
Asynchronous Distributed Power Iteration with

Gossip-based Normalization⋆

Márk Jelasity1, Geoffrey Canright2, and Kenth Engø-Monsen2

1 University of Szeged, HAS Research Group on AI, Hungary
2 Telenor R&D, Fornebu, Norway

Abstract. The dominant eigenvector of matrices defined by weighted
links in overlay networks plays an important role in many peer-to-peer
applications. Examples include trust management, importance ranking
to support search, and virtual coordinate systems to facilitate managing
network proximity. Robust and efficient asynchronous distributed algo-
rithms are known only for the case when the dominant eigenvalue is
exactly one. We present a fully distributed algorithm for a more gen-
eral case: non-negative square matrices that have an arbitrary dominant
eigenvalue. The basic idea is that we apply a gossip-based aggregation
protocol coupled with an asynchronous iteration algorithm, where the
gossip component controls the iteration component. The norm of the re-
sulting vector is an unknown finite constant by default; however, it can
optionally be set to any desired constant using a third gossip control com-
ponent. Through extensive simulation results on artificially generated
overlay networks and real web traces we demonstrate the correctness,
the performance and the fault tolerance of the protocol.

1 Introduction

The calculation of the dominant eigenvector of a matrix has long been a funda-
mental tool in almost all areas of science. In recent years, eigenvector calculation
has found new and important applications in fully distributed environments such
as peer-to-peer (P2P) overlay networks.

For example, the PageRank algorithm [13] calculates the importance ranking

for hyperlinked web pages. The calculated ranks are given by the dominant eigen-
vector of a matrix that can be derived from the adjacency matrix of the graph
defined by the hyperlinks. Fully distributed algorithms have already been pro-
posed to implement PageRank [14,16,17]. As another example, trust assignment

is a key problem in P2P networks. In [9] a method was proposed, that assigns
a global trust value to each peer, through calculating the dominant eigenvector
of the matrix containing local (pairwise) trust values. Finally, the eigenvectors

⋆ In: Euro-Par 2007, LNCS 4641, pp. 514-525, 2007, Springer. DOI: 10.1007/978-3-540-
74466-5 55. This work was completed while Márk Jelasity was with the University of
Bologna. This work was partially supported by the Future and Emerging Technolo-
gies unit of the European Commission through Project DELIS (IST-2002-001907).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE Publicatio Repozitórium - SZTE - Repository of Publications

https://core.ac.uk/display/35344774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that belong to the largest few absolute eigenvalues also play a role in esthetic low
dimensional graph layout [11]. This application is relevant in virtual coordinate
assignment that allows to map the actual delays among all pairs of nodes onto
the distance in the n-dimensional Euclidian space [5].

Motivated by these applications, and firmly believing that new ones will keep
emerging, we identify fully distributed eigenvector calculation as an important
P2P service that should be studied in its own right.

The environments we target impose special requirements. We assume, that
there is a large number of nodes, the connections are volatile and unreliable and
the eigenvector needs to be continuously updated and maintained in a decen-
tralized way. Communication is implemented through message passing, where
messages can be dropped or delayed. However, nodes have access to a local clock
that measures the passage of real time with a reasonable accuracy. We do not
assume that the local clocks at different nodes are synchronized.

In this model, we propose a protocol that involves three components. The
first is an instantiation of the asynchronous iteration model described in [12].
This algorithm requires that the dominant eigenvalue is exactly one. We extend
this protocol with a gossip-based control component that allows the iteration
algorithm to converge even if the dominant eigenvalue is less than or greater
than one. A third gossip component can be applied to explicitly control the
exact value of the vector norm (which is an unspecified finite value without this
third component).

These extensions make the asynchronous iteration robust to dynamic change
and errors. Traditional methods are very sensitive to the dominant eigenvalue
being exactly one: the slightest deviation results in misbehavior on the long run.
Besides, the protocol is able to implement algorithms that assume a dominant
eigenvalue different from one. A recent promising example is a ranking method
using unnormalized web-graphs [4].

We demonstrate the correctness, the performance and the fault tolerance of
the protocol through extensive simulation results on artificially generated overlay
networks and real web traces.

2 Chaotic Asynchronous Power Iteration

Given a square matrix A, vector x is an eigenvector of A with eigenvalue λ, if
Ax = λx. Vector x is a dominant eigenvector if there are no other eigenvectors
with an eigenvalue larger than |λ| in absolute value. In this case λ is a dominant

eigenvalue and |λ| is the spectral radius of A.
Motivated by the various application areas mentioned in the Introduction,

in this paper we concentrate of the abstract problem of calculating the domi-
nant eigenvector of a weighted neighborhood matrix of some large network, in a
fully distributed way. By “fully distributed” we mean the worst case, when the
elements of the vector are held by individual network nodes, one vector element
per one node. The matrix A is defined by physical or overlay links between the
network nodes, more precisely, the weights assigned to these links: let matrix

1: loop {Active Thread}
2: wait(∆)
3: for each j ∈ out-neighborsi do

4: send Ajiwi to j
5: bi ←

P

k∈in-neighbors
i

bki

6: wi ← bi

1: loop {Passive Thread}
2: x← receive(∗)
3: k ← sender(x)
4: bki ← x

Fig. 1. Asynchronous iteration executed at node i.

element Aij be the weight of the link from node j to node i. If there is no link
from j to i then Aij = 0.

In [12], Lubachevsky and Mitra present a chaotic asynchronous family of mes-
sage passing algorithms to calculate the dominant eigenvector of a non-negative
irreducible matrix, that has a spectral radius of one. Figure 1 shows an instan-
tiation of this framework, that we will apply in this paper.

In the algorithm, the values wi represent the elements of the vector that
converges to the dominant eigenvector. The values bki are buffered incoming
weighted values from incoming neighbors in the graph. These values are not
necessarily up-to-date, but, as shown in [12], the only assumption about message
failure is that there is a finite upper bound on the age of these values. The age
of value bki is defined by the time that elapsed since k sent the last update
successfully received by i. This bound can be very large, so delays and message
drop are tolerated extremely well. In addition, the values bki have to be initialized
to be positive.

In dynamic scenarios, when nodes or network links are added or removed, the
algorithm is still functional. Temporary node failures, churn, and link failures
are all regarded as message failures, and are therefore covered by the assumption
of the finite upper bound on update delay. Permanent changes can be dealt with
as well: after the change the vector will start converging to the new eigenvector,
provided simple measures are taken to make sure nodes remove dead links and
take new ones into consideration. Due to lack of space, we omit further details
on the dynamic scenarios.

3 Adding Normalization

Let λ1 be a dominant eigenvalue of A. We can assume that λ1 ≥ 0 since A
was assumed to be non-negative. The asynchronous method described above is
known to work correctly if λ1 = 1, but if λ1 > 1 or λ1 < 1, then the vector
elements will grow indefinitely or tend to zero, respectively. This motivates us to
propose a control component that continuously approximates the average growth

rate of the vector elements, and normalizes each updated component with this
value. Note that after we achieve convergence, the growth rate of every single
vector element becomes λ1. This suggests that approximating the global average
using local, limited information is a viable plan.

We adopt the gossip protocol described in [8] to approximate the average
growth rate. More precisely, we will use this algorithm to approximate the geo-

1: loop {Active Thread}
2: wait(∆r)
3: j ← getRandomPeer()
4: send ri to j
5: rj ← receive(j)
6: ri ← (ri + rj)/2

1: loop {Passive Thread}
2: rj ← receive(∗)
3: send ri to sender(rj)
4: ri ← (ri + rj)/2

Fig. 2. Gossip based averaging protocol executed by node i. The local state of i is
denoted as ri.

metric mean of the local growth rates b
(m+1)
i /w

(m)
i over all nodes i, where b

(m+1)
i

is the value calculated in line 5 in Figure 1 and w
(m)
i is the value of wi before

executing line 6. The geometric mean is a more natural choice since we average
multiplicative factors.

The averaging protocol (shown in Figure 2) is run by all nodes in parallel
with the distributed power iteration. The local state ri of node i is the cur-
rent approximation of the average at node i. As a result of the protocol, at all
nodes these approximations quickly converge to the average of the initial values
of the local approximations. The protocol relies on a peer sampling service, ac-
cessed by getRandomPeer, that returns a random node from the system. We
use newscast to implement this service, a detailed description can be found
in [7]. The details of the newscast protocol are not required for understanding
the present work, the only important aspect is the incurred communication cost.
Fortunately, the averaging protocol and newscast can be implemented to use the
same connections (sending messages to the same nodes at the same time). This
means the newscast adds no extra cost.

To calculate the geometric mean, each node i, when updating wi, overwrites
the local approximation of the growth rate by the logarithm of the locally ob-
served growth rate of the vector element held by the node. That is, node i sets

ri = log(b
(m+1)
i /w

(m)
i). The approximation of the growth rate is therefore eri(t)

at node i at time t. This value is used to normalize bi, that is, we replace line 6
by wi = bi/eri(t) in the active thread of the iteration algorithm.

A cycle length ∆r < ∆ is chosen so that a sufficiently accurate average is
calculated, in spite of the continuous updates of ri external to the averaging
protocol. According to preliminary experiments, setting ∆r = ∆/5 is already
a safe choice on all the problems we examined. This is because, based on the
results from [8], the approximation error decreases exponentially fast, besides,
the growth rate is similar at all vector elements, as mentioned before.

4 Controlling the Vector Norm

The iteration component combined with gossip-based normalization is designed
to achieve convergence, however, the norm of the converged vector is not known
in advance. In some applications this might not be sufficient, since interpreting a
single vector element becomes impossible, only relative values carry information.

Besides, in scenarios when the matrix A constantly and frequently changes, the
vector norm can grow without bounds or can tend to zero without explicitly
controlling the vector norm. Finally, knowing a suitable vector norm makes it
possible to implement some algorithms that require global knowledge. We will
describe the random surfer operator of the PageRank algorithm as an example.

To address these issues, we apply a second gossip component for calculating
two measures: the maximum and the average of the absolute value of the vector
elements. The maximum is also known as the norm ‖.‖∞, while the average is
equal to ‖.‖1/N , where N is the dimension of the vector.

To get the maximum, in the protocol in Figure 2 we simply have to replace
lines 6 and 4 in the active and passive threads, respectively, with calculating the
maximum instead: ri ← max(ri, rj).

It must be noted that in the case of norm calculation, ∆r = ∆/30 appears to
be necessary according to preliminary experiments, since, unlike growth rates,
the vector elements themselves are not guaranteed to be similar.

Let us now assume that ni(t) is the approximation of either the maximum or
the average of the vector at node i. To push this value towards one, we propose
the following heuristic control factor to modify the normalization factor to intro-
duce a bias towards the vector of which the average or maximum, respectively,
is one. Intuitively, if ni(t) is too large, we decrease the local value a little more,
and if it is too low, we increase a little more. More formally, we calculate a factor
c as

c = eri(t) ·

(

0.2

1 + 1/ni(t)
+ 0.9

)

(1)

and subsequently replace line 6 with wi = bi/c. The factor c in (1) is a sigmoid
function over the logarithm of ni(t), transformed to have range [0.9, 1.1]. This
means that the growth rate approximation is never altered by more than 10%
no matter how far the average is from one.

As a relatively more complex example of the possibilities this framework
offers, we present the implementation of the random surfer operator used in
the PageRank algorithm [13]. This operator will in turn allow us to implement
PageRank as well.

The PageRank algorithm is concerned with the normalized adjacency matrix
of a directed graph (e.g., the WWW link graph). Apart from this directed graph,
the PageRank algorithm uses a “random surfer” operator R as well, defined
as Rij = 1/N , for all i, j = 1, . . . , N , where N is the number of nodes. This
corresponds to the definition of R as being a uniform random walk on the fully
connected graph (hence the name “random surfer”). The net effect of R is to add
a constant weight to each node at each propagation step. In other words, R times
any vector gives a vector which is uniform, and whose value may be known if
the average of the vector is known [13]. Hence, we can effectively replace matrix
A with the PageRank operator (1− ǫ)A+ ǫR where the second term involving R
may be known as long as the average of w is known. Note that ǫ is a parameter of
the PageRank algorithm, and defines the weight of the random surfer operator.

As described above, we can in fact obtain an approximation of the vector
average. Then we can implement the PageRank R operator—a global operator—
using purely local operations: node i now has the update rule

wi = (1− ǫ)
bi

eri(t)
+ ǫni(t) (2)

where ni(t) is the locally known converged approximation of the average at time
t.

Finally, note that controlling the average of the vector and applying the
random surfer operator can be done simultaneously as well, using the update
rule

wi = (1− ǫ)
bi

c
+ ǫni(t). (3)

where c is the same as in (1).

5 Experimental Results

We performed extensive event-based simulation experiments using the PeerSim

simulator developed at the University of Bologna [15]. The goal of the exper-
iments was to demonstrate that our method, is both efficient and robust to
failure.

5.1 Notes on the Implementation

In the case of one of the components—the gossip-based protocol that continu-
ously calculates the average of the current vector approximation, described in
Section 4—we applied two modifications to increase robustness.

First, instead of the protocol in Figure 2, we applied a variant presented
in [10]. This variant is very similar; the main difference is that it is slightly
modified so that it can apply the “push only” communication model, while the
original version is based on the “push-pull” model. In the push model, the nodes
only send messages, but need not answer them. In the push-pull model all mes-
sages must be answered immediately. We apply the push variant because it is
more robust to message delays: while in the push-pull version the state of the
nodes are inconsistent for a short time (between the sending and reception of
the answer), this problem does not exist in the push version.

The second modification of this component is, that we apply the restarting

technique described in [8]. According to this technique the computation of the
average is performed in consecutive epochs. During one epoch the local values of
the nodes (ri) are not allowed to be updated to allow for convergence. The start
of the new epoch is fully automatic and distributed. All messages are tagged
with an epoch identifier, that is increased when a given node has completed a
specified number of cycles. The node also updates its epoch counter if it detects
an incoming message that is tagged by a larger epoch identifier than its own.
This way the start of the new epoch is propagated very quickly in an epidemic
fashion. The length of the epoch is defined as 30 cycles in our experiments. Recall
that one cycle is ∆r time units, and 30∆r=∆.

5.2 Artificially Generated Matrices

For evaluating the protocol we applied a set of artificially generated matrices with
controlled properties. To model real applications mentioned in the Introduction,
all matrices are sparse and are derived from the adjacency matrix of a link graph.
First let us define the graphs that were used to define the matrices.

All graphs have 5000 nodes. The baseline case is a directed random graph,
according to the k-out model. In this model, k random out-links are added to
each node. We generated an instance of this model with k = 8.

The second graph is a scale free graph generated by the Barabási-Albert
model [1]. Most importantly, the degree distribution of this graph follows a power
law, that is extremely unbalanced with many low degree nodes and a few high
degree nodes, and that is known to describe many interesting emergent networks
such as the WWW or social relationships [1]. The parameter of the model was
set to two. In this case the Barabási-Albert model defines an undirected graph
by starting with two disconnected nodes, and subsequently adding nodes one by
one, linking each new node to two existing nodes. These two nodes are selected
with a probability proportional to their degree (preferential attachment). The
average degree in the graph is thus four.

The third graph was generated starting with an undirected ring, and adding
two random out-links from all nodes (note that this procedure follows a modified
version of the Watts-Strogatz model [18]). The motivation behind using this
graph is that, as we will see, its adjacency matrix has a small eigenvalue gap,
which results in a slow convergence of the power iteration. This graph was chosen
to test whether our method is sensitive to a small eigenvalue gap.

The matrices were derived from the adjacency matrices of these graphs. We
note for completeness that the specific instances of the directed graphs we used
(the random k-out and the small gap graphs) were all strongly connected. This
is not a sufficient condition for convergence but makes it very likely in the case
of random graphs. Since our convention in this paper has been that the ele-
ment Aij describes the weight for network link (j, i)—so that matrix vector
multiplication can be defined by sending messages along the outgoing (and not
incoming) links—the adjacency matrices were first transposed. The first set of
matrices consists of the transposed adjacency matrices. The second set contains
the column normalized versions of the matrices in the first set. The normalized
versions are such that the weights of the outgoing links sum up to one for all
nodes, therefore these matrices describe random walks on the graphs.

Table 1 shows the first two largest magnitude eigenvalues for all the problem
instances. Note that the eigenvalue gap (the difference between the first and
second largest eigenvalues) determines the convergence speed of the power iter-
ation [3], and thus it is a good indicator of the speed of our method as well. For
a small gap, convergence is slow. With a zero gap, the power iteration does not
converge at all. Since all matrix elements are real and non-negative, the largest
eigenvalue is real and non-negative as well.

random k-out scale free small gap
normalized unnormalized normalized unnormalized normalized unnormalized

λ1 1.0000 8.0000 1.0000 1.3981 1.0000 4.1938
|λ2| 0.3573 2.8345 0.8373 1.1737 0.9754 3.9976

Table 1. The first and second largest magnitude eigenvalues. Note that the largest
magnitude eigenvalue is guaranteed to be real and positive.

5.3 Results

Each experiment was carried out as follows. First, each node i was initialized to
have wi = 1 and bi = 1. In the simulations we started each node at a random
time within the first ∆ time units counted from the first snapshot time t0.

Two versions of the method were run for each problem. In the first, we do
not apply the algorithm described in Section 4. In this case we expect the vector
norm to converge to a previously unknown value, given that we do not change
the underlying matrices in these experiments. In the second version we do apply
vector normalization. In particular, we apply the maximum of the vector for this
purpose, and therefore we expect the maximum to converge to one.

The evaluation metrics were as follows. We first computed the correct domi-
nant eigenvector (x) using a centralized algorithm. Following general practice in
matrix computations, we measured the angle of the actual approximation and
the correct vector to characterize convergence. That is, we computed the cosine
of the angle cosα(i) = ‖xTw(i)‖2/‖x‖2/‖w

(i)‖2, and used the angle α(i) as a
metric, which tends to zero during the iteration, as i increases. As a second met-
ric, we measured the maximum of the vector elements to verify normalization.

The failure scenarios involved varying message drop probabilities, and varying
message delays. Message drop was modeled by dropping all messages with a
given probability, and message delay and delay jitter was modeled by drawing
a delay value from a specified interval uniformly, for all messages. Obviously,
these settings were applied for all messages sent by any of the components of
the protocol equally.

Figure 3 shows the results of the experiments. First of all, even the more
moderate failure scenario can be considered pessimistic, not to mention the more
severe scenario. This is because in the application scenarios we envision, the
interval ∆ can be rather long, in the range of ten to thirty seconds, so a delay
of 10% of ∆ is already large. Most importantly, from the point of view of the
averaging and maximum finding protocols, that have a much shorter cycle length
of ∆r = ∆/30, these delay values are extreme.

From the experiments we can conclude that when the vector norm is not
controlled explicitly, then convergence is fast, comparable to that of the cen-
tralized power iteration. Our preliminary experiments (not shown) suggest that
message delay has virtually no effect on the convergence results, when Pdrop = 0.
Higher drop rates slow down convergence but do not change its characteristics
significantly.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 50 100 150 200 250 300 350

a
n

g
le

 (
ra

d
ia

n
)

cycles

random k-out, with vector normalization

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 50 100 150 200 250 300 350

a
n

g
le

 (
ra

d
ia

n
)

cycles

scale free, with vector normalization

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 200 400 600 800 1000

a
n

g
le

 (
ra

d
ia

n
)

cycles

small gap, with vector normalization

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

 0 50 100 150 200 250 300 350

m
a

x
im

a
l
v
e

c
to

r
v
a

lu
e

cycles

random k-out, with vector normalization

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 0 50 100 150 200 250 300 350

m
a

x
im

a
l
v
e

c
to

r
v
a

lu
e

cycles

scale free, with vector normalization

10
-1

10
0

10
1

10
2

10
3

 0 200 400 600 800 1000

m
a

x
im

a
l
v
e

c
to

r
v
a

lu
e

cycles

small gap, with vector normalization

normalized graph, no failure
normalized graph, scenario 1
normalized graph, scenario 2

no failure
scenario 1
scenario 2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 50 100 150 200 250 300 350

a
n

g
le

 (
ra

d
ia

n
)

cycles

random k-out, without vector normalization

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 50 100 150 200 250 300 350

a
n

g
le

 (
ra

d
ia

n
)

cycles

scale free, without vector normalization

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 200 400 600 800 1000

a
n

g
le

 (
ra

d
ia

n
)

cycles

small gap, without vector normalization

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0 50 100 150 200 250 300 350

m
a

x
im

a
l
v
e

c
to

r
v
a

lu
e

cycles

random k-out, without vector normalization

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0 50 100 150 200 250 300 350

m
a

x
im

a
l
v
e

c
to

r
v
a

lu
e

cycles

scale free, without vector normalization

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

 0 200 400 600 800 1000

m
a

x
im

a
l
v
e

c
to

r
v
a

lu
e

cycles

small gap, without vector normalization

Fig. 3. Simulation results. Scenario 1 involves Pdrop = 0.1, and a random message
delay drawn from [0, ∆/10] uniformly. In scenario 2, Pdrop = 0.3 and the message delay
is drawn from [∆/10, ∆/2].

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 50 100 150 200 250

a
n
g
le

 (
ra

d
ia

n
)

cycles

Notre Dame crawl, PageRank algorithm

no failure
scenario 3
scenario 1

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 50 100 150 200 250

a
ve

ra
g
e
 v

e
ct

o
r

va
lu

e

cycles

Notre Dame crawl, PageRank Algorithm

no failure
scenario 3
scenario 1

Fig. 4. Simulation results with the PageRank algorithm. Scenario 1 involves Pdrop =
0.1, and a random message delay drawn from [0, ∆/10] uniformly. In scenario 3, Pdrop =
0 and the message delay is the same as in scenario 1.

When we do apply vector normalization, convergence slows down somewhat
due to the interference of vector normalization and asynchronous iteration. In
the extreme failure scenario we don’t achieve full convergence. The reason is
that the extremely high delay and message drop rate prevents the propagation
of the current maximum of the vector to all nodes during the interval ∆, and
so different nodes might normalize with a different value. As a side effect, the
maximum does not converge to one, and there is a constant noise factor in the
approximation of the eigenvector. However, in the less severe, but still pessimistic
scenario we do achieve convergence.

5.4 PageRank on WWW Crawl Data

As a more realistic case study, we tested our method on the same dataset used
in [2], available from the authors. It was generated by a crawler, starting from
one page within the domain of the University of Notre Dame. This sample has
325729 nodes. On this dataset we executed the PageRank algorithm, as described
in Section 4. The weight of the random surfer operator was ǫ = 0.2. This way,
for the complete linear operator of the PageRank algorithm, we have λ1 =
0.84648, λ2 = 0.8.

The results of the method are shown in Figure 4 in various failure scenarios.
We can observe that the protocol is now more sensitive to failure than in the case
of the previous experiments, although the achieved accuracy is still satisfactory
(note the logarithmic scale of the plots). The reason is that in this case the vector
average is used for controlling the norm of the vector, that is, it is guaranteed
that the average of the vector stays one. The average is used to implement
the random surfer operator as well. However, the calculation of the average is
more sensitive to failure than the calculation of the maximum. This way, the
approximation of the actual average of the vector has a small noise factor, that
is inherited by the approximation of the ranks.

We can also note that the protocol scales well: the network examined here
is two orders of magnitude larger than the previously examined networks, while
convergence speed is still similar.

6 Related Work

Due to its importance, the distributed calculation of the dominant eigenvalue
of large matrices has an extensive literature. In the area of parallel and cluster
computing, the focus has largely been the optimization of existing, often itera-
tive, methods on parallel computers and clusters (for a summary, see [3]). Such
optimizations include partitioning; for example, different parts of the vector can
be freely assigned to different processors in order to minimize message exchange
and to maximize speedup. Besides, due to the reliable computing platform, syn-
chronization can be efficiently implemented. This model is radically different
from ours: in our case the assignment is fixed and given a priory, and the main
goal is to achieve robustness to high rates of message delivery failures.

Asynchronous protocols have also been proposed for implementing iterative
methods, and important convergence results are available as well (see [6] for a
summary). These protocols are extremely fault tolerant and also efficient, but
so far no algorithms are known that can deal with the case when the dominant
eigenvalue is different from one. This introduces a certain sensitivity to dynamic
environments even if λ1 ≈ 1, besides, many interesting applications where λ1 6= 1
cannot be tackled, for example [4].

Finally, in the context of P2P systems the main focus is on distributed
PageRank implementations, where in all cases λ1 = 1 is assumed, for exam-
ple, [14, 16, 17]. The EigenTrust protocol in [9] also applies a similar implemen-
tation, but the authors assume all values are updated in each round, presumably
unaware of the advantages of the long existing asynchronous version of the pro-
tocol, and thereby offering a rather fragile algorithm.

7 Conclusions

In this paper we have addressed the problem of designing a fully distributed
and robust algorithm for finding the dominant eigenvector of large and sparse
matrices, that are represented as weights of links between nodes of a network.
Our contribution can be summarized as follows. First of all, our algorithm does
not require the dominant eigenvalue to be one. This is an important feature even
if the problem involves a dominant eigenvalue of one (like PageRank does). In
PageRank, sophisticated techniques for “fixing” the graph are required to make
sure the dominant eigenvalue is one, which are not needed in our case, as we
demonstrated. Besides, the protocol opens the door for applications where the
dominant eigenvalue is known to be different from one [4].

Second, the norm of the approximation of the dominant eigenvector can be
controlled as well. In other words, in addition to guaranteeing that the norm of
the vector converges to a finite value, we can define this value explicitly using

an additional gossip-component. This also means that the algorithm can be run
indefinitely in a continuously changing environment.

Finally, we demonstrated the robustness of the algorithm through event-
based simulation experiments, both on artificially generated graphs and on web-
crawl data.

References

1. R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews

of Modern Physics, 74(1):47–97, January 2002.
2. R. Albert, H. Jeong, and A.-L. Barabási. Diameter of the world wide web. Nature,

401:130–131, 1999.
3. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Tem-

plates for the Solution of Algebraic Eigenvalue Problems: a Practical Guide. SIAM,
Philadelphia, 2000.

4. M. Burgess, G. Canright, and K. Engø-Monsen. Importance-ranking functions
derived from the eigenvectors of directed graphs. Technical Report DELIS-TR-
0325, DELIS Project, 2006.

5. F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized network
coordinate system. In Proc. SIGCOMM 2004. ACM Press, 2004.

6. A. Frommer and D. B. Szyld. On asynchronous iterations. Journal of Computa-

tional and Applied Mathematics, 123(1-2):201–216, 2000.
7. M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. The peer sampling

service: Experimental evaluation of unstructured gossip-based implementations. In
H.-A. Jacobsen, editor, Middleware, LNCS 3231, pages 79–98. Springer, 2004.

8. M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based aggregation in large dy-
namic networks. ACM Transactions on Computer Systems, 23(3):219–252, August
2005.

9. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm
for reputation management in p2p networks. In Proc. WWW. ACM, 2003.

10. D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate
information. In Proc. FOCS’03, pages 482–491. IEEE Computer Society, 2003.

11. Y. Koren. On spectral graph drawing. In Proc. COCOON’03, number 2697 in
LNCS, pages 496–508. Springer, 2003.

12. B. Lubachevsky and D. Mitra. A chaotic asynchronous algorithm for computing
the fixed point of a nonnegative matrix of unit radius. J. of the ACM, 33(1):130–
150, 1986.

13. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project, 1998.

14. J. X. Parreira, D. Donato, S. Michel, and G. Weikum. Efficient and decentralized
PageRank approximation in a peer-to-peer web search network. In Proc. VLDB,
pages 415–426, 2006.

15. PeerSim. http://peersim.sourceforge.net/.
16. K. Sankaralingam, S. Sethumadhavan, and J. C. Browne. Distributed pagerank

for p2p systems. In Proc. HPDC-12, pages 58–69, 2003.
17. S. Shi, J. Yu, G. Yang, and D. Wang. Distributed page ranking in structured p2p

networks. In Proc. ICPP03, pages 179–186, October 2003.
18. D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks.

Nature, 393:440–442, 1998.

