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As computer systems have become more complex, numerous competing approaches
have been proposed for these systems to self-configure, self-manage, self-repair, etc.
such that human intervention in their operation can be minimized. In ubiquitous
systems this has always been a central issue as well. In this paper we overview tech-
niques to implement self-∗ properties in large-scale, decentralized networks through
bio-inspired techniques in general, and gossip-based algorithms in particular. We
believe that gossip-based algorithms could be an important inspiration for solv-
ing problems in ubiquitous computing as well. As an example, we outline a novel
approach to arrange large numbers of mobile agents (e.g., vehicles, rescue teams
carrying mobile devices) into different formations in a totally decentralized manner.
The approach is inspired by the biological mechanism of cell sorting via differen-
tial adhesion, as well as by our earlier work in self-organizing peer-to-peer overlay
networks.
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1. Introduction

Computer systems of today are extremely complex, highly distributed, heteroge-
neous and dynamic. Almost all computing devices are becoming interconnected
through various forms of wired or wireless networks, and have access to—and
might also provide—global or local services over the network. Even the distinc-
tion between centralized and distributed systems is becoming increasingly blurred:
the largest compute centres today may contain hundreds of thousands of unreli-
able computers, perhaps geographically distributed as well, referred to as cloud
computing (Hand 2007).

Making sure that these extremely complex systems work as they are supposed
to is challenging. One important challenge is that complex systems often have prop-
erties that are not “designed” into them but instead emerge from their evolution
and interactions with their environment. Well-known examples include the complex
network structure of the world-wide-web, the physical Internet, or computer virus
spreading patterns resulting from the interaction of user behaviour and complex
networks. Recently, complex social networks have started playing an increasing role
through Web 2.0 and peer-to-peer technologies where they shape the content of the
services as well as their usage patterns (such as flash crowds and BitTorrent traffic),
which adds further complexity.

A traditional approach to automatically managing complex systems involves
control loops (Kephart & Chess 2003) where the idea is to replace human operators
with controllers that monitor the system and perform corrective actions. In light
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Algorithm 1 The gossip algorithm skeleton.
1: loop . active thread
2: wait(∆)
3: p← selectPeer()
4: send state to p . push
5: receive statep from p . pull
6: state ← update(statep)
7: end loop

8: procedure onReceive(m)
9: p←m.sender

10: statep ←m.state . push
11: send state to p . pull
12: state ← update(statep)
13: end procedure

of the above observations, however, we emphasize the importance of understanding
the self-organizing, emergent characteristics of complex systems. This knowledge is
essential for building control loops as well, but taking the idea one step further, we
believe that we could also influence or even engineer desirable emergent behaviours
from the bottom up.

Engineering emergence through well-designed local interactions to achieve a de-
sired aggregate global behaviour is potentially much cheaper and simpler to imple-
ment, as it does not require specialized infrastructures. In particular, in the context
of ubiquitous computing, where devices can easily interact locally but where global,
unicast-style communication is expensive to implement, this line of thinking is es-
pecially promising.

In this paper we outline our approach to designing global behaviour based on lo-
cal interaction through the analogy of gossiping in § 2. In § 3, to provide inspiration
and to illustrate that gossiping could be a relevant paradigm in ubiquitous comput-
ing, we describe a novel protocol for allowing a set of mobile nodes to self-organize
into formations. Section 4 concludes the paper.

2. Gossip protocols

The term “gossip protocol” was probably used for the first time in the seminal work
of Demers et al. (1987), where they proposed protocols for spreading updates to
replicas of a database. The idea in a nutshell is that all nodes execute the same
simple algorithm, which periodically selects a random member from the network,
and sends and/or requests fresh updates to/from the selected node. It can be shown
that as a result, new updates spread in logarithmic time over the network, much
like gossiping in social networks.

Subsequently, the concept has come to be interpreted more widely, and now
covers many protocols that share some key characteristics such as periodic com-
munication, information exchange with random neighbours and rapid convergence
(Kermarrec & van Steen 2007). Instead of attempting to give a more exact defini-
tion, we first overview a few gossip-based implementations for different functions
in wired networks, and describe how these functions can be built on top of each
other. Later on, we argue for the utility of this design philosophy and the particular
services in a ubiquitous computing setting.

(a) Gossip-based services and protocols in wired networks

Algorithm 1 illustrates the skeleton of a typical gossip protocol. The basic idea
is that at regular time intervals, each node exchanges information with a peer
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node (usually selected randomly) from the network, followed by updating its local
state based on the information exchange. The generic algorithm is instantiated
by specifying the local state and providing implementations for the peer selection
mechanism and the state update method. One can also obtain push-only, or pull-
only versions by removing the symmetric communication step.

(i) Information dissemination

Perhaps the simplest instance of this skeleton is the propagation of updates
among replicas of a database. There are numerous variations of this algorithm: we
describe only the anti-entropy gossip version here (Demers et al. 1987).

In this case, state of a node is the database replica it hosts and method se-
lectPeer() returns a random node from the network. During the exchange, the two
communicating nodes resolve the differences between their copies of the database,
and subsequently both update their own copy applying the new updates learned
from the peer.

The attractiveness of this probabilistic approach to spreading new information
lies in it simplicity and robustness to benign failures: message loss or crashing nodes
are tolerated extremely well. In addition, performance of the algorithm is also very
favourable: most variants of the algorithm will spread any new update in the entire
network in O(log N) time steps (where N is network size) with high probability.

(ii) Peer sampling

One key component in the previous example was method selectPeer() that re-
turns a random sample from the network. This service, which we call peer sampling,
is important in a number of other distributed applications as well. In very large,
dynamic systems, the full list of nodes is typically not available at all nodes so
implementing this service is non-trivial.

Interestingly, the gossip paradigm offers a natural approach for implementing
the very service it relies on. In this realization, state of a node consists of a small,
random sample from the network called a view, and method update() simply merges
the view received from the peer with the local view, and keeps, for example, a
random subset of the resulting view. An extensive discussion of this service and its
variations is provided by Jelasity et al. (2007b). Recently, a secure version has also
been proposed by Bortnikov et al. (2008).

As a service, method selectPeer() is implemented by picking a member from
the nodes local view, without relying on any external information. This fact puts
peer selection in a special position that we will discuss later in connection with the
component architecture of gossip protocols.

(iii) Overlay network construction

Taking a closer look, gossip-based peer sampling service in fact maintains a
random overlay network, since the local views can be interpreted as defining overlay
network links. Keeping this observation in mind, it is not difficult to see that the
idea could be generalized to create and maintain not only random but also other
specialized overlay topologies.

Article submitted to Royal Society



4 O. Babaoglu and M. Jelasity

Indeed, as we demonstrated previously (Jelasity & Babaoglu 2006), a wide range
of network topologies can be evolved with a slight modification of the peer sampling
algorithm. The state of each node is still a view, which define the overlay network.
The update method, however, is specially designed: in selecting which links to
keep, it keeps those that are “most preferable” for a given node. The peer selection
mechanism is also biased towards preferable nodes.

A large number of specialized overlay protocols (e.g., (Bonnet et al. 2007; Voul-
garis & van Steen 2005; Patel et al. 2006)) follow similar principles.

(iv) Data aggregation

In this application, we are interested in calculating some global function over
locally available data. For example, the average of the values of some attribute
associated with a node (e.g., free storage, CPU capacity, etc).

This is a large area of research; here we very briefly outline our own gossip-
based approach to averaging (Jelasity et al. 2005). We define the state of a node
to be its current approximation of the true average. Method update() takes the
local approximation and the approximation received from the peer and sets the
average of these as the new state. It can be easily seen that all local approximations
will converge to the true global average due to mass conservation (the sum of the
approximations is constant) and due to the reduction of variance in each step.
We have also shown that the convergence is exponential: variance decreases by a
constant multiplicative factor in each round.

The idea can also be generalized: we show that one can calculate the maximum,
minimum, and various other means such as geometric, harmonic, etc. In addition—
using the combination of various means—variance, system size, and other more
complex aggregates can also be calculated.

(v) Modularity

The instances of the gossip algorithm described above are not isolated, but
instead can be considered services to build more complex applications and services
from (Babaoglu et al. 2005).

For example, consider that all algorithms rely on peer sampling, a key service
to any gossip protocol. Peer sampling, a gossip protocol itself, is thus the “lowest
layer” of the architecture. Other components such as aggregation can also serve
as a service to more complex applications such as load balancing or distributed
eigenvector calculation (Jelasity et al. 2007a), etc.

(b) Gossip and self-organization for ubiquitous computing

The services we described so far were all implemented in the application layer,
assuming that lower network layers (typically TCP/IP) implement a routing service.
In such an environment, almost any overlay network topology is feasible.

In the area of ubiquitous computing, where ad hoc wireless communication
constrained by physical space is the norm, significant effort has been devoted to
implementing similar routing services, so as to be able to use abstraction layers
similar to those of wired networks. In fact, the grand vision of “Internet of things”
is often associated with ubiquitous computing, where “smart” physical objects,
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equipped with identification, sensors and computing power are integrated into the
current Internet architecture such as web search and web services.

Without a strong dedicated infrastructure support, however, routing protocols
that implement a unicast abstraction in ad hoc wireless networks are often pro-
hibitively expensive; besides, they are not always very useful either. For example,
in vehicular networks—a very important application of ubiquitous computing for
safety, communication and navigation—this very observation has been made by the
German “Network on Wheels” industrial consortium (Füßler et al. 2007). What
they found to be crucial instead was more local communication and diffusion-like
mechanisms we described previously.

We believe that in many cases it is more desirable to implement functionality
relying on simpler services such as peer sampling, or aggregation. These functions
naturally map onto network environments where they can be implemented through
gossiping, making use of the emergent physical communication networks defined by
proximity and contact, and without making use of a routing service.

Of course, implementing these basic services requires a deeper understanding
of the underlying network structure. Topologies of wireless networks depend on
the transmission range and mobility patterns of nodes. They can range from static
topologies (for example, sensor networks) to practically fully connected networks,
where the range of the nodes cover the area, or where we adopt certain disorganized,
dynamic mobility models (like the infamous random way-point model) where all
pairs of nodes will get within range in a relatively short expected time.

Recently, more realistic mobility patterns have been studied that result in com-
munication networks with complex emergent properties. An increasing number of
empirical studies are being carried out to model the long term mobility patterns of
humans, for example. The properties of the resulting contact networks will certainly
play a key role in designing the self-organizing ubiquitous systems of the future,
from the point of view of security and efficiency as well (Kleinberg 2007; Birman
2007).

Another, perhaps even more interesting direction is not to make use of mobility
patterns to implement basic services and applications, but to influence the mobility
patterns of the nodes so as to achieve particular functions. For example, rescue
teams, military units, swarms of robots or satellites often need to organize into
formations to carry out their tasks efficiently. This can be achieved by adapting
gossip-based ideas and protocols that have proven successful in overlay networks.
In the following section, we illustrate this idea through an example that was inspired
by our earlier work on self-organizing overlay networks (Jelasity & Babaoglu 2006).

3. An example: Self-organizing patterns of swarms

In this section we present a protocol that allows mobile nodes to self-organize into
a pre-specified global formation. The protocol is shown to work at large scales, with
several thousands of nodes and more. The approach does not require any consensus
among the nodes, such as global averages or leader nodes. An arbitrary set of nodes
can be removed after which the system self-heals automatically using the remaining
nodes to recreate the formation without any special action.
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Algorithm 2 The algorithm run at all nodes for calculating the motion vector.
1: loop
2: wait(∆)
3: S ← getRadomPeers()
4: pmin ← getMostPreferred(S) . Neighbour we like most
5: pmax ← getLeastPreferred(S) . Neighbour we like least
6: d← pmin−getPosition() . Direction of pmin from current position
7: factor ← (D − ‖getPosition()−pmax‖)/D
8: d← d+factor·(getPosition()−pmax) . Away from pmax if too close
9: ExecuteMove(d) . Cuts step length at dmax

10: end loop

(a) System model

We assume that initially we are given a set of N mobile nodes. These nodes
can correspond to mobile robots, vehicles, satellites or human beings (e.g., a rescue
team) equipped with appropriate computing devices. The nodes are assumed to
be able to control the direction and speed of their motion (directly, or indirectly
through their human owners). The nodes are capable of wireless communication
within a fixed range. The set of nodes can change: nodes can leave or join at any
time.

Any node can determine the relative position of any other node (direction and
distance) and can move in any direction. Although it is not strictly required, the
simplest way to implement this is if nodes have GPS capabilities, as we will assume
in this paper.

All nodes have a unique ID that can be generated randomly or assigned based
on the properties of a node. These IDs, along with the relative position information,
will be used by the nodes to self-organize into the required formation.

Finally, the nodes have access to a peer sampling service similar to the one
described in § 2. They use this service to obtain the position and ID of a small
set of random nodes periodically. Implementations of the peer sampling service for
mobile environments are known (Bar-Yossef et al. 2006). Accordingly, our approach
does not require that the communication range of the devices cover the entire area.
Yet for simplicity, in this paper we assume it does, and we propose an extremely
cheap and straightforward (although specialized) implementation of the sampling
service based on this assumption.

(b) Algorithm description

All nodes execute Algorithm 2, that consists of an infinite loop with a delay of
∆ time units in each cycle, that determines the speed of motion.

In line 3 the algorithm invokes the peer sampling service. Method getRandom-
Peers() returns descriptors of k random nodes from the entire population of nodes.
A descriptor contains the position and ID of the node. We implement the peer sam-
pling service as follows, based on the assumption that the communication range of
a node covers all other nodes. In other words, all nodes can communicate with each
other directly. For simplicity, let us also assume that the nodes have a rough ap-
proximation of the number of participating nodes N (algorithms for approximating
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the number of nodes could be given as well). Now, let all nodes broadcast their
current descriptor with probability k/N . This way, all nodes will receive k descrip-
tors on average from random nodes. Since k is small, the probability of collision
is also small, especially if desynchronization is also applied (Patel et al. 2007). In
addition, if N is large, the communication cost for one node is very small. With this
implementation of peer sampling, all nodes will receive an identical set of random
node descriptors. According to our simulation results, this has no negative effect
on the performance of the algorithm.

Lines 4–5 select the positions of the nodes that are the most and least prefer-
able as neighbours. This is done by ordering the random set of peers according to
preference, and returning the first and last elements according to this order. It is
this ordering that implicitly determines the formation that the nodes converge to.
Examples of formations and their corresponding orderings will be given later.

Lines 6–8 calculate the motion vector d. In line 6 we initialize d with a vector
pointing to pmin, the most preferable neighbour. In line 8 we modify d adding a
vector typically pointing away from pmax, the least preferable neighbour. However,
the term corresponding to pmax is modified by a factor that can even be negative,
thereby reverting the direction of the added vector. The factor is calculated in line 7
where parameter D determines the diameter of the area that should contain the
converged formation. In other words, D controls the size of the final formation.
The main idea is that if two nodes are more than D apart, then they should start
attracting each other, irrespective of their preference. Repelling force is largest when
the distance is zero (where factor is 1). The linear formula in line 7 satisfies these
constraints.

In line 9, the calculated vector d is applied to perform the next step. Movement
is performed in the direction and magnitude of d, except if d is larger than dmax,
a parameter corresponding to the maximum step size. In this case, the largest step
size is applied.

(c) Experiments

We performed experiments using the PeerSim simulator†. The common parame-
ters and settings for all the experiments with the algorithm were: N = 5000, D = 1,
and dmax = 0.01. The IDs 1, 2, . . . , N were assigned to the N nodes. The initial
position of each node was a random coordinate in a unit square.

We illustrate the protocol using three different implementations for the prefer-
ence ordering, a key component as described above. The first implementation orders
the set of k nodes according to ring distance from the local ID. That is, we define a
circular ID space in which the IDs are ordered in increasing order, except that the
maximal ID is followed by the minimal ID. The k nodes are then ordered according
to increasing minimal distance from the local ID on this ring. The most preferred
node in this ordering is the one that is closest on the ring. The target configuration
with this ordering is expected to be a ring, if the IDs are evenly distributed in the
network. If they are not evenly distributed, the target configuration could consist
of many disconnected ring-segments, depending on the distribution of IDs.

A variation of the previous implementation is the self-healing ring, that has a
connected ring as target configuration, irrespective of the distribution of the IDs.

† http://peersim.sourceforge.net/
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cycle ring cross self-healing ring (contd. after
damage)

0 300
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100 400
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Figure 1. Simulations with 5000 nodes using the ring and cross target formations until
cycle 250, and with self-healing ring until cycle 650.

To achieve this effect, we still work with the same circular ID space. However, when
ordering the k nodes, we distinguish between left and right neighbours. That is, the
first two elements in the ordering will be the first neighbour to the left, and right,
respectively; and so on. That is, the most preferred neighbour will be the closest
neighbour to the right or left, with equal probability, irrespective of their actual
distance on the ring.

Finally, to illustrate that the algorithm can support formations other than a
ring, we implement a cross distance-based ordering. Here, the ID space is arranged
in a cross shape, where the first half of the IDs forms the first line in the cross
and the second half forms an orthogonal crossing line. We then order the k nodes
according to Euclidian distance from the local ID in this virtual cross-shaped ID
space. The target configuration of this setting is a cross shaped formation, if the
IDs are evenly distributed.

Figure 1 shows illustrations of the evolution of the formation of the mobile
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nodes. Each dot represents a mobile node, and the colour of the dot is proportional
to its ID. For the experiments with the ring and cross configurations, we set k = 4,
and for the self-healing ring experiment k = 8. One cycle represents one iteration
of the infinite loop in Algorithm 2. Note that since the maximum step size dmax is
0.01, a node needs at least 100 cycles to move across the unit square.

In the case of the self-healing ring, at cycle 300 we removed 80% of the nodes that
belonged to the continuous range of IDs [0, 10N/8]. The remaining small segment
of 1000 nodes forms a complete ring of the original size relatively quickly.

4. Related work and conclusions

We mention two classes of related work that adopt similar goals but rather different
approaches. Christensen et al. (2007) put the emphasis on realistic simulations and
even implementation in hardware; consequently the models are relatively small
scale. Nevertheless, the goal is to build global structures based on strictly local
communication. It is assumed that there is a “seed” node, and the shape is “grown”
around this node.

Another example is the work of Ravichandran et al. (2007) where, under as-
sumptions similar to ours, the basic idea is that each node first attempts to find
out about its own position within the network, and subsequently calculates its target
position. This is accomplished through a hierarchical median estimation algorithm.
Our approach is potentially more robust and more scalable as well.

Although our approach was presented in its simplest possible form without a
rigourous analysis, it can be seen that the basic idea scales well, it results in rela-
tively rapid convergence and it is potentially flexible regarding target formations.

The basic idea of our approach is inspired by the biological mechanism of cell
sorting via differential adhesion (Graner & Glazier 1992), where different cell types
attract or repel each other, and a mix of cells self-organizes into different configu-
rations based on the parameters of the system. In biological models, there are only
a few cell types. Apart from the different model for motion and communication,
we generalized this idea and allowed all nodes (“cells”) to have a unique ID and
unique behaviour based on this ID. Our long term goal is to be able to engineer lo-
cal behaviour to create and maintain an arbitrary given formation as we have done
in earlier work on self-organizing overlay networks (Jelasity & Babaoglu 2006).

As computer systems become more complex, we argue that it is increasingly im-
portant for us not to consider them as passive subjects of external control. We need
to incorporate into their operation emergent behaviour that was not intentionally
designed. At the same time, we need to continue our efforts towards understand-
ing how to design systems that are “inherently” self-managing, without external
components or agents: in some application areas this might very well be the only
feasible approach to system management.

Partial support for this work was provided by the FET unit of the European Commis-
sion through projects BISON (IST-38923) and DELIS (IST-01907). Mark Jelasity was
supported by the Bolyai Scholarship of the Hungarian Academy of Sciences.
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