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József Attila University, Hungary
Szeged H-6720, Aradi vértanúk tere 1.
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Abstract

In this paper the connections between the evo-
lutionary paradigm called adaptationism and the
field of evolutionary computation (EC) will be out-
lined. After giving an introduction to adaptation-
ism we will try to show that the so called adap-
tational stance can be applied in EC as well as in
biology and this application may have significant
benefits. It will also be shown that this approach
has serious, inherent limitations in both cases es-
pecially in the case of EC, because we lack the
language which could be used to form the theo-
ries, but these representational limitations can be
handled by devoting efforts to construct this lan-
guage.

1 ADAPTATIONISM

This section introduces adaptationism, a strategy for under-
standing the products of evolution. We will discuss only bio-
logical evolution here; the discussion of the relationship with
EC is given in Section 2. Adaptationism is a controversial
question [8] and it seems that most of the misunderstandings
can be originated from the insufficient and obscure definition
of the paradigm.

1.1 BASIC NOTIONS

In this section we will try to make the assumptions of adap-
tationism clear and explicit and to show the role of the un-
derlying language. First it seems that adaptationism requires
the following principles in order to be applicable:
P1 (separation): The separation of the organism under in-
vestigation and its environment is necessary. To give an ex-
ample, it is not clear whether the ant colony or a single ant
counts as an organism. To be more precise both approaches
are valid; only the choice has to be fixed. If the organism is
the ant then the ant colony is a part of the environment that
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has to be constant according to P3. This assumption can be
difficult to maintain though it might me meaningful if the
time interval under investigation is relatively small. This is
a very controversial question, see [2] and [16] for two quite
different viewpoints.
P2 (constraints): It is necessary to determine the constraints
that give the space of the biologically feasible genotypes.
These constraints help us exclude caws with machine-guns,
birds with jet engines, etc. This principle is needed to allow
the optimality condition to be well-defined.
P3 (frozen environment): Optimality can be given only
w.r.t. a fixed environment; this makes it possible to block
the circular definition of fitness1. Since the organisms can-
not change the environment, the number of their offspring is
solely the function of their properties. We must pay the price
for this however; no dynamic properties of the population
or its interaction with the environment can be examined. Of
course, this limit diminishes if we choose a larger entity such
as a population or an even larger subsystem such as a food
chain to be our organism.
P4 (one niche): Beside P2 it is also necessary to restrict the
possible individuals further only to those occupying a partic-
ular niche; roughly speaking the possible organisms cannot
be too different. Optimality can be defined only inside of a
species; this ensures that a pig will not be compared to a lion.
Both may well be optimal in their own way but it would be
a serious mistake to consider a pig a bad quality lion or vica
versa. This constraint seems to be simple but in fact it causes
major difficulties especially when fossils are analyzed since
it is hard to tell with respect to what the organism in ques-
tion should be optimal (is it a bad pig or a bad lion?). The
definition of niche is itself a problem.
P5 (improving fitness): We need to assume that evolution
improves fitness. This will be one of the motivations of the
optimality assumption to be introduced soon.
P6 (single organism): This is partly the consequence of
P1; at every time-step there is only one organism. It may
seem to be counter-intuitive at first sight. But according to
P1 we have to decide what the definition of organism is. If

1 If the number of offspring define fitness then this fitness cannot
be used to predict the number of offspring since the claim “In-
dividuals with high fitness will have high number of offspring”
becomes a tautology. The problem is that this claim is in the cen-
ter of Darwinism
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we choose an individual2 animal or plant then all the other
members of its species become part of the environment and
according to P3 they are not allowed to change while our
organism changes. It is clearly a plain contradiction though
for short time intervals this approach could give fairly good
approximations; in fact such discretization methods are quite
common in mathematics for example in numeric approxima-
tions of differential equations.
Let us introduce a notation for the most important compo-
nents. Let O be the set of organisms that are biologically
feasible according to P2 and live in a particular niche ac-
cording to P4. Let f be the fitness function, i.e. a function
of type O → R

+. For an organism o ∈ O the number f(o)
gives the expected number of offspring of o. f is also a func-
tion of the environment but since it is constant according to
P3, it is not indicated. Let G be the finite3 set of features that
make it possible to describe the organism. Its elements are
functions of type O → R. Predicates are possible as well, in
that case the function has only two values: 0 for false and 1
for true. An example could be the length of the neck or the
degree of flying ability.

1.2 CHARACTERIZATION OF FEATURES

I would like to emphasize as early as possible that the char-
acterization will be independent of the function of the given
feature in the organism. At this level nothing is said about
the roles or the causal relationships of the elements of G. For
instance we can say that the neck-length of a giraffe is op-
timal without mentioning its function (which could be for
example reaching leaves at the top of the trees).
The aim of this characterization is to decide whether a given
feature is relevant or irrelevant w.r.t. the fitness and if rele-
vant then it is optimal or not. Therefore there are three cat-
egories: irrelevant, optimal and suboptimal. The interesting
question is of course to find a method to somehow classify
G into these three classes.
First let us examine the case when the fossil record is avail-
able that show the development of the feature under investi-
gation. P5 will be heavily exploited. P6 is used too to ensure
that there is no variance to be taken into account (only as
another feature).
In the case of the divergent behavior we can conclude that at
the moment the feature at hand is in a developing stage and
therefore is suboptimal. In the case of random behavior we
classify the feature as irrelevant. The situation is somewhat
more difficult however. The random behavior can be caused
by a lot of factors. The first possible explanation is that the
given feature is neutral; it is independent of the fitness of
the organism. The second explanation is that the given fea-
ture changes according to some kind of dynamics that is out
of the scope of our analysis. For example if our organism
was chosen to be a species then some features may vary in
accordance with evolutionary game theory [13]. A third ex-

2 This choice does not mean that we are interested in a particular
individual. This only means that in every generation we are inter-
ested in one (hypothetical) individual which is subject to natural
selection in its population.

3 Note that it is not the set of all possible features; it contains the
actual features that are used (or will be used) by the biologists. It
is awkward to emphasize that this set is finite since it is trivial. It
is a habit however that some people might miss.

planation can be that our assumption P3 about the constant
environment is false.
In the case of convergence we say that the feature is optimal.
There are lot of error possibilities however. The most impor-
tant is that an irrelevant feature may converge as a result of
genetic drift. Note that on the other hand it is impossible that
relevant features show random behavior.
The situation without fossile record is more interesting since
we do not have any ground to classify the features. The ques-
tion is very sensitive since one has to decide which features
are relevant and among the relevant features which ones are
optimal. The question is also important since a lot of inter-
esting features of earlier generations such as behavioral pat-
terns or brain structure disappear almost completely. This is
the point where adaptational stance comes in with the opti-
mality principle.
P7 (optimality): In the absence of evidence for the contrary
it will be assumed that every relevant feature is optimal. This
is nothing else than a method which is suggested as a re-
placement for coin tossing. Its power lies in the fact that in
real-life cases optimal features are believed to be in majority.
Another problem remains however: how do we decide which
feature is relevant and which is not. As Dennett says, the sum
of the number of eyes and the number of legs does not seem
to be a relevant feature, but not much more is said about this
issue. In Section 3 a detailed discussion of this question is
given.

1.3 DEPENDENCY

As it has been shown the relevant and irrelevant features can
be separated without referring to their functional role in the
organism. So far the organism under investigation was han-
dled as a black box i.e. we have not examined the causal
relationship between the features. In other words structure
has to be given to the set G in order to give an explanation
and a complete description of the organism.
The structure of G will have the form of dependency rela-
tions. The concept of dependency has been mentioned al-
ready in Section 1.1. To discuss reverse engineering, this no-
tion has to be made more precise. We will not give a formal
definition but will try to make this term as clear as possible.
If g1 and g2 are features than we say that g2 depends on g1

(and denote this relationship by g1 → g2) if for any organ-
ism o ∈ O it is possible to predict g2(o) from the value of
g1(o) with some accuracy greater than zero. We will call this
accuracy the importance or weight of the given dependency.
Note that it is not necessarily possible to do such a prediction
in the other direction; this dependency works like a (fuzzy)
implication operator on predicates of the form “g is known”.
In some cases more difficult relationships can be described.
Computing a feature g may depend on values of more than
one other features g1, . . . , gn. Again, we define this relation-
ship as a fuzzy formula on predicates like “g is known” using
conjunction and implication and denote it by g1∧ . . .∧gn →

g. If there are no other relationships of other kinds then we
say that the database containing the dependencies is in Horn
normal form or simply we have a Horn dependency database.
We are not interested in the details of the actual realization of
the dependency of the features, i.e. the underlying physical,
biological or any kind of laws. Only the pure statistical fact
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Fig. 1. A small and ad hoc subset of the feature-dependency net-
work of a giraffe for illustration only.

of the relationship is important. We are not interested in the
nature or the effective procedure of computing the features
either; we only assume that such a procedure exists. At the
abstraction level of our model, these are all unimportant.
It is enough to give the dependencies between the features
to give an explanation of the fitness of the organism since
mating ability itself is a feature, and the fitness can be di-
rectly derived from the mating ability of our organism and
the competing members of the population (that are part of
the environment) and some other factors of the environment
like predators. Since we have accepted P3, it can be said that
fitness is a feature itself i.e. f ∈ G. The functional role of a
feature is nothing else but the way fitness depends on it. Ir-
relevant features have no functional role at all because fitness
does not depend on them (this is the definition of irrelevance)
though they can (and probably will) depend on other, maybe
relevant, features.
An example of such a dependency network for the giraffe is
shown in figure 1. The network structure of the dependencies
must be emphasized. Taking a look at the diagram, it is hard
to accept that for example the functional role of the long neck
of the giraffe is to reach the leaves on the top of the trees. It
is one of its functions but it may have several other roles as
well. In biological organisms it is typical for the components
to have several different functional roles; good examples are
hormones, vitamins, muscles (motion and heat generation)
and so on. Of course it is necessary to weight the dependen-
cies according to importance. There are more important and
less important roles but this does not change the fact that
fitness depends on each role so they must be part of the ex-
planation of the structure of the organism.
From a historical point of view it is possible that the effect
of a less important feature results in a diminishing selective
pressure related to a more important feature and can con-
verge only after the more important feature has converged.
But this historical perspective is completely irrelevant when
discussing the dependency relations in the case of an or-
ganism. This argument about the independence of syncronic
and diachronic analysis is not new: in connection with the
science of language Saussure [3] represents the same view
which is now widely accepted.

1.4 REVERSE ENGINEERING

Roughly speaking, when trying to understand organisms via
reverse engineering we try to reconstruct the dependency re-

lations between the relevant features. The first difficulty is to
find the relevant features. This problem will be discussed in
detail later in many places from many directions. The sec-
ond problem is that our dependency diagram is too simple; a
classification of features along an additional direction needs
to be introduced.
This dimension is approximately the level of abstraction.
To understand this let us consider the typical way engineers
solve a problem. In the first step they are given a functional
description of the system to be designed. This includes its
main purpose which is a high number of offspring in the
case of biological organisms. This first specification is noth-
ing else but requirements w.r.t. a set of high level, abstract
features. The engineer then tries to reduce these features (or
goals) into subgoals iteratively using more and more specific
features while the design reaches a state where every subgoal
can be implemented. This is the less abstract, physical state.
The actual procedure of finding a good design does not nec-
essarily follow the above iteration; case based reasoning may
play a major role for example but the result has the struc-
ture of features and the dependencies between the features.
Some of the features represent low level physical properties
some of them represent the highest level functional proper-
ties and there are features at intermediate levels of abstrac-
tion. Dennett distinguishes three levels: the physical, the or-
ganizational and the intentional levels [5]; we will need only
the notion of physical features and the notion of top goal(s)
which is essentially the first specification the engineer starts
with. There are no clean boundaries, though: there is a prac-
tically continuous spectrum of abstraction along the impli-
cational chain.
Now reverse engineering can be defined more clearly. If nor-
mal engineering proceeds from the top goals to the physical
features then reverse engineering goes in the other direction:
from the observable physical features it reconstructs the top
and intermediate goals. There is one more kind of reverse en-
gineering. In this case the to goals are also known, only the
intermediate features have to be discovered. Good examples
of the first kind are the mysterious tools of ancient cultures
found by archaeologists. Here scientists have to find out the
purpose of these tools and in most of the cases all they know
is the actual physical properties of the objects.
An interesting question is that in the case of the problem of
explaining physical features of animals such as long neck or
big ears which kind of reverse engineering is involved. The
top goal of different organisms is the subject of debate, for
example what is the top goal of an ant? However in certain
cases there are available top goals (which are actually sub-
goals in the strict sense) e.g. flying. Determining the depen-
dency relationships between the physical features of birds
and their observable flying ability is an example.

Optimality and dependency Dependency is a property of
features as functions while optimality is a property of a par-
ticular feature value. However while reverse engineering an
organism we usually have to rely only on particular feature
values when we determine the dependency relations. The
case when the optimality or irrelevance of features is known
is the simpler. Here we ignore irrelevant features and try to
guess (extrapolate) the optimal value of suboptimal features
so we can rely on optimal relevant values. When trying to



find the function of a physical feature we assume that this
function is such that the physical feature is a good imple-
mentation of it. For example if we observe strong wings we
assume that their function is flying. Note that without the op-
timality condition it would be possible that the wing is sim-
ply irrelevant and not used for anything or suboptimal and
used for digging for example or even harmful (as the legs
of snakes). When optimality is not known the optimality as-
sumption P7 has to be used (see Section 1.2) according to
the adaptational stance.

2 ADAPTATION IN EC

First let us take a look at the notions defined in Section 1.1.
The easiest is P2 which requires that the constraints of the
possible organisms should be taken into account. In EC this
is not a problem since one of the first steps of any application
is the exact definition of the search space i.e. O. The particu-
lar methods of constraint handling and coding is not relevant
here only the fact that the problem is handled properly.
P1 and P3 are trickier but still easier than in the case of bi-
ological evolution. In EC it is typical to have a population
of solutions in every time step (generation) and usually an
objective function is defined over the possible solutions. The
expected number of offspring (i.e. fitness) of the members of
the population is given by the objective function values of the
other members of the population thereby fitness depends on
the objective function and the actual population. Therefore
we face the same problem of determining the boundaries of
the organism and keeping the environment constant.
The later goal is easier since the environment outside the
population is constant in most of the applications though
nowadays the applications in dynamic environments are be-
coming more and more important. This means that the ear-
lier goal reduces to deciding whether the individual or the
population should be the organism to study. The later choice
seems more reasonable though the arguments in connection
with P6 given in Section 1.1 apply here as well. Anyway, the
usefulness of having large populations is not proven; there
are cases where one-element populations perform best. A
typical example is [6].
The notion of the fitness function f is also cleaner in EC. It
is very interesting that in EC there is a tradition of calling the
objective function the fitness function. At first sight this re-
sults in a dissonance between biological and computational
terminology but in the light of the restrictions expressed by
P3 we saw that even in biology fitness is taken as a kind
of objective function; adaptationists emphasize the objective
nature of fitness. In EC to be an adaptationist all we have to
declare that the good old tradition should be continued.
G also has traditions in EC especially in genetic algorithms
(GAs). In GAs the solutions need to be encoded so that
genetic operators which are defined problem independently
could be applied to them. This encoding is analogous to the
DNA sequence in which mutation is very similar in the case
of every living organism. The views expressed in this ques-
tion usually take the form of problems of encoding which is
essentially nothing else but defining some atomic elements
of G (see e.g. [15]). These are the physical features as in-
troduced in Section 1.4. The other features called building
blocks are some simple combinations of these primitives [7].

Though these building blocks can be regarded as functional
properties this approach has a number of well known diffi-
culties and limitations as will be discussed in Section 3.
Principle P4 which requires that only a single niche should
be studied is maybe the most problematic. There is a signif-
icant amount of work in the field of niche and species for-
mation in the field of EC, [11] and [4] are two examples.
The common problem is that all these methods operate with
a distance measure defined over O and this distance measure
typically depends on the atomic elements of G. This makes
the whole procedure ad hoc in the sense that the actual en-
coding of a given problem is not necessarily optimal. In fact
it is always possible to find a distance measure such that fit-
ness has only one optimum i.e. it is unimodal. For example
the difference between the fitnesses is such a distance mea-
sure. This makes G even more interesting.
Finally P5 and P6 has to be mentioned. P5 usually holds in
EC if the applied selection mechanism is elitist which means
that the best member of every generation will be the member
of the next generation. The elitist strategy usually performs
quite well so it is typically applied. P6 can be interpreted
similarly as in the case of biological evolution.
It should be clear by now that there are no basic incompat-
ibilities between EC and the adaptationist stance. All that
remains is to take a look at the possible applications of the
methods of the adaptationist stance such as optimality anal-
ysis and reverse engineering.

2.1 CHARACTERIZATION OF FEATURES

In this area EC has a major advantage namely that it is pos-
sible to perform virtually any number of experiments and
thereby collecting as many “fossils” as necessary. It is pos-
sible to predict with a much greater degree of confidence if
a feature is optimal or not by performing statistical exper-
iments since for optimal features convergence to the same
value should occur in the majority of the experiments. Of
course premature convergence and other well known effects
can alter the results. The most difficult problem is to ensure
that the algorithm should stay in the same niche every time
the experiment is run.
There is another advantage: a hypothesis about the charac-
terization of a feature can be tested experimentally. For ex-
ample if a feature is suggested to be irrelevant it is easier to
vary its value while leaving the other features unchanged and
calculate the fitness of the resulting solutions.

2.2 REVERSE ENGINEERING

The dependency relations between features have the same
status as their optimality since they were also defined in sta-
tistical terms. Any number of experiments can be performed
to test and refine the hypothesis. In spite of the fact that there
are much greater possibilities in testing the dependency re-
lations between any kind of features (which are the result
of reverse engineering) there is very little work in the liter-
ature that would describe such reverse engineering results.
The reason probably is that the success of reverse engineer-
ing which usually results in a deeper understanding of the
engineering problem at hand and so also faster and better al-
gorithms than plain EC algorithms is usually considered a
failure of EC for some reason. People seem to forget that the



way the faster and better algorithm are developed is largely
dependent on the performance of EC algorithms; in fact it is
impossible without them.
In this paper it is attempted to show that it may be useful to at
least try to understand the outcome of the optimization pro-
cess, the solutions suggested by EC algorithms since these
solutions form a good starting point to a reverse engineering
process that makes it possible to translate the information ac-
cumulated by evolution into engineering knowledge. If this
process results in better heuristics then it is the success of EC
and the engineers of course.
A simple example of the successful applications of reverse
engineering is [10]. There are more sophisticated examples
as well such as network design [1]. Unfortunately we cannot
discuss these due to the lack of space.

3 REPRESENTATIONAL BOTTLENECK

The language of biology is particularly rich and in a way it
is very close to natural language. The terms (features) used
to describe organisms such as color, shape, organs and body-
parts like heart, lungs and arms and behavioral patterns like
aggression are typically understandable by anyone. Biology
inherited a large, detailed terminology of describing the liv-
ing world. This may be a result of our own evolution and
the evolution of our culture; animals and plants have been
around us since language and culture emerged and have been
playing a crucial role in our lives as food, enemy, building
material and so on ever since. Our sensory and cognitive sys-
tem is likely to be specialized in describing living organisms,
among other things.
This makes the job of finding problems in biology relatively
easy since the features to be explained are there. The situa-
tion is radically different in EC. The description of solutions
lacks even the simplest terms and usually reduced to the en-
coding of the solution. This means that we talk only about
genes as if biologists could describe a monkey only with the
help of its DNA sequence. The insufficiency of this descrip-
tion may be evident to some of the readers but actually in
EC the practice is accepting that the encoding provides us
with a language sufficient for describing the solutions. This
is motivated by the need of developing a domain indepen-
dent theory of EC, and this need may be originated from the
analogy with other optimization methods like the method of
steepest descent or the different Newtonian iterations. The
problem is that the application area of EC is much larger than
any of these restricted methods. This is why domain specific
information plays a more important role.

The elephant picture function When it comes to reverse
engineering and giving an explanation of the solutions de-
veloped we need to find features to create a model of the
particular problem class. To see this let us give an example:
the elephant picture function. In this problem the organisms
are two-dimensional bitmaps where the physical features are
the pixels of the picture. The fitness of a given picture is the
degree of resemblance to an elephant; any kind of elephant
in any position as illustrated by Figure 2.
The fitness is independent from a particular pixel since the
degree of resemblance of a negative picture is the same as of
the original. The elephant picture function does depend on

Fig. 2. Examples of bitmaps with a good fitness.

lower-level features such as lines, curves and similar basic
components but these are still too abstract to depend on par-
ticular pixels; we need another abstraction level closer to the
physical features. To convince those who are still in doubt
imagine that the positions of the pixels of the picture are
mixed by a deterministic and invertible algorithm so the ele-
phant cannot be recognized anymore by looking at the pic-
ture (see Figure 3). Let the fitness function be the original

Fig. 3. An elephant picture and one of its permutations.

elephant picture function applied to the result of the inverse
of the above transformation on the given bitmap. The most
predictive high-level feature is still resemblance to elephants
before mixing the pixels. If one cannot “decode” the image
then it is almost impossible to predict fitness.
On the other hand an EC algorithm could probably find a
good solution of the elephant picture problem provided that
somehow this function was available. Interactive applica-
tions i.e. applications that use the human user as a fitness
function indeed exist; one example is the iterative evolution
of textures where the fitness is a kind of artistic or aesthetic
value [9].
Finally let us note that the features used in biology to de-
scribe organisms are practically independent of the level of
DNA as well since it would be extremely hard to predict the
shape or behavior of an unknown animal from its DNA only.
Genes connected to higher level features are often described
and known species with similar DNA can be used but this
process proceeds in a top-down fashion: the features are de-
scribed first and then the corresponding genes are looked for.

Similar problems Self-organizing maps (SOMs) are de-
vices that are capable of finding structure or a clustering
in their input data-set. One good example is Kohonen’s
phoneme recognizer [12]. SOMs are usually based on the
physical features of these vectors only so in many cases it
has serious problems finding clusters that are similar in some
important sense but are not in the physical level (e.g. ele-
phant pictures). In the case of instance based learning and
case based reasoning (see e.g. [14]) it is well known that one



of the main problems is the selection of the distance mea-
sure. To find a good distance measure, one has to understand
the problem domain to be able to tell the difference between
important and irrelevant features or at least to find features
to start with. Just like in SOMs for the interesting problems
it is not sufficient to rely only on the physical, lowest level
features like pixels in an image or elements of a vector as
usually done.

The spaceship picture function To illustrate that the ele-
phant picture function is indeed a very serious problem let
us give another example: the spaceship picture function. The
situation is like with the elephant pictures but the difference
is that e.g. 500 years ago nobody had an idea about space-
ships. The interesting thing is that the function did exist nev-
ertheless though no one could predict its values. Engineers
of that time would have been in great trouble when trying to
understand a spaceship function computing machine. Note
that no low-level “decoding” would have helped them in this
case as we have seen in Section 3. The problem is that space-
ships can be very different and some of them are very similar
to aircrafts, saucers etc.
What the engineers lacked 500 years ago is the knowl-
edge about spaceships, space, artificial flying, science fiction
movies etc. To be short the term spaceship was not part of
their language. I assume that there are more unknown than
known terms: this is what I call the representational bottle-
neck. The situation in the abstract domains such as flow con-
trol or combinatorial problems that are likely to have a rich
and complex yet undiscovered structure is even worse.

4 CONCLUSIONS

It was demonstrated that the adaptational stance and reverse
engineering is strongly connected. Adaptational stance is
a strategy of reverse engineering that might fail in certain
kinds of circumstances but it seems to be useful in many
cases. It was shown that reverse engineering is applicable
and in fact it has been applied in EC. The bottleneck of this
method however is the language that is available for describ-
ing the abstract problem domains. As we have seen, biology
has a much larger and effective vocabulary partly inherited
from natural language though this vocabulary is constantly
growing as other sciences develop so adaptationist explana-
tions in biology also have the representational bottleneck.
It is also important to emphasize that the performance of an
EC algorithm may well be very good even if reverse engi-
neering is not successful and domain specific knowledge is
not available. This is the main power of evolution: it only
works with the physical features and does not care about any
explanations because explanations or dependency models of
features of different abstraction levels are simply tools for us
human beings to handle predictions with our limited cogni-
tive capacity. It is very much like the relationship between
axioms and theorems in mathematics. Axioms have the sta-
tus of physical features; knowing the axioms means knowing
everything4. Theorems are needed only because it exceeds
our abilities to tell the truth value of a formula directly from

4 It is not always true because of Gödel’s theorem but practically
this is the case in traditional maths. Theorems that may be true
or false in different models are very hard to find.

the axioms. This is why the representational bottleneck is a
problem though the physical features (encoding of a solution
in EC) are known; explanations need higher level features
because of our cognitive limits.
An EC algorithm does not provide final solutions to prob-
lems; it is a ledder leading to an understanding of the prob-
lem domain making reverse engineering possible and thus
leading to faster and better specific algorithms. The repre-
sentational bottleneck problem should be solved by scientific
research in each domain. Since experiments can be repeated
any time with any settings this research is much easier than
in biology though the vocabulary to start with may be poor.
The contribution of EC to the new algorithms is essential
since without known good solutions reverse engineering is
impossible therefore the success of such results is definitely
a success of EC as well.
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T. Bäck, editor, Proceedings of the Seventh International Con-
ference on Genetic Algorithms, pages 89–96, San Francisco,
California, 1997. Morgan Kaufmann.

11. M. Jelasity and J. Dombi. GAS, a concept on modeling species
in genetic algorithms. Artificial Intelligence, 99(1):1–19, 1998.

12. T. Kohonen. The “neural” phonetic typewriter. IEEE Com-
puter, pages 11–22, Mar. 1988.

13. J. Maynard Smith. Evolution and the Theory of Games. Cam-
bridge University Press, Cambridge, 1982.

14. T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
15. N. J. Radcliffe. The algebra of genetic algorithms. Annals of

Mathematics and Artificial Intelligence, 10(4):339–384, 1994.
16. D. S. Wilson and E. Sober. Reintroducing group selection

to the human behavioral sciences. Behavioral and Brain Sci-
ences, 17(4):585–654, 1994.


