that the liposteroid
dexamethasone palmitate could be effective for
the treatment of refractory seizures in children,
abolishing uncontrollable seizures and decreasing
seizure frequency (Yoshikawa et al., 2000). The
decrease of the number of c-fos-immunolabelled
cell nuclei in the hippocampus reflects the dis-
tribution of glucocorticoid and mineralocorticoid
receptors (Patel et al., 2000). These receptors (at
the mRNA level) are strongly expressed in the
stratum pyramidale of the Ammon’s horn, and also
the granule cell layer of the dentate fascia (Patel et
al., 2000). Accordingly, we noted a strong decrease
in c-fos immunolabelling in these regions. Dose
dependency was not clear-cut, although the stron-
gest effect was seen with 5 mg/kg dexamethasone.
In the neocortex, receptor mRNAs were strongly
expressed in layers II/1ll and V (Patel et al., 2000).
Accordingly, we noted a strong, dose-related,
significant and large decrease in c-fos-immunopo-
sitive cell number in these layers, although dose-
dependency was not conspicuous in layer V.

While dexamethasone pretreatment significantly
decreased the number of Fos-immunoreactive cell
nuclei in the neocortex and the hippocampus, it did
not decrease the boosted c-fos mRNA levels. We
suggest that dexamethasone elicits its effect, in
part, by suppressing intranuclear translocation of
the Fos protein. Preventing translocation of the Fos
protein to the nucleus will lead, therefore, to
decreased number of Fos-positive cell nuclei.
Literature data indicate that translocation of Fos
protein from the cytoplasm to the nucleus depends
on extracellular signals: neuronal depolarization
and increase of intracellular Ca* levels stimulate
this process (Mihaly et al., 2005; Roux et al., 1990).
According to the classical cellular mechanism of
steroid action (Nair et al., 1998; Reagan and
McEwen, 1997), dexamethasone is supposed to
bind to intracellular receptors and induce genomic
effects through new protein synthesis (Di Giannuar-
io et al., 2001), which, in turn, can lead to the
modulation of Ca®* signals. In addition to these
classical genomic effects of steroid action, it has
been demonstrated that corticosterone signifi-
cantly decreases NMDA receptor-mediated Ca®*
elevation in hippocampal slices (Sato et al.,
2004), as well as in cultured neonatal hippocampal
neurons (Takahashi et al., 2002). Furthermore, it
has been shown that dexamethasone causes dis-
sociation of the Raf-1/heat shock protein 90
(Hsp90) complex in cultured cells (Cissel and

Beaven, 2000). A similar mechanism could be
operative in the case of c-fos protein: dissociation
of the Hsp/c-fos protein complex prevents the
translocation to the nucleus. Therefore, we believe
that dexamethasone can modulate intracellular
Ca’* signals via classical genomic pathways
(through new protein synthesis, probably altering
glutamate receptor subunit composition), and via
non-genomic pathways (through NMDA receptor-
mediated Ca®* influx and - according to Pratt (1998)

by acting on cytosolic chaperones). These
hypothetic explanations are to be tested in our
laboratory in the near future.

The other possibility is that dexamethasone
upregulates Fos ubiquitination and consequent
degradation, thereby decreasing intracellular Fos
protein levels. Literature data have shown such
effects of dexamethasone on other nuclear regula-
tory proteins (Sundberg et al., 2006). Thus, we
conclude that in our experiments the influence of
dexamethasone on the expression of the c-fos
protooncogene may be mediated by genomic and
non-genomic mechanisms, presumably targeting
the intranuclear translocation and/or the degrada-
tion of Fos protein. On the other hand, dexametha-
sone does not exert regulatory effects directly on
the transcription of the c-fos gene.
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