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SERIES EDITOR’S INTRODUCTION
Serial independence of data is assumed in many statistics, including ordinary least squares (regression
analysis). If the order in which measurements are drawn from a population is unimportant, then the value that
a measurement takes on should not be influenced by the position of the measurement in the draw. For some
classes of problems, however, a measurement’s value may be dependent upon the position in the draw, such
as with time-series analyses where the value of measurement depends upon the value of other measurements
one or more time periods previous. If interdependence exists between the values of the measurements (or
their disturbance terms) serial autocorrelation is said to exist and the analysis may then be subject to error,
including yielding biased estimates of the regression coefficients.

Now take the autocorrelation problem one more step. Say that in addition to the dependence being
one directional and back in time, let the value of the measurement also be dependent upon values that
measurements take on “down the road time.” And then, in addition to serial dependence being behind and
ahead, also let there be dependence to the right and left and every point of the compass in between. This,
then is the problem of spatial autocorrelation.

Spatial autocorrelation statistics detect the presence of interdependence between data at neighboring locations
and derive the effect upon the values of the measurements. Spatial autocorrelation statistics are the basic
statistics for all data capable of being mapped.

Professor John Odland in this volume explains how to calculate and apply spatial autocorrelation statistics
and illustrates how to use this class of statistics when the research hypotheses require data where the original
spatial pattern of the measurements is retained.

Spatial autocorrelation statistics are important in dealing with the special problems that arise when other
statistical models are applied to data that can be mapped, for such data often do not fulfill the conditions of
serial independence. Spatial autocorrelation statistics measure the amount that the measurements depart
from the requirements of independence.

Professor Odland demonstrates how spatial autocorrelation statistics can be used in diagnosing and correcting
problems that arise when common statistical methods such as regression analysis are applied to spatially
arrayed measurements. The statistics for spatial autocorrelation are also extended to the analysis of patterns
in space and time, a development that makes it possible to investigate hypotheses about the processes that
transform spatial patterns.

Because spatial analysis has long been central to the study of geography, geographers such as Professor
Odland have been at the center of the research on spatial autocorrelation. At the same time, it may not be
possible to delimit those disciplines that would find this material of use from those that would not other than
by the state of evolution of the particular science, awareness of this class of statistics, and personality of the
researchers. This is because though space may not be the central paradigm of a discipline, measurements
that they make may be explicitly spatial. Hence, like time series analysis, spatial autocorrelation has no
disciplinary boundaries.

This volume will be particularly useful to those disciplines that regularly draw upon the geographers’ maps,
such as geology, epidemiology, biological and ecological sciences, anthropology and archaeology, sociology,
urban and regional sciences including city planning, and both human and physical geography.

-Grant Ian Thrall
Series Editor
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1 SPATIAL ANALYSIS AND STATISTICAL INFERENCE

The analysis of spatial distributions and the processes that produce and alter them is a central theme in
geographic research and this volume is concerned with statistical methods for analyzing spatial distributions
by measuring and testing for spatial autocorrelation. Spatial autocorrelation exists whenever a variable
exhibits a regular pattern over space in which its values at a set of locations depend on values of the same
variable at other locations. Spatial autocorrelation is present, for example, when similar values cluster
together on a map. Spatial autocorrelation statistics make it possible to use formal statistical procedures to
measure the dependence among nearby values in a spatial distribution, test hypotheses about geographically
distributed variables, and develop statistical models of spatial patterns.
These methods provide ways of investigating the organization and structuring of phenomena over space--a
concern that is so pervasive in geographic research that it has been identified as one of the central themes
that unifies geography as a discipline and distinguishes it from other fields of study (Morrill, 1983). Even
if a concern for spatial pattern and spatial organization is not, in itself, sufficient to define geography, an
interest in some kind of spatial pattern is nearly universal in geographic research, and it is often necessary for
geographers to measure spatial patterns in some numerical way or to test hypotheses that are formalized as
statements about patterns or regularities in space. Analyses of spatial patterns are also important in other
fields, including ecology (Sokal & Oden, 1978b), archaeology (Hodder & Orton, 1976), epidemiology (Mayer,
1983), sociology (Dorien, 1981), and geology (Agterburg, 1970). Consequently, the development of statistical
methods for analyzing spatial data constitutes a very important step in the development of geography. The
methods for analyzing spatial autocorrelation that are presented in this volume have been developed by
geographers and others, mainly in the last twenty years and especially by Cliff and Ord (1973, 1981a), and
they are among the most useful and general of these methods for spatial analysis.
The analysis of spatial patterns is characterized by the fact that the data can be arrayed as some kind of map
and analyses of spatial autocorrelation can be thought of as formal statistical investigations of the patterns on
maps. Spatial data include information on the absolute or relative locations of phenomena, so that the data
are at least capable of being mapped, and spatial autocorrelation statistics provide a means of employing the
general methods of statistical inference in order to test hypotheses about map patterns. Maps are capable
of expressing enormously complex and varied information and autocorrelation statistics do not provide a
complete set of methods for examining all the possible questions we might ask about map patterns. They
can, however, be used to test useful hypotheses, such as the hypothesis that the values of some variable are
randomly distributed over space or, alternatively, that the values follow some regular structure or distribution
over space such as clustering.
Statements such as “this set of values is randomly distributed in space” are not, of course, very interesting in
themselves but these kinds of statements are capable of being tested by means of formal statistical procedures
and one aspect of the research process is to express interesting geographic questions in such a way that they
can be tested and examined on the basis of statistical theory. This makes it necessary to formulate statements
that are meaningful in terms of both geography and statistics and this has required some development in
both fields since most statistical methods have not been designed for the special problems of spatial analysis.
The material in this volume includes (1) discussions of how meaningful statements about geographic patterns
can be expressed in forms that are suitable for analysis using autocorrelation statistics, (2) the problems that
must be resolved in order to apply statistical methods to spatial data, and (3) the procedures that can be
used to measure spatial autocorrelation and test hypotheses in particular situations.

1.1 Autocorrelation Statistics
Autocorrelation statistics are basic descriptive statistics for any data that are ordered in a sequence (Griffith,
1984b) because they provide basic information about the ordering of the data that is not available from other

AUTHOR’S NOTE: Most of this volume was prepared while I was a visitor in the Geography Department of the University
of California at Santa Barbara. I am most grateful to the members of that department for their hospitality and support. I am
also grateful to Arthur Getis and Gary Gaile. They both read the entire manuscript and provided a great deal of helpful advice.
I am solely responsible for errors and omissions that remain.
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descriptive statistics such as the mean and variance. When data are mapped, the map contains not only
information about the values of variables but also information about how those values are arranged in space.
Autocorrelation statistics provide summary information about this arrangement. Like the mean and variance,
they do not express all the information about the data, but they do provide a numerical summary in a form
that is useful for statistical testing. Autocorrelation statistics are not limited to spatial data but may be
calculated for any data that are arrayed in a sequence. There is, for example, an extensive literature on
autocorrelation in time series that deals with related problems although the calculation and interpretation of
spatial autocorrelation statistics involves some difficulties that are not present for time series.

Autocorrelation statistics are functions of the same data values that are used to calculate other descriptive
statistics, but they are also functions of the arrangement of those values in a sequence. In order to calculate
an autocorrelation statistic, it is necessary to express that arrangement in some numerical fashion. The
arrangement is expressed by some function that assigns values to pairs of locations in the sequence in order
to represent their location with respect to one another. This function is called a “lag function” in time series
analysis but we will use the term weighting function for spatial data because “lag function” implies a uniform
relation with time or distance that is not always possible for spatial data.

A spatial weighting function is nothing more than a set of rules for assigning values to pairs of places in a way
that represents their arrangement in space. The result of applying such a function to a map of n regions will
be a set of numerical “weights” that express the relative locations of the regions on the map. For example,
the spatial weighting function for a set of n regions might specify that the weight for a pair of regions i and j
is one if i and j are neighbors and zero otherwise. (The weights that would express the location of a region
with respect to itself, Wii, are usually specified as zero.)

The set of weights is then combined with the data values to produce a function of both types of values, such
as

ΣΣwij(xi − x̄)(xj − x̄)

where the double summation indicates summation over all pairs of regions; wij is the spatial weight for the pair
of regions i and j; xi and xj are their data values; and x̄ is the mean for the entire sequence. This particular
function is a spatial autocovariance. An autocovariance differs from an ordinary covariance because it is
defined for lagged observations of a single sequenced variable, rather than joint observations of two variables,
and this is a spatial autocovariance because the wij weight the individual cross-products (xi − x̄)(xj − x̄)
according to the relative locations of the regions i and j. Only the cross-products for neighboring values are
used to calculate the spatial autocovariances if we adopt the zero-one weighting function suggested above,
but other weighting functions are possible.

The spatial autocovariance measures the relation among nearby values of xi where the meaning of “nearby”
is specified by the wij , but a more useful spatial autocorrelation statistic, called Moran’s I, can be produced
by standardizing the spatial autocovariance. This statistic is

I = n

ΣΣwij

ΣΣwij(xi − x̄)(xj − x̄)
Σ(xi − x̄)2

where n is the number of regions and the double summation indicates summation over all pairs of regions.
Moran’s I is merely the spatial autocovariance, standardized by two terms; the variance of the data series
Σ(xi − x̄)2, which depends on the xi values but is invariant with their arrangement; and n/ΣΣwij . This
second term says about as much concerning the arrangement of regions on a map as any single numerical
value can. It is a measure of connectivity for the set of regions. Its value could change if the map of the
regions were rearranged, but this value will not change with changes in the xi.

Moran’s I has an expected value of −[1/(n− 1)]. The calculated value of I should equal this expectation,
within the limits of statistical significance, if the xi are independent of the values of xi at neighboring locations.
Values of I that exceed [I/(n− l)] indicate positive spatial autocorrelation in which values of xi tend to be
similar to neighboring values. Values of I below the expectation indicate negative spatial autocorrelation in
which neighboring values are not independent but tend to be dissimilar. Notice that −[1/(n− 1)] approaches
zero, which is the expectation for an ordinary correlation coefficient, as the number of regions becomes large.

8



Moran’s I is made up of the same components that define any correlation statistic, a measure of covariation
(the autocovariance) and measures of total variation (the variance and the connectivity measure). Alternative
statistics for spatial autocorrelation can be constructed by choosing different measures of covariation. For
example, if we use the sum of squared differences between pairs of data values as a measure of covariation
instead of the autocovariance and standardize in a slightly different way we have

c = n− 1
2ΣΣwij

ΣΣwij(xi − xj)2

Σ(xi − x̄)2

This statistic is Geary’s c, an alternative statistic for spatial autocorrelation that has a strong resemblance to
the Durbin-Watson statistic that is widely used to test for autocorrelation in time series. Geary’s c has an
expectation of one for independence among neighboring values.

Spatial autocorrelation statistics can also be calculated for data that fall into categories instead of assuming
continuous numerical values. These statistics are known as join-count statistics because they are calculated
by counting the numbers of occurrences of like and unlike categories in adjoining locations.

The values of Moran’s I and Geary’s c depend on the wij and these are specified by the spatial weighting
function that an investigator chooses. The freedom to choose alternative weighting functions introduces
ambiguity into investigations of spatial autocorrelation but it also introduces flexibility because it becomes
possible to use the statistics for alternative weighting functions to compare alternative hypotheses about how
the data are organized in space. For example, the zero-one weighting function introduced above represents
a hypothesis that the data for adjacent regions are related but ignores the actual distances among regions.
A hypothesis that the values depend on the distances among regions rather than their adjacency could
be represented by a weighting function that makes each wij the inverse of the distance between regions.
These weighting functions represent slightly different hypotheses about the arrangement of the data over
a set of regions and any number of weighting functions may be defined to represent different hypotheses.
The possibility of defining alternative spatial weighting functions to test competing hypotheses makes
autocorrelation statistics a very useful means of investigating spatial organization along with spatial pattern.
The selection of spatial weighting functions is discussed at greater length in the next chapter.

1.2 Autocorrelation Statistics as General Cross-Product Statistics
The I and c statistics presented above are not the only statistics that could be used to measure spatial
autocorrelation. In fact, the I and c statistics are only two special cases of a more general approach to
measuring spatial autocorrelation by means of general cross-product statistics (Cliff & Ord, 1981a, pp. 22-24;
Hubert, Gollege, & Costanzo, 1981; Upton & Fingleton, 1985, pp. 154-158). General cross-product statistics
provide a means of comparing information on the proximity of locations with information on some other
variable measured for the locations. They work by calculating the sum of cross-products for the two kinds of
information and can be written in the general form:

Γ = ΣΣWijYij

where the double summation indicates summation over all pairs of locations. In the case of Moran’s I the
values for proximity, Wij , are merely the weights, wij and the elements of Yij are the cross-product terms for
each pair of regions, (xi − x̄)(xj − x̄). The sum of their products is weighted by the constant term

n

ΣΣwijΣ(xi − x̄)2

to produce Moran’s I. A test for the statistical significance of Moran’s I is nothing more than a test for the
independence of the spatial proximity measure Wij = wij and the similarity measure Yij = (xi − x̄)(xj − x̄).

Generalized cross-product statistics provide a very broad framework or statistical testing (Hubert & Gollege,
1982a, 1982b; Hubert et al., 1981). In fact the framework is not confined to autocorrelation statistics since
this type of statistic could also be calculated for nonspatial variables. Many statistics other than Moran’s
I and Geary’s c could be defined to make a general comparison between the spatial proximity of a set of
locations and their similarity in terms of another variable. In order to test the hypothesis of independence,
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however, it is necessary to establish the distributional properties of the test statistics. That is, it is necessary
to know the form of the probability distributions for the statistics, and to have information on their moments,
including their variances, in order to test the hypothesis that the xi are independent of location.

Only a few autocorrelation statistics (including I and c) have well defined distributional properties that make
it possible to use them in conventional statistical tests. One of the major contributions of (Cliff and Ord
(1973, 1981a) has been a thorough specification of the distributional properties of these and a few other
statistics. Alternative methods of significance testing using permutation methods have been presented by
Hubert et al. (1981), but the material in this volume concentrates on statistics that have known distributional
properties so that they can be used in conventional tests of hypotheses.

1.3 Why Are Things Autocorrelated in Space?
Spatial autocorrelation statistics measure a basic property of geographic data-the extent of their interde-
pendence with data at other locations. Many geographic data series may be interdependent because the
data are affected by processes that connect different places, including spatial interaction and spatial diffusion
processes; or by phenomena that extend over space to occupy regions rather than point locations.

Spatial interaction, which is the movement of goods, people, or information over space, means that events
or circumstances at one place can affect conditions at other places if the places interact. Further, these
movements or interactions among places usually vary with distance in systematic ways.1 For example, prices
and supplies in a set of spatially separated markets may be related if the markets are close enough to exchange
commodities. In fact, prices at one location are unlikely to be independent of prices at other locations if
they are near enough for supplies of a commodity to be moved between them and prices, along with other
market-related data, are likely to be more similar between nearby markets than distant markets.2 Spatial
diffusion, which is the dispersion of phenomena from a set of origins, implies that the frequency or intensity
of some phenomenon, such as an innovation in agricultural technology, may depend on distance from an
origin. Locations that are near to one another are likely to be at similar distances from the origin and hence
to experience similar frequencies for the phenomenon.

The fact that many geographic phenomena extend over space to occupy regions rather than single point
locations means that sets of neighboring locations are affected by the same phenomena. The space or
region that is occupied may not always be well defined. For example, legal systems are usually confined
within well-defined boundaries and applied uniformly within those boundaries, but other phenomena such
as “climates,” “cultures,” and “housing markets” occupy space in more ambiguous ways. Even so, they do
exert similar influences on neighboring locations. Rainfall totals are likely to be autocorrelated mong nearby
weather stations because they experience the same (or very nearly the same) weather events and prices for
neighboring houses are likely to be autocorrelated because they are influenced by similar conditions of supply
and demand. Hence a single event may affect several locations if the event involves an extended region. The
passage of a single front may affect rainfall totals at several weather stations, for example, and the opening of
a freeway interchange may affect the prices of housing in an entire neighborhood.

Interactions among places and the extension of many phenomena over space mean that events and circum-
stances at one location are unlikely to be independent of conditions at nearby locations. This interdependence
among places lends pattern and structure to geographic data and autocorrelation statistics can be used to
investigate hypotheses about how data for a particular variable are organized in space. Statistics such as I
and c can be used to test the null hypothesis that the data values are independent of values at other locations
and hypotheses about particular distance relationships or other spatial relationships may be formalized in the
definition of the spatial weighting function that is used to calculate these statistics. This makes it possible
to use the spatial autocorrelation statistics to conduct fairly extensive investigations into the organization
of a single variable over space. Some fairly serious statistical problems are encountered, however, when
other statistical methods are employed to investigate relations among sets of variables when the data are
autocorrelated.

1Spatial interaction is the topic of another volume in this series (Haynes & Fotheringham, 1984)
2The logic of this example can be formalized as the spatial price equilibrium model. See Casetti (1972).
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1.4 Spatial Autocorrelation and Statistical Problems
Spatial autocorrelation statistics are numerical measurements of some basic properties of geographic
phenomena-the extent and nature of their relations with phenomena at other locations. As it happens, this
basic property of geographic phenomena means that geographic data will often fail to fulfill a basic condition
for most of the statistical methods that are used to analyze relations among variables-that of independence
among the observations. Autocorrelation statistics that are designed to measure interdependence, such
as Moran’s I and Geary’s c, are, of course, reliable when the data are not independent, but many other
statistical tests are unreliable if the independence condition is not fulfilled. Autocorrelated data generate
biased estimates of the standard errors used in most hypothesis tests and this causes the tests to be misleading
if the data do not fulfill the independence condition. For example, Haggett, Cliff, and Frey (1977, pp. 330-334
and 374-377) show how autocorrelated observations lead to biased estimates of the standard error for tests of
the difference between means based on Student’s t distribution-a test that might be used to compare two sets
of spatially distributed data.

Similar difficulties occur for other statistical methods and the greatest concern in geography has been with
the effects of autocorrelation on regression models that are fitted to data for areas or regions (Cliff & Ord,
1981b; Haining, 1980). Independence of the errors from a regression model is a condition for valid hypothesis
tests and, for regression models fitted to spatial data, this means that the residuals from the models should
not be spatially autocorrelated. In fact, autocorrelation in the residuals would indicate that some source of
variation has been omitted from the model or that the functional form of the model is not correct (Miron,
1984). Statistical tests of regression models are also likely to be mistaken if the errors are autocorrelated
among the regions. Estimates of the standard errors of regression coefficients will be biased if the errors are
autocorrelated and, where the autocorrelation is positive, these standard errors will be underestimated. This
will, in turn, inflate the calculated values of test statistics for the significance of regression coefficients and
may lead to the mistaken conclusion that variables are related when they are not.

Spatial autocorrelation has, therefore, a dual nature. Autocorrelation, or dependence among places, is a
basic characteristic of most geographic processes and most spatial distributions. Autocorrelated data, on
the other hand, make it difficult to investigate these same processes and distributions by using standard
statistical methods. This duality has caused autocorrelation to be widely regarded as a statistical difficulty
rather than a reflection of spatial processes. It is, in fact, both of these things, and the appropriate treatment
of autocorrelation will depend on objectives of a particular research project.

In some cases, it may be appropriate to investigate relations variables in ways that abstract those relations
from their spatial context. If it makes sense to abstract processes from their spatial contexts it will be
appropriate to treat autocorrelation in the data as a statistical nuisance-a problem of the data that derives
from the fact that they are embedded in a spatial sequence. The problem is then one of fitting a model to data
that are affected by processes that are not accounted for by the model, and this may be done by transforming
the data or by enlarging the statistical method so that reliable inferences are available from autocorrelated
data. It is by no means a simple matter to enlarge the methods in this fashion and the enlarged methods
will, in most cases, require a numerical specification of the autocorrelation in the data.

The objectives of geographic research are usually to understand phenomena within their spatial contexts
and in this case the basic questions shift from questions about how to test nonspatial hypotheses with
autocorrelated data to questions about how the data came to be autocorrelated and what this indicates about
the relations among variables. It is then appropriate for a statistical investigation to involve hypotheses
not merely about how variables are related, but how they are related over space. This usually requires
statistical models to be enlarged to incorporate some representation of processes such as spatial interaction
or regionalization. The enlargement of statistical models in this way may be difficult to accomplish and may
not always resolve the statistical problems that are associated with the use of autocorrelated data.

The serious inferential problems that are associated with the interdependence of spatial data mean that
spatial autocorrelation statistic play an especially crucial role in spatial analysis. First, these statistics can be
used alone, as the sole means of testing hypotheses about organization and structure over space. Inferential
problems associated with the independence condition do not arise in that case. They do arise when most
other statistical methods are applied to spatial data, however, and in these cases spatial autocorrelation
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statistics are important for investigating and diagnosing problems with those models. Both applications of
autocorrelation statistics are investigated in the remainder of this volume.

1.5 Further Reading
The two volumes by Cliff and Ord (1973, 1981a) are basic references for spatial autocorrelation. Their most
important results establish the statistical distributions for autocorrelation statistics (1981a, Ch. 2). An
introductory presentation of spatial autocorrelation is contained in Ebdon (1977) and the two-part article
by Sokal and Oden (1978a, 1978b) provides a very readable presentation using examples from ecology and
evolutionary biology. The volume by Upton and Fingleton (1985) includes extensive discussions of spatial
autocorrelation as well as other statistical methods for spatial analysis. Hubert et al. (1981) integrate
spatial autocorrelation statistics with a very broad inferential framework and the special statistical problems
associated with autocorrelation in spatial data are discussed in Cliff and Ord (1981b) and Hammg (1980).
There is considerable interest in spatial problems among statisticians and many of the developments in this
area are discussed by Ripley (1981, 1984).
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2 FRAMEWORKS FOR ANALYZING SPATIAL AUTOCOR-
RELATION

Spatial autocorrelation statistics make it possible to measure interdependence in a spatial distribution
and to use formal statistical methods to test hypotheses about spatial interdependence. These tests and
measurements require that spatial or locational information be expressed in numerical terms and the utility
of the statistical procedures depends on our success in translating locational information into a form that is
suitable for statistical analysis.

2.1 The Logic of Statistical Testing
The process of using spatial autocorrelation statistics to test hypotheses about spatial interdependence follows
the same general logic as most other statistical tests. First, a null hypothesis is specified. This null hypothesis
usually states that the observed map of the values is produced by a process that assigns values to locations
independently and at random. That is, every location is assumed to have the same chance of receiving any
particular value; and the chance of receiving that value at any location is assumed to be independent of values
at other locations. A map produced by such a process probably would not display an autocorrelated pattern.
An autocorrelated pattern could occur purely by chance, but the chances are very small if the number of
locations is reasonably large. The null hypothesis is, in fact, a simple model of the process that distributes
data values over locations although it is a model that may be rejected on the basis of statistical testing.
The next logical step in testing is to derive some explicit consequences of the model by describing the chances
for any level of autocorrelation under the null hypothesis. This can be done by deriving the probability
distribution for the value of an autocorrelation statistic under the random and independent assignment of
values to locations. The probability distributions for values of the commonly used autocorrelation statistics,
including Moran’s I, Geary’s c, and the join-count statistics used for binary data, are asymptotically normal3
under the null hypothesis of independence (Cliff & Ord, 1981a, pp. 34-65).
The mean and variance of the hypothesized distribution of the statistic are then obtained and compared with
an observed value that is calculated for the data. If the observed value deviates from the mean by an amount
that is large, compared to the variance, it is unlikely that the observed map was produced by random and
independent assignments. The null hypothesis can then be rejected in favor of the conclusion that the data
are interdependent over space. The normality of the distribution makes it possible to assign a probability to
the occurrence of the observed value, under the null hypothesis, by using a set of statistical tables.
A random and independent assignment of values would produce an uninteresting map but a null hypothesis
of random and independent assignments is more useful than it may appear at first. It may be helpful, before
setting out to explain interdependence in a set of data, to establish that the data are, in fact, interdependent
and not merely the result of a random and independent assignment of values to regions. Further, independence
in regression residuals is a condition for making reliable inferences from regression models, as noted in the
previous chapter. Complete independence is also an extreme situation that can serve as a benchmark for
comparing alternative models of interdependence. The autocorrelation statistics themselves offer the possibility
of investigating alternative explanations for interdependence because the spatial weighting functions can be
used to express alternative hypotheses about the relations among places or regions. The autocorrelation
values calculated for alternative weighting schemes can be compared to each other by comparing each of them
to the distribution of values expected under a random and independent assignment.
The testing process described above involves at least two kinds of “translations” between different “languages.”
First, abstract postulates about a process that assigns values to locations (randomness and independence)
are translated into a formal mathematical statement (the probability distribution for a statistic). Second, an
observed spatial pattern is translated into mathematical terms (a calculated value for the statistic). These
translations may, like linguistic translations, lead to statements that are awkward, incomplete, inaccurate,
or misleading. The difficulty of the translations, like that of linguistic translations, depends on both the

3The term asymptotically normal means that the distributions for the statistics approach normal distributions as the sample
size increases. If samples are very small, however, the distributions may not be normal and the test statistics may be misleading.
See the section on Sample Sizes.
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character of the languages and the message of the particular statement. There are special difficulties in
translating spatial patterns into languages that are appropriate for statistical testing, but the severity of the
problems often depends on the particular statement or model that is involved.

The problems involved in using autocorrelation statistics to compare a particular spatial pattern with the null
hypothesis of random and independent assignments are not trivial and, since tests of this kind are emphasized
in this volume, some of those problems are discussed in the remainder of this chapter. More serious problems
may occur when an explicit model of an autocorrelated process is constructed as an alternative to the null
hypothesis of randomness and independence. This null hypothesis may be too general for some investigations
or, if it can be rejected, it may be useful to construct an alternative model that incorporates interdependence
among locations and estimate parameters that measure the interdependence numerically. Some of the
difficulties that are associated with formalizing more complex hypotheses and estimating parameters don’t
affect the simple tests for spatial autocorrelation. A few of these problems are discussed as well because they
overlap with the problems for autocorrelation statistics and because analyses of autocorrelation often form a
part of wider studies where these problems occur.

2.2 Types of Geographic Data
Geographic data, like other data, may consist of continuous valued variables in which the observations are real
numbers; rank orderings in which an ordering of observations is available but not on a continuous numerical
scale; and categorical variables in which the information about each observation consists of its membership in
one of a set of discrete categories (Wrigley, 1985). Different statistical methods are generally required for each
of these types of data so it is not surprising that different spatial autocorrelation statistics are required as well.
Moran’s I and Geary’s c are the most familiar statistics for continuous variables. Analyses of autocorrelation
in categorical variables can be carried out by means of the join-count statistics to be discussed in Chapter 3
and methods for analyzing autocorrelation in rank orderings have been presented by Royalty, Astrachan, and
Sokal (1975) and by Sen and Soot (1977).

Geographic data are also data that can be mapped and the type of mapping that is possible also affects the
kinds of statistical methods that are available. The main distinction is between data that can be continuously
mapped and data that can only be mapped discontinuously. The process of mapping data consists of assigning
values to locations in a two-dimensional space. All the locations in a two-dimensional space can be represented
by a pair of coordinates u and v that take on continuous values. A continuous mapping of data occurs when
it is possible to assign a data value to every coordinate location in the space and it is also possible for that
value to differ between every pair of locations no matter how close together they may be.

Continuously mapped data are usually categorical and point pattern maps of the locations of towns, farmhouses,
trees, or other phenomena are the most familiar examples. Data are available, in this case, for every possible
pair of coordinates but in the form of a categorical variable that indicates presence or absence for every
location. Hence a listing of these data usually consists of a listing of coordinate locations where the phenomena
are present. An extensive set of statistical methods is available for analyzing point patterns and they are
discussed in another volume in this series (Boots & Getis, 1988). The types of hypotheses that are tested
using these methods are often similar to the hypotheses that are investigated with autocorrelation statistics
even though the statistical calculations are different. Continuous data can also be mapped continuously but
this kind of mapping involves assigning a value to every possible pair of coordinate values so this kind of
map is usually produced by an operation on another kind of data, such as interpolation or smoothing of
discontinuously mapped values.

Autocorrelation statistics are used for data that are discontinuously mapped. A discontinuous mapping occurs
when data values can be assigned to only a finite subset of the locations in a space or when the values cannot
vary between some pairs of locations. The first kind of discontinuous mapping, usually known as point data,
occurs when data are available for a set of points but not for the intervening space. Figure 2.1a, which is a
map of air pollution monitoring stations in the South Coast Air Basin of California, illustrates this kind of
discontinuous mapping. (The South Coast Air Basin includes Los Angeles and Orange counties and parts of
San Bernardino and Riverside counties.) Air pollution occurs continuously over the Los Angeles region but
data are available only at the locations of monitoring stations.
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The second type of discontinuous mapping, areal data, occurs when data are reported as single values for
each member of a set of subregions. Figure 2.1b shows the counties of the state of Oregon. Data on variables
such as per-capita incomes, population densities, or disease rates are often available for subregions such as
these. A data value can be assigned to every pair of coordinates in this case, but only for information that
has been aggregated to the county level, and the values change only at the boundaries of the subregions. The
data may be continuous, rank ordered, or categorical for either type of discontinuous mapping.

Figure 2.1 Discontinuous Mapping; Point and Areal Data

It is possible to make transformations between these discontinuous and continuous mappings. Values for air
pollution at locations other than the monitoring stations can be inferred from data at those points and areal
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data can be transformed into a continuous surface of values by interpolation (Tobler, 1979). Areal data can
also be transformed into a continuously mapped pattern of points (Getis, 1983, 1984). These transformations
make it possible to use methods developed for continuously mapped data if they offer some advantage over
autocorrelation statistics in a particular situation.

It is also possible to make transformations between the two types of discontinuous mappings. Areal data can
be assigned to a set of points that correspond to the centers of subregions and the reverse operation can be
performed by defining Thiessen polygons for a set of points. (The Thiessen polygon for each point is the
region that contains all locations that are closer to that point than to any other.) The transformation is
merely from one type of discontinuous mapping to another, however, and there is little to be gained since the
problems of analyzing the two types of data with autocorrelation statistics are very similar.

2.3 Problems with Geographic Data
The data used in geography are usually nonexperimental and are often obtained from secondary sources
such as census reports so the process of gathering the data is not controlled by the investigator. Any data
from secondary sources may present problems because of inappropriate definitions of variables, doubts about
reliability, and so forth. Geographic data are also arrayed over space, often in ways that the investigator
might not have chosen, and the ways that the data are distributed in space may cause special problems.

IRREGULAR SPACING

It is often convenient to construct abstract models of spatial processes on the basis of a regular lattice of
points (Figure 2.2a) or a regular grid of subregions (Figure 2.2b) because both these arrangements offer the
advantage of spatial neighborhood stationarity (Tobler, 1979). That is, each point or region has the same
number of neighbors and those neighbors have the same distance relations with a central point or region.
Consequently, a set of rules for connecting the regions or points--a spatial weighting function--can define a set
of distance relations that is uniform across the space when measured in a conventional metric such as miles
or kilometers.

Figure 2.2 Points on a Regular Lattice and Regions on a Regular Grid

Each nonboundary region in a regular grid (or point on a regular lattice) has the same number of neighbors
so long as we use a definition of “neighbor” that is the same for every location. The point labeled F (or the
region labeled F) has four neighbors if a “neighbor” is the adjacent point in the same row or column. So
does every other point or region that is not on a boundary. Further, all of these neighbors are at the same
distance from the central point or, for regions, have the same distance relations with the central region. It
may be desirable to include adjacent points or regions on the diagonals as neighbors along with those on the
rows and columns, and this introduces some variation in the distances to neighbors, but their number and
the set of distance relations remain uniform across all points or regions that are not on the boundaries.
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A set of ”higher-order neighbors” can also be defined on a regular grid or lattice. For example, region E is a
second-order neighbor of region G because it is a neighbor of the immediate neighbor of region G. Region E
is also a third-order neighbor of region H and so on. Autocorrelation statistics for higher-order neighbors are
the basis for constructing spatial correlograms, a topic that is discussed in Chapter 6.

Autocorrelation statistics can be calculated for regular grids or lattices and the extreme values of the statistics
are associated with simple patterns on the regular grid or lattice. An example of a binary categorical variable
is illustrated in Figure 2.3. Each region is assigned to one of two categories “black” or “white” and Figure
2.3a shows the extreme case of positive autocorrelation among first-order neighbors, where similar values are
clustered as much as possible. The checkerboard pattern in Figure 2.3b shows an extreme case of negative
autocorrelation among first-order neighbors. Values are still interdependent in this case but similar values
are dispersed as much as possible.

Figure 2.3 Patterns with Extreme Spatial Autocorrelation on a Regular Grid

Geographic data are rarely available on regular grids and lattices. There are some exceptions: Samples in
ecology are often gathered on a regular grid (Jumars, Thistle, & Jones, 1977); remotely sensed data consist
of a regular grid of pixels (or picture elements); and some census materials from both Japan and the United
Kingdom are available on regular grids made up of one kilometer squares. In most cases, however, data are
arrayed over space in an irregular way, more like the examples of counties and monitoring stations in Figure
2.1. The condition of spatial neighborhood stationarity is not fulfilled for data that are not regularly spaced
and it becomes impossible to define spatial weighting functions so that each region or point has both the
same number of neighbors and the same distance relations with its set of neighbors.

The sizes and shapes of the subregions used to report areal data are often highly variable. Counties in Oregon
are generally larger in the southern and southeastern parts of the state and smaller in northwestern Oregon
and some counties are nearly rectangular while others have very irregular shapes. The locations used to
report point data may also be located in irregular ways. Some of the air monitoring stations in the Los
Angeles region are close to their neighbors while others are relatively isolated. Some parts of the region have
a high density of monitoring stations while other areas have few stations or none at all.

Irregular spacing of the data values makes it difficult to evaluate or compare autocorrelation statistics in terms
of familiar distance metrics. It is necessary to define a spatial weighting function that yields a set of weights,
wij , for every pair of areas (or points) in order to calculate an autocorrelation statistic but the autocorrelation
statistic will not have an unambiguous relation with a distance metric such as miles or kilomters unless the
wij have a regular relation with distance. Regular distance relations do hold for data on a regular lattice. If
the neighboring points on a regular lattice are always separated by one kilometer, and we set wij = 1 for
neighbors and wij = 0 otherwise, the corresponding autocorrelation statistic will be associated with events or
circumstances one kilometer apart.
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A weighting function for irregularly spaced data will, in contrast, assign varying numbers of neighbors to
points or areas, or will assign neighbors at varying distances, or both. The simplest kind of spatial weighting
function for Oregon counties would be one that defines adjacent counties as neighbors and assigns wij = 1 if
the counties share a boundary and wij = 0 otherwise. This spatial weighting function would assign differing
numbers of neighbors to the counties and some neighbors would share long boundaries while others might
touch only at their corners. Further, the neighbors of some counties would form a compact region close
to the central county (if the neighboring counties are small in area) while the neighbors of others would
form extensive regions. Finally, extreme autocorrelation values generally will not be associated with simple
patterns such as those illustrated in Figure 2.3 because the simplicity of those patterns depends on the
regularity of the grid.

Autocorrelation statistics can be calculated and tested in these circumstances although the statistics will not
have an unambiguous relation with distance metrics and it is important, in interpreting the results, to be
aware of the characteristics of the spatial weighting function when it is applied to a particular map of data.
The difficulties associated with irregular spacing are somewhat greater when investigation goes beyond tests
based on autocorrelation statistics to the development of models to explain the interdependence that may be
revealed by those statistics. Models of this kind might take the form of a spatial autoregression, a function
that relates the value at some location to the values at neighboring locations. These models are relatively
easy to construct for regular lattices. For example, the value of a variable X at any coordinate location u, v
may be related to the four surrounding values by the equation

Xu,v = a+ b1Xu−1,v + b2Xu+1,v + b3Xu,v−1 + b4Xu,v+1

where a is a constant and the various b are regression coefficients. Variations in the b would indicate some
directionality in the spatial process.

It is more difficult to define an autoregressive model for irregularly spaced data. Most definitions of neighbors
will assign variable numbers of neighbors and, hence, variable numbers of terms to the equation. The
neighbors would also be at variable distances and values of the regression coefficients, the b values, may not
be independent of the distances between neighbors. Using the same coefficients for neighbors at variable
distances would introduce a systematic bias into the estimates of Xu,v.

SPATIAL RESOLUTION

The sizes and shapes of sampling areas such as counties also limit the capacity of autocorrelation statistics,
or other spatial statistics, to detect patterns in a set of areal data because these sizes and shapes limit the
scale of the patterns that can be detected. Patterns that are manifest at small scales will not be evident
when the information is aggregated into larger areas. The average resolution of a set of subregions is defined
as the square root of the average of their areas (Tobler, 1984) and pattern elements less than twice this size
cannot be detected by examining data for the subregions. For example, Tobler (1984) gives the average
resolution of counties in the conterminous United States as 43 kilometers so pattern elements need to be at
least 86 kilometers (or 54 miles) wide in order to be manifest in this array of data. This is an approximation
since county sizes vary considerably from this average and the resolution also depends on the shapes of the
areas relative to the orientation of the pattern. For example, a set of long narrow regions would offer better
resolution for patterns oriented perpendicular to their long axes than for patterns oriented parallel to those
axes.

The limits of resolution for any set of areas mean that a set of data with relatively coarse resolution, resulting
from aggregation into large subregions, cannot be expected to show the effects of processes that occur at
relatively fine scales. For example, central place theory implies a regular spatial periodicity in population
distributions and, although this periodicity is evident in fine-scale or high-resolution data (Rayner & Golledge,
1972; Tobler, 1969), much of the pattern could not be detected in population data at the county level. In fact,
any spatial patterns that depend on interactions over short distances, such as commuting or the personal
contacts involved in disease contagion, will not be revealed by analyzing data for relatively large sampling
areas.
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SAMPLE SIZES

Small samples are often used in spatial analyses and hypothesis tests about autocorrelation statistics may be
misleading if they are based on small samples. The distributions of the test statistics such as Moran’s I are
asymptotically normal, which means that their distributions approach normality as the sample size increases.
Conversely, their distribution may not be normal for small samples and the use of the normal distribution
could lead to mistaken inferences.

It is probably safe to assume normality for the distributions of the test statistics for samples of at least
fifty, and possibly fewer, observations (Cliff & Ord, 1981a, p. 53; Sen, 1976). It is not possible to specify a
minimum sample size for all situations because the distributions of the test statistics depend on the set of
spatial weights and the distribution of the variable as well as the sample size (Cliff & Ord, 1981a, p. 54).
Small samples are also more troublesome for categorical data, especially binary data, because the statistics
for categorical data approach normality more slowly as sample sizes increase. Cliff and Ord (1981a, pp.
53-65) provide a series of methods for approximating the distributions of test statistics for small samples and,
although their use may require additional calculations, they make it possible to test hypotheses even when
the samples are very small.

The distribution of the test statistics is also likely to deviate from normality for a particular pattern of spatial
weights: when a set of regions are all connected to a central region or node and unconnected or weakly
connected with one another (Cliff & Ord, 1981a, p. 50). This is not strictly a problem of sample size but it is
less likely to occur for large samples.

Aside from strictly statistical considerations, it should be obvious that small samples are less useful than
large samples. A small sample of subregions will consist of either large subregions that offer poor spatial
resolution or small subregions that cover only a small area in total. In either case, spatial patterns that can
reveal something about spatial processes are less likely to develop over a small set of subregions.

BOUNDARIES

Empirical spatial analyses are always carried out in bounded regions and influences may intrude across the
boundaries of a study area, especially if the boundaries are more or less arbitrary. There is no boundary
problem if the processes that affect spatial patterns are confined within the boundaries and outside influences
are effectively excluded. These conditions could be fulfilled for some situations, such as epidemics on an
isolated island (Cliff, Haggett, Ord, & Versey, 1981), but study areas often must be defined by more permeable
boundaries.

The autocorrelation statistics can be calculated, and tests can be performed against the null hypothesis of
randomness and independence even in the presence of boundary effects because the statistics can be interpreted
merely as measurements of pattern for a region. The boundary effects will, however, bias the parameter
estimates for autoregressive models or other models whose parameters provide numerical measurements of
the interdependence of locations. Even the process of comparing alternative spatial weighting functions
by comparing the associated autocorrelation statistics may be affected. An arbitrary boundary eliminates
some locations that might have been included in the analysis and this may affect the statistics for different
weighting functions in different ways.

Griffith (1983) reviews a set of five alternative methods that have been used for dealing with boundary
problems, including methods that define an outer perimeter or buffer zone consisting of locations near the
boundary. He also proposes a set of statistical methods for estimating the parameters of autoregressive
models in the presence of boundary effects.

The effects of boundaries are related to the sample size and the shape of the study area. Any two-dimensional
study area will have a large proportion of the observations near its boundaries, and more subject to influences
from beyond the boundaries, and this proportion will be greater for smaller samples. The effects of influences
from beyond the boundary will also be greater for study areas that do not have a compact shape.
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2.4 Spatial Weighting Functions
The selection of a spatial weighting function is the most important step in calculating a spatial autocorrelation
statistic. A spatial weighting function is a set of rules that assign values or “weights” to every pair of locations
in a study area and the value of an autocorrelation statistic will depend on these weights as well as the data
for the locations. Spatial weighting functions are often defined to represent the arrangement of areas or points
relative to one another in a conventional space (where locations can be identified by latitude and longitude)
but it is more general to think of a spatial weighting function as a means of accommodating hypotheses about
the relations among places. These hypotheses will often be simple variants of Tobier’s (1970) “first law of
geography: everything is related to everything else, but near things are more related than distant things.”
If “near” and “distant” refer to conventional distance metrics, such as miles or kilometers, the problem of
defining a spatial weighting function is to represent nearness and distance as consistently as possible for a
set of irregular regions or irregularly spaced points. Other hypotheses about the relations among places can
also be represented by spatial weighting functions, however, and the flexibility in defining the weights makes
spatial autocorrelation statistics a useful means of investigating alternative hypotheses about the relations
among places.
Spatial neighborhood stationarity is not possible for irregular areas or irregularly spaced points, but a variety
of spatial weighting functions are available to represent “nearness” or “distance” for these kinds of data. The
simplest weighting function for areal data is a set of binary weights that have a value of one for areas that
share a boundary and zero otherwise. This function assigns the same values to pairs of regions with very
short boundaries and pairs with very long boundaries and a more detailed representation of proximity may
be necessary. One approach is to scale the weights according to the length of the common boundaries, under
the presumption that areas that share long boundaries are “closer” than regions that share short boundaries.
For example, the value of wij may be the proportion of the total boundary of region i that is shared with
region j. If it is desirable to have symmetric weights so that wij = wji these weights can be redefined as
wij = (wij +wji)/2. A further improvement in the definition of proximity may be obtained by using distances
between the centers of regions along with the lengths of the boundaries. Cliff and Ord (1981a, pp. 17-18)
suggest that weights can be defined as wij = d−a

ij z
b
ij where dij is the distance between the centers of the

regions, zij is the proportion of the boundary of i that is shared with j and a and b are parameters that are
selected a priori. This scheme gives greater weights to areas whose centers are separated by shorter distances
and that also share long boundaries. Any set of areas can also be represented by points located at their
centers so that weighting functions defined for point data can also be applied to areal data.
Tobler (1975) lists a series of weighting functions for point data including binary functions where wij = 1
for all points within some fixed distance of point i; or wij = 1 for the some fixed number of points that
are nearer to i than other points. The weights can also be scaled according to some function of distance
between the points, usually an exponential function such as wij = d−b

ij so that the weights approach zero for
large distances but do not become negative. Spatial weighting functions based on Gabrial graphs (Matula &
Sokal, 1980) have been widely applied in biological studies of point data. Gabrial graphs are binary weighting
functions where wij = 1 if no third point location lies within the circle whose diameter is the straight line
connecting i and j.
These spatial weighting functions represent distance relations among places, subject to the limitations of
irregular spacing, but tests for autocorrelation are not limited to patterns that are manifested solely over
distance. The procedure of calculating an autocorrelation statistic is actually a special case of a set of very
general procedures for comparing two sets of values (Hubert et al., 1981). Moran’s I, for example, is a means
of comparing the set of wij with the set of cross-products (xi− x̄)(xj − x̄) to ascertain if patterns of variation
in the cross-products are similar to patterns of variation in the weights. That comparison can be carried
out for any set of wij , including values that have nothing to do the locations of i and j. When we calculate
Moran’s I for a set of wij that represent geographical proximities for a set of regions we are calculating a
measure of the association between the proximities and the data at the locations but nothing in the logic of
the procedure limits its application to sets of weights that represent only the proximities of the regions.
The generality of the procedures used in calculating spatial autocorrelation statistics means that their use
can extend beyond tests for randomness in map patterns to comparisons of alternative hypotheses about
the spatial processes that produce the patterns. Alternative hypotheses about the spatial processes can
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be formalized as different weighting functions and differences in the associated autocorrelation statistics
can provide evidence for one hypothesis over another. Alternative weighting functions have been used, for
example, to represent competing hypotheses about the spatial diffusion of epidemic diseases (Cliff, Haggett,
Ord, Bassett, & Davies, 1975; Haggett, 1976). Adesina (1984) compares five alternative weighting functions
in an effort to identify the details of the diffusion process for a cholera epidemic among subregions in the
city of Ibadan (Figure 2.4). A model of local contagion, in which cholera would spread mainly between
nearby areas, is represented by a binary weighting function where wij = 1 for regions that share a boundary.
Alternative models include contagion patterns related to patterns of travel and personal contact, including a
model based on the availability of road links and models based on the journey-to-work, the journey-to-school,
and the journey-to-market. These hypotheses are also represented by binary weighting functions: The road
network model has wij = 1 if a paved road connects the subregions and the other models have wij = 1 if a
threshold value for the numbers of travelers between the zones is exceeded. The spatial weighting functions
for three of these models are shown in Figure 2.4, where lines connect the centers of subregion i and j if
wij = 1. Adesina’s results indicate that the pattern of weights in the local contagion model has the strongest
relation with the spread of the epidemic.

SOURCE: Adapted with permission from Social Science and Medicine, Vol. 18, H. O. Adesina, “Identi-
fication of the Cholera Diffusion Process in Ibadin, 1971,” Figures 1a and 3. Copyright ©1984, Pergamon
Journals Ltd.

Figure 2.4 Alternative Spatial Weighting Functions for an Analysis of a Cholera Epidemic in
Ibadan
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2.5 Further Reading
Problems and approaches in spatial analysis are discussed in the two-volume work by Haggett et al. (1977)
and extensive reviews of spatial analysis are available in Bennett and Haining (1985) and Cliff and Ord
(1975c). Tobler (1975, 1979) describes the special character of geographic information and Griffith (1980)
discusses several of the special problems inherent in the statistical analysis of spatial data. Gatrell (1979)
presents an extended range of possibilities for the interpretation of spatial weighting functions.
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3 AUTOCORRELATION STATISTICS FOR CATEGORICAL
DATA

Tests for spatial autocorrelation in categorical data are based on the proximities of members of the same or
different categories. In most cases proximity is defined on the basis of simple contiguity and the statistics are
frequencies or “join-counts” for the numbers of instances where like or unlike categories occupy adjoining
locations. In order to carry out tests for autocorrelation it is necessary to choose a statistic; select an
appropriate sampling assumption; and calculate an expectation and variance for the statistic under the null
hypothesis of random and independent assignment of regions to categories. The discussion in this chapter
is limited to binary classifications although the methods can be extended to systems with more than two
categories (Cliff & Ord, 1981). The two categories in a binary classification are often referred to as “black”
and “hite” and the possible types of joins are limited to black-black (BB), black-white (BW ), and white-white
(WW ).

The use of these statistics should, as a general rule, be limited to data that are truly categorical. The
join-count statistics are somewhat easier to calculate than the corresponding statistics for continuous data so
there is some temptation to reduce continuous variables to a binary form by imposing some classification on
the data. This is a risky practice that can lead to mistaken inferences. It is especially easy to overestimate
autocorrelation if observations of a continuous variable are classified as “black” or “white” when they are
above or below the mean for the variable.

3.1 Alternative Test Statistics
The test statistics for binary data are limited to frequency counts of either like (BB) or unlike (BW ) joins.
These values can be calculated for the data by assigning a binary variable xi to each region with xi = 1 if
region i is “black” and xi = 0 if region i is “white.” The observed values of the test statistics are then

BB = 1/2ΣΣwijxixj (3.1)
BW = 1/2ΣΣwij(xi − xj)2 (3.2)

where wij is the value assigned to region i and region j by the spatial weighting function and the double
summation indicates summation over all pairs of regions. The constant, 1/2, takes account of the double
counting produced by the double summation (which is a summation over all pairs of regions). A WW statistic
can be calculated by reversing the assignments of one and zero. These formulas correspond to simply counting
the numbers of joins between like or unlike regions if wij takes on binary values that depend on the contiguity
of the regions.

The two test statistics (actually three if WW is included) do not measure exactly the same things even
though they are closely related and it is possible that they may not support the same conclusions for some
sets of data. Is one of the tests preferable to the others on statistical grounds? Cliff and Ord (1975c) have
examined this question by calculating the asymptotic relative efficiencies for the BB and BW statistics under
a variety of circumstances. The asymptotic relative efficiency is related to the power of a test, which is the
probability of rejecting the null hypothesis when it is false. They conclude that tests of the numbers of BW
joins are preferable to tests of the number of BB joins. It may be useful to calculate all three statistics for
some problems but the BW statistic is probably the most reliable.

3.2 Alternative Sampling Assumptions
The selection of a sampling assumption is part of the specification of the null hypothesis. Specifying a null
hypothesis amounts to specifying a process that assigns values to regions and working out the moments (the
mean and variance) of the distribution that would emerge if the specified process were repeated for a large
number of trials. Different sampling assumptions are associated with slightly different rules for assigning
values to regions and they lead to different variances for the expected join-counts.
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Two sampling assumptions are available for binary data and they amount to sampling with replacement and
sampling without replacement. In the case of sampling with replacement (sometimes called free sampling)
the assignment of a value (black or white) to a region corresponds to sampling from a binomial distribution
with a probability p for assigning one of the values to each region and a probability 1− p for assigning the
other. Repeated binomial sampling would not result in the study area having the same numbers of black and
white regions for every trial. Sampling without replacement (or nonfree sampling) imposes fixed numbers of
black and white regions on the study area. The spatial arrangement of black and white regions will vary in
repeated trials, but the numbers of black and white regions always matches the number observed for the
data. Sampling without replacement corresponds to sampling from a hypergeometric distribution.

The choice between these two sampling assumptions should be based on some knowledge about the underlying
process that assigns values to regions. For example, sampling without replacement would be more appropriate
if it is known that the number of black regions is limited to the observed value. Information about the
underlying process often will not be sufficient to indicate a clear choice, however, and other factors should
also be considered. The value of p, under sampling with replacement, must usually be estimated on the basis
of the observed frequencies in the study area. Since this value is an estimate, the means and variances that
are based on p will also have the status of estimates. The assumption of sampling without replacement, on
the other hand, takes the observed numbers of black and white regions as given and is concerned only with
their arrangement in space. Sampling without replacement will always produce a smaller variance for the null
hypothesis than sampling with replacement, however, since fixing the numbers of regions in each category
constrains the possible outcomes. Consequently, the hypothesis of spatial autocorrelation is more likely to be
accepted under an assumption of sampling without replacement.

3.3 Means and Variances for the Join-Count Statistics
Tests are carried out by comparing observed values for the BB or BW statistics with the distributions of
these values that would be expected under random and independent assignments. These distributions will
differ under the differing assumptions of sampling with and without replacement.

SAMPLING WITH REPLACEMENT

The assumption of randomness means that every region has the probability p of assuming the value “black”
and the probability 1− p of assuming the value “white.” The assumption of independence means that, for any
pair of regions, the probability that both are “black” is p2 and the probability that one is “black” and the
other “white” is p(1− p). Substituting these values into equations 3.1 and 3.2 gives, for the expected means,

E(BB) = 1/2ΣΣwijp
2 (3.3)

E(BW ) = ΣΣwijp(1− p) (3.4)

Expressions for the variances are more extended, especially when the wij are not binary weights and when
the wij are not symmetric. It is useful to isolate two of the terms used in calculating the variances.

S1 = 1/2ΣΣ(wij + wji)2

S2 = Σ(Σwij + Σwji)2

The first of these is a summation over the weights and, for binary and symetric weights, (wij + wij)2 is
always equal to four so S1 is simply four times the total number of joins in the entire study area. The
second term, S2, is obtained by counting the weights associated with each region (in both directions, wji as
well as wij) and summing the squared values. For weights that are binary and symmetric this reduces to
S2 = 4Σ[(Σwij)2], which can be obtained by counting the total joins for each region, summing the squared
totals and multiplying by four.

The variances of the two statistics are

Var(BB) = 1/4p2(1− p)[S1(1− p) + S2p] (3.5)
Var(BW ) = 1/4{4S1p(1− p) + S2p(1− p)[1− 4p(1− p)]} (3.6)
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These fairly lengthy expressions are actually quite simple to calculate, especially when the weights are binary
and symmetric.

Equations 3.3 and 3.5, or 3.4 and 3.6 are the means and variances of asymptotically normal distributions so a
test for autocorrelation in moderately large samples can be performed by calculatin the standard normal
deviate

z = BB − E(BB)
[Var(BB)]1/2

,

or the corresponding value for BW and looking up the calculated value of z in a table of the areas of the
normal distribution.

SAMPLING WITHOUT REPLACEMENT

The numbers of “black” and “white” subregions are fixed under sampling without replacement so the
assumption of random assignments means that the probability that any region is black is nb/n where nb is
the number of “black” regions and n is the total number of regions. The probability that the members of any
pair of regions are both “black” is nb(nb − 1)/n(n− 1) and the probability that one member is “black” and
the other “white” is nb(n− nb)/n(n− 1). The expectations under randomness and independence are then

E(BB) = 1/2ΣΣwij [nb(nb − 1)/n(n− 1)] (3.7)
E(BW ) = ΣΣwij [nb(n− nb)/n(n− 1)] (3.8)

where the double summations indicate summation over pairs of regions. The variances are

Var(BB) =1
4
S1n(nb − 1)
n(n− 1) + (S2 − 2S1)nb(nb − 1)(nb − 2)

n(n− 1)(n− 2)

+ [(ΣΣwij)2 + S1 − S2]nb(nb − 1)(nb − 2)(nb − 3)
n(n− 1)(n− 2)(n− 3)

− [E(BB)]2

Var(BW ) =1
4

2S1nbnw

n(n− 1) + (S2 − 2S1)nbnw(nb + nw − 2)
n(n− 1)(n− 2)

+ 4[(ΣΣwij)2 + S1 − S2]nb(nb − 1)nw(nw − 1)
n(n− 1)(n− 2)(n− 3)

− [E(BW )]2

3.4 An Example: Alcoholic Beverage Control in Georgia4

The map in Figure 3.1 shows the status of alcoholic beverage control in the state of Georgia, where each
of the 159 counties of the state has the option of prohibiting the sale of alcoholic beverages. In total, 53 of
the counties (colored “black” and commonly known as “dry” counties) prohibit the sale of distilled spirits
everywhere within their boundaries. The remaining 106 counties permit the sale of distilled spirits everywhere
or in certain cities in the county. The “wet” or “dry” decision made by each county presumably depends on
local conditions of custom, religion, politics, or mythology. The conditions that lead a particular county to
prohibit distilled spirits probably are not confined by county boundaries, and circumstances that lead to a
county to prohibit the sale of alcohol are likely to be present in neighboring counties as well. The counties of
Georgia are fairly small, averaging 960 square kilometers (370.5 square miles) so they offer a spatial resolution
of roughly 31 kilometers (19.2 miles). This scale is probably fine enough for neighboring counties to share
many of the same political or cultural conditions. Counties may also imitate their neighbors when choosing a
policy for beverage control.

The map gives an impression of at least some clustering or positive spatial autocorrelation among “dry”
counties in Georgia with sizable clusters of these counties in the northern and south-central parts of the state.

4I am grateful to William Berentsen for information on alcoholic beverage control in Georgia
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Visual impressions of map patterns may not be reliable, however, and the join-count statistics can be used to
perform a formal test for clustering, or positive spatial autocorrelation.

Figure 3.1 Alcoholic Beverage Control in Georgia Counties
Several matters have to be considered in carrying out this analysis. The reliability of the data, and any
peculiarities that might affect inferences, should be examined in any statistical analysis. This includes any
peculiarities in the spatial distribution of the data. One or more of the available tests must be selected, along
with a sampling assumption, and a spatial weighting function must be defined.
The reporting of counties as “wet” or “dry” is probably reliable although there is some ambiguity in this
classification since “wet” counties include some that allow sales everywhere and some that allow sales only in
certain cities. The counties are small enough to offer reasonable spatial resolution and they are also fairly
uniform in size and fairly compact in shape. The number of counties, 159, is reasonably large and sample size
is important for the join-count statistics because their distributions converge to normality more slowly than
those for continuous data.
Join-count statistics for binary data are at their most reliable when the two classes have equal numbers of
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members or, equivalently, when p = 0.5. The numbers are not equal in this case but simulation studies by
Cliff and Ord (1981, p. 59) indicate better reliability for join-counts of the more frequent class. It may be
useful, however, to calculate statistics for all three types of joins, coded as follows:

BB joins are joins between two “dry” counties.
WW joins are joins between two “wet” counties.
BW joins are joins between a “wet” and a “dry” county.

Drastic disagreements among the statistics would indicate some kind of problem with the analysis.

An assumption of sampling without replacement, which constrains the number of “dry” counties to exactly
53, is probably more appropriate in this case even though it will produce a smaller variance and favor the
hypothesis of positive spatial autocorrelation. It is difficult to justify the use of a single estimate, based
on the contemporary values, for the probability of a county choosing a “wet” or “dry” policy because the
decisions have been made at widely varying dates. The assumption of sampling without replacement sidesteps
the question of how a particular county came to be “wet” or “dry” and focuses the analysis on the spatial
arrangement of a fixed number “wet” and “dry” counties. The values used in calculating the expected values
and variances are ΣΣwij = 792;S1 = 1584; and S2 = 16968.

The selection of a spatial weighting function is a critical step in evaluating spatial a wij for pairs of counties
are wij = 1 if the counties share a boundary and wij = 0 if they do not. The calculation of the observed
values of the autocorrelation statistic is reduced to merely counting the numbers of BB or BW joins for this
weighting function. There are a total 396 joins among the 159 counties, including 40 BB (or “dry-dry”) joins,
177 WW joins, and 179 BW joins.

Results for all three join-count statistics are shown in Table 3.1 for sampling without replacement. Clustering
of counties with similar beverage control laws would produce more BB and WW joins and fewer BW
joins than a random and independent assignment of these values. The final column in Table 3.1 shows the
probabilities that random and independent assignments of values would produce join-counts larger than the
observed values for BB and WW joins, or smaller than the observed values for BW joins.

TABLE 3.1
Join-Count Statistics for Beverage Control in Georgia:

Sampling Without Replacement
Standard

Observed Expected Normal
Value Value Variance Deviate Probability

BW Joins 177 177.11 83.996 .0120 .5128
BB Joins 40 43.44 123.478 .3096 .3462
WW Joins 179 175.44 48.740 .5099 .6947

These results do not support a hypothesis of spatial autocorrelation or clustering among the counties but
indicate that the spatial pattern of wet and dry counties is consistent with a random and independent
assignment of values to the counties. The number of BW joins is very close to the mean for such assignments
and there are actually fewer BB joins than expected under random and independent assignments. The
number of WW joins does exceed the expected value but not by much random and independent assignments
would produce more than the observed number of WW joins about 31% of the time. This doesn’t mean that
beverage control policies were randomly selected in each county but it does indicate that the selection is
independent of policies in adjoining counties.
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4 AUTOCORRELATION STATISTICS FOR CONTINUOUS
DATA

The process of testing for spatial autocorrelation in continuous data is similar to testing for autocorrelation
in categorical data. Tests are performed against a null hypothesis of random and independent assignments;
the distribution of a test statistic is established under these conditions, for a particular sampling assumption;
and a calculated value is compared with the distribution expected under the null hypothesis.

4.1 Alternative Test Statistics
The test statistics that are usually used for continuous data are Moran’s I;

I = n

ΣΣwij

ΣΣwiji(xi − x̄)(xj − x̄)
Σ(xi − x)2

and Geary’s c;

c = n− 1
2ΣΣwij

ΣΣwij(xi − xj)2

Σ(xi − x̄)2

where xi is the value of a variable in region i, x̄ is the mean for the variable and the wij are, as before, a set
of weights. A much greater range of test statistics is available (Hubert et al., 1981) but both Moran’s I and
Geary’s c have well-established distributions based on conventional sampling theory. Cliff and Ord (1975)
find that the efficiency of Moran’s I is generally a little better than that of Geary’s c. The distributions of
both statistics depend on sampling assumptions.

4.2 Alternative Sampling Assumptions
The distributions of Moran’s I and Geary’s c can be obtained under a sampling assumption of either normality
or randomization. Normality means that the xi are assumed to be independent events drawn from a normal
distribution. The data are assumed to be one sample from this normal distribution and a distribution of
I or c under the null hypothesis is established on the logical basis of repeated sampling from the normal
distribution. Repeated sampling would not produce the same set of values, nor would repeated samples have
exactly the same mean and variance as the data.

The numerical values of the data are assumed to be fixed under the assumption of randomization, but the
association of values with locations is not. That is, the null hypothesis states that the observed set of values
are randomly and independently distributed over the locations and a distribution for an autocorrelation
statistic is based on the number of ways that the observed values could be assigned to locations. There
are n! equally likely assignments of data values to n locations under randomness and independence.5 The
randomization assumption restricts the possible outcomes to the values of the observed set of data (although
any value could occur in any locality).

4.3 Means and Variances for Moran’s I

Only the expectations for Moran’s I are given here since that statistic is employed more frequently than
Geary’s c, and the equivalent values for care available elsewhere (Cliff & Ord, 1981a). The mean, or expected
value of Moran’s I, under either normality or randomization is

E(I) = −1
n− 1

Notice that this value approaches zero for large samples.
5The n! term indicates the factorial of n, which is

n(n− 1)(n− 2) . . . (n− n+ 1)
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The variance of Moran’s I, under the assumption of normality, is

Var(I) = n2S1 − nS2 + 3(ΣΣwij)2

(ΣΣwij)2(n2 − 1)

This expression is relatively simple because it is derived from the assumption of an underlying normal
distribution. No underlying distribution is assumed under the randomization assumption and, since less
is assumed, more must be calculated. The variance for randomization is based on the number of possible
permutations of the n data values over the n locations,

Var(I) =
n[(n2 − 3n+ 3)S1 − nS2 + 3(ΣΣwij)2]

[
1/nΣ(xi−x̄)4

[1/nΣ(xi−x̄)2]2

]
[S1 − 2nS1 + 6(ΣΣwij)2]

(n− 1)(n− 2)(n− 3)(ΣΣwij)2

4.4 An Example: Respiratory Cancer in Louisiana
Maps of the incidence of particular diseases often reveal distinctive spatial patterns6 and those patterns may
provide clues to the etiology of the diseases (Mayer, 1983). Epidemics of contagious diseases are an obvious
example because they often develop in systematic spatial patterns as the disease spreads from one or more
origins. The patterns are systematic because transmission of an infective disease depends on interactions
between infective and vulnerable individuals and the chances of sufficient contact depend very strongly on
the locations and spatial behaviors of the individuals.

Spatial patterns of noncontagious diseases may also reflect distinctly geographic processes. Diseases are often
associated with interactions between people and their environment, including contacts with toxic pollutants
or with environments that harbor disease vectors. Consequently, the spatial pattern of disease may reflect
the ways that people interact with their environment as well as the distribution of disease related elements of
the environment. For example, people become infected with schistosomiasis through contact with an aquatic
parasite, but the incidence of the disease may depend on human practices as well as the location of infected
water bodies. People who practice irrigated agriculture are more vulnerable than others, and exposure to
the disease may depend on gender roles if laundry is done in infected water bodies. Patterns of disease may
also reflect cultural and social factors, such as dietary and smoking habits, which themselves have distinctive
spatial patterns. Genetic predispositions are also a factor in some diseases, so the spatial pattern of disease
may reflect the spatial distribution of particular ethnic populations.

Studies of the geography of disease may suggest some of the factors involved in the incidence of a disease or
at least raise doubts about hypothesized etiologies that cannot explain the observed spatial patterns. The
methods of spatial analysis may make valuable contributions to the study of disease although designing and
interpreting such studies may depend on a knowledge of epidemiology as well as skill in spatial analysis.7

Figure 4.1 shows the spatial pattern of mortality rates from respiratory cancer (cancer of the trachea, bronchus,
and lung) for white males among the parishes of Louisiana for the 1970-1979 period. (Parishes in Louisiana
are the equivalent of counties elsewhere in the United States.) Mortality rates from lung cancer are highly
variable within the United States (Blot & Fraurneni, 1982) and they are especially high in Louisiana. Riggen,
Van Bruggen, Acquavella, Beaubeir, and Mason (1984) provide age-corrected mortality rates per 100,000
population for the states and counties of the United States for three time periods: 1950-1959, 1960-1969,
and 1970-1979. These data indicate that death rates for white males were higher in Louisiana than in any
other state for all three periods and death rates for nonwhites and for white females were also above national
levels. Riggen et al. also calculate expectations of the numbers of deaths in each county (or parish) in the
United States, based on the national rate. The numbers of respiratory cancer deaths among white males
in the period 1970-1979 exceeded this expectation, at the 95% confidence level, in 26 of the 64 parishes of
Louisiana.

6Some interesting maps of disease rates for the United States can be found in the atlas by Mason et al. (1975).
7Mayer (1983) reviews the methodological and epistemological problems of spatial analysis in medical geography and

Greenberg (1983) provides an extensive study of the geography of cancer in the United States.
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Figure 4.1 Rates for Respiratory Cancer in Louisiana Parishes, White Males, 1970-1979

The map in Figure 4.1 suggests that rates of respiratory cancer are not randomly distributed over the parishes
of Louisiana. Parishes with high mortality rates appear to cluster together and mortality rates seem to be
higher in South Louisiana than in the northern part of the state. That is, mortality rates from respiratory
cancer seem to exhibit positive spatial autocorrelation among the parishes of Louisiana and this hypothesis
can be tested using Moran’s I.

The reliability and limitations of the cancer data should be considered before undertaking any analysis.
Statistics on disease rates are often limited to mortality statistics, but the nature of this disease assures that
mortality rates will be reasonably good indications of its prevalence. Respiratory cancer is not especially
difficult to diagnose and when it is involved in a death it is very likely to be listed as the cause of death.
This is not always true for some other diseases of possible geographic interest such as chronic bronchitis,
emphysema, or hypertension. Respiratory cancer is also a fairly common cause of death so that reasonably
reliable estimates of the rates can be based on numbers of deaths in comparatively small populations, such as
the populations of Louisiana parishes. Even so, death rates for some parishes are based on fewer than twenty
deaths over a decade.

The parishes of Louisiana are reasonably compact in shape and fairly uniform in size. They average 1,802
square kilometers (696 square miles), offering a spatial resolution of roughly 42.5 kilometers (26.3 miles).
The simplest kind of spatial weighting function was chosen for this example. The value of wij is one when
counties i and j share a boundary and zero otherwise.

Values of Moran’s I for white male death rates among Louisiana parishes are shown in Table 4.l along with
the results of the test for spatial autocorrelation under the assumption of randomization. The rates exhibit
strong spatial autocorrelation in all three decades although there is a slight decline in autocorrelation in
the 1970s compared to the 1950s and 1960s. The variance under the randomization assumption is based on
retaining the observed values of the rates and deriving the distribution of Moran’s I that would result from
permuting those values over the parishes in accordance with random and independent assignments. The
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probability values indicate that such a permutation would rarely produce a value of Moran’s I as large as the
observed value-less than 1% of the time for the 1950s and 1960s data and less than 3% of the time in the
1970s. The assumption of a normal distribution is associated with a variance of .00618857 so the same results
would be obtained under that assumption.

TABLE 4.1
Autocorrelation Statistics for Rates of Respiratory Cancer in Louisiana:

Variances Calculated Under Randomization
Standard

Expected Normal
Moran’s I Value Variance Deviate Probability

1950-1959 .4017 -.0159 .0062 5.1750 .0001
1960-1969 .1749 .0062 2.4308 .0075
1970-1979 .1358 .0061 1.9354 .0265

These results indicate that cancer mortality is not only higher in Louisiana but is also organized in a systematic
way within the state. A more extensive analysis would be necessary to identify the spatial processes that
are associated with this spatial pattern, but one worthwhile hypothesis is that spatial variations in cancer
mortality are associated with spatial variations in smoking habits. Cigarette smoking is often associated
with lung cancer and rates of cigarette smoking are higher in southern Louisiana than in northern Louisiana
(Correa & Johnson, 1983). Spatial variations in lung cancer rates have been associated with spatial variations
in smoking rates in other parts of the United States (Weinberg, Keller, & Redmond, 1982). Occupational
hazards and exposure to environmental conditions (Greenberg, 1983, pp. 5-13).

Spatial analyses of cancer mortality rates that are much more thorough than the example presented here
have been carried out by Glick (1979a, 1979b, 1982) and by Kennedy (in press). Glick (1979a) shows how
alternative (nonspatial) models of the development of cancer can imply different spatial patterns in cancer
rates. For example, exposure to ultraviolet radiation, which depends mainly on latitude, is probably involved
in the development of two types of skin cancer (melanoma and nonmelanoma) but the ultraviolet radiation
plays a more complex role in the development of the latter and this leads to different patterns of spatial, or
latitudinal, variation in their rates. Glick also examines spatial patterns in respiratory cancer and identifies
differences between the spatial patterns in respiratory cancer and identifies differences between the spatial
patterns of male and female rates. (Glick, 1982).

Differences in spatial patterns between male and female rates may provide important clues to cancer risks
that are linked to occupation because these differences may depend on differences in gender roles, especially
gender-related differences in occupation and spatial behavior. Kennedy (in press) has carried out an analysis
of spatial autocorrelation for respiratory cancer rates in 1,086 counties in eleven states in the Southeast
and Gulf Coast. Female rates show a generally increasing trend from West to East buy only weak spatial
autocorrelation. Male rates, on the other hand, exhibit strong spatial autocorrelation among nearby counties,
a pattern that is consistent with long distance commuting to work sites where occupational hazards are
localized. These differences in spatial organization may reflect differences in the etiology of cancer between men
and women and, since differences in spatial pattern are difficult to attribute to biological differences between
the sexes, they may reflect differences between gender roles, especially differences related to occupation.
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5 AUTOCORRELATION AND REGRESSION MODELS
Spatial autocorrelation statistics were introduced in the preceding chapters as statistics that can be used
own their own to investigate interdependence in spatial patterns. Other statistical models are also used
to investigate spatial data and autocorrelation statistics can play an important role when they are used in
conjunction with these other models. Many of these statistical models predict the values of some variable at
a set of locations and this means that one result of applying the model is a map of predicted values for the
variable. Autocorrelation statistics can be used to diagnose the shortcomings of the model by identifying
systematic differences between the maps of predicted and actual values.

The difference between the actual value for an observation (or location) and the value predicted by a statistical
model is known as an error or residual and statistical models are often evaluated on two general criteria: (1)
the errors should be small and (2) the errors should be independent. Spatial autocorrelation has nothing
to do with the first criterion but, when the second criterion is applied to spatial models, it means that the
errors should not be autocorrelated over space. Spatial autocorrelation in the errors from a statistical model
indicates that the observed values have some systematic spatial organization that is not accounted for by the
model.

Regression models are widely used in geography and spatial autocorrelation statistics are especially important
in fitting regression models to spatial data. Independence of the errors is a condition that a regression model
must fulfill before it can be a reliable basis for testing hypotheses and tests for that condition are based on
spatial autocorrelation statistics. The residuals from regression models should not be autocorrelated and
spatial autocorrelation in regression residuals has two closely related implications (see Miron, 1984).

(1) Spatial autocorrelation in the residuals indicates that the model is incorrect or, at least, incomplete. A
complete and correct model would explain all of the systematic spatial organization in the data and
leave residuals that displayed no spatial organization at all. The model needs to be corrected in order
to provide a suitable explanation of how the phenomena are organized in space.

(2) Spatial autocorrelation in the residuals indicates that the regression model fails to fulfill an important
independence condition. Consequently, it will not be a reliable basis for making statistical inferences
and any inferences based on the model are likely to be mistaken. The model needs to be corrected
before it can be a reliable basis for testing hypotheses.

Spatial autocorrelation has sometimes been regarded as a statistical difficulty or nuisance peculiar to spatial
data because of the second implication----that statistical problems and mistaken inferences are associated with
autocorrelation m regression residuals. The problems do not arise primarily from unsuitable data, however,
but from unsuitable models. The simplest kinds of regression models were not developed to accommodate the
needs of spatial analysis and the simple regression models often must be enlarged in order to accommodate
an analysis of spatial phenomena. These enlargements, and their relation to autocorrelation statistics, are
discussed in this chapter.

5.1 The Linear Regression Model
The general linear regression model is very widely used to examine relations among variables and, in geography,
the observations on these variables are frequently arrayed in a spatial sequence. For example, the cancer
mortality rates for Louisiana parishes may be associated with other variables that could also be recorded for
the parishes, such as the prevalence of cigarette smoking, or exposure to environmental and occupational
hazards. A simple linear regression model, if it were fitted successfully for these data, would measure these
relations in a numerical way, in the form of a linear equation that could be applied to the data for each parish:

yi = b0 + b1xi1 + b2xi2 . . .+ bkxik + ei. (5.1)

The terms in this equation are as follows.

yi is the value of a dependent variable (such as a mortality rate) at location i (such as a parish).
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xi1, xi2 . . . xik are the values of k independent variables at the same location, such as measures of
smoking or environmental hazards in the same parish.
b0 is an estimate of a numerical constant.
b1, b2 and so on are estimates of a set of numerical coefficients that indicate how the variation of the
dependent variable depends on variation in each of the independent variables.
ei is an estimate of the error in predictingts yi,or a “residual” for location i.

An estimate of the value of the independent variable for each location can be obtained by calculating the sum

b0 + b1xi1 + b2xi2 . . .+ bkxik

and the error term or residual, ei is the difference between this estimate and the observed value yi. These
errors are used to calculate the mean squared error, which is an estimate of the variance of the errors. The
mean squared error is used, directly or indirectly, in all of the hypothesis tests that might be performed using
a regression model. The presence of spatial autocorrelation in these same errors indicates, however, that the
estimate of the mean squared error will not be reliable and neither will any of the hypothesis tests that are
based on that estimate.
Where the residuals are spatially autocorrelated the autocorrelation is likely to be positive and, in that case,
the estimate of the mean squared error will be an underestimate of its true value. If this biased estimate is
used to evaluate the model it will indicate that the model fits the data better than it actually does, and related
statistics, such as the coefficient of determination, will be misleading in the same way. The mean squared
error is also used to calculate standard errors for each of the regression coefficients (the bk values) and these
standard errors are then used to test the hypothesis that these regression coefficients are significantly different
from zero (usually by means of t-tests or partial F-tests). A value of bk that is significantly different from
zero indicates a significant relation between the dependent variable and the variable xk. The standard errors
used in these significance tests will be underestimated whenever the mean squared error is underestimated,
however, and the tests are likely to be misleading. In fact, they are likely to lead to the erroneous conclusion
that variables are related when they are not.
Tests for spatial autocorrelation in regression residuals diagnose the failure to fulfill a very general condition
for independence in the errors of the regression model- a condition that must be fulfilled for any regression
model but that is especially likely to be violated when data are arrayed in a spatial sequence or a time series.
A regression model does not provide a valid basis for statistical inferences if this condition is not fulfilled but
the “problem” is not the presence of autocorrelation in the residuals but the absence of an explanation for
autocorrelation in the model. The “solution” is to develop a model that does account for autocorrelation along
with the effects of independent variables. Autocorrelation in the residuals usually stems from some spatial
process or some peculiarity of spatial data that is not accounted for by the model, and it may be possible to
develop a satisfactory model by accounting for a spatial process that is associated with autocorrelation. This
may involve adding variables to the model, perhaps variables that account for interactions among locations,
or revising the functional form of the model. In other cases, it will be impossible to resolve the residual
autocorrelation by enlarging the explanatory variables, but satisfactory models can still be estimated by
including measurements of residual autocorrelation within the model in the form of an autoregressive error
term. These approaches are discussed in the last part of this chapter.

5.2 Regression Models for Spatial Data
The form of the general linear regression model can be enlarged to accommodate spatial analyses although it
may be difficult to estimate the coefficients of the spatial model. The regression model has a logical basis in
sampling theory and, under this logic, the observed set of yi are presumed to be just one of many possible
samples. The regression coefficients, the bik, and the residuals, the ei, would differ for different samples and
they are estimates of underlying values βk and εi These underlying values characterize the population that
underlies the presumed sampling process. It is useful to rewrite the regression model, using Greek letters to
indicate the underlying population values, and using the notation of matrix algebra,

Y = Xβ + ε (5.2)
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The left-hand term in this equation is a column vector of the values of yi at each location; X is an n by k
matrix of values for the independent variables; β is a k-element row vector of parameters; an ε is an n-element
column vector of errors. This matrix notation is equivalent to a set of linear equations like equation 5.1 with
one equation for each location.

The model is not complete until the distribution of the errors, ε has been specified. The errors have a
probability distribution for each location, under the logic of sampling theory, even though only one member
of this distribution is observed in a set of data. In the simplest kinds of regression models the errors are
assumed (1) to have the same variance for every observation (or location) and (2) to be uncorrelated between
pairs of observations (or locations). This condition can be written in matrix form as

εε′ = σ2I (5.3)

where σ2 is the variance of the errors for each location, that is the variance that would emerge from repeated
sampling. The term ε′ is the transpose of ε (obtained by transforming the column vector ε into a row
vector) and the product εε′ is the n by n matrix of expected variances and covariances of the errors for each
observation (or location). The term I on the right-hand side is an n by n identity matrix, which has ones on
the principal diagonal (where row and column both identify the same location) and zeros elsewhere. The
whole specification states merely that the variance of the errors is uniform over all locations and that the
covariances (and hence the correlations) of the errors are zero for all pairs of locations.

The model in equations 5.2 and 5.3 constitutes a null hypothesis for the values of yi although estimates of
the values of β must be obtained. A part of this null hypothesis, equation 5.3, states that the value of the
errors are randomly and independently distributed over the locations--a hypothesis that is very similar to the
null hypothesis used in testing for autocorrelation in Chapter 4. If the hypothesis represented in equation 5.3
is, in fact, true, a set of ordinary least squares estimates, b, for the β can be obtained by solving the following
set of linear equations,

b = [X ′X]−1X ′Y. (5.4)

The matrix [X ′X]−1 is the inverse of the product matrix [X ′X]. The estimates of the regression coefficients,
b, can be used to calculate a set of estimates for each of the values yi of the dependent variable along with
a set of residuals, ei. This set of estimated errors makes it possible to calculate standard errors for each
regression coefficient, bj , and test hypotheses about the significance of those regression coefficients. These
standard errors will not be reliable, however, and the statistical tests will not be valid, unless the condition in
equation 5.3 is fulfilled and a test for spatial autocorrelation in the observed residuals is the necessary test
for this condition.

Regression models can still be defined even when the errors are autocorrelated but it is necessary to enlarge the
simple specification in equations 5.2 and 5.3 to include a numerical measurement of the residual autocorrelation.
Spatial autocorrelation in the errors means that the error at each location depends on the errors at other
locations and if a spatial weighting function can be defined for the locations, this dependence can be written
as an autoregressive function:

εi = Σρwijεj + υi (5.5)

where wij are spatial weights, ρ is a parameter, and υi is another error term. The spatial weights for an
autoregressive function are specified in the same way as the spatial weights for an autocorrelation statistic
but it is necessary for the weights centered on each location to sum to one. Otherwise the parameter
ρ implies a spatial trend in the value of ei. That is, Σwij = 1 for every i where the summation is over
all j. This formulation divides the error term into two components, an autoregressive term that is the
autocorrelated portion of the error; and vi, a residual that should be identically and independently distributed
(not autocorrelated).

The same formulation is written in matrix terms as

ε = ρWε+ υ (5.6)
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where W is an n by n matrix of spatial weights. Substituting this for ε in equation 5.2 gives an enlarged
model which allows for autocorrelation in the errors:

Y = Xβ + ρWε+ υ (5.7)
υυ′ = σ2I. (5.8)

This model, which includes an autoregressive error term, is a much more general model for spatial analysis
than the simple model in equations 5.2 and 5.3. It includes a parameter ρ that measures spatial association in
the residuals and, if an estimate for ρ can be obtained, the condition in equation 5.8 should be fulfilled since
the autocorrelation is accounted for by ρ8. This model cannot be fitted by simply solving a set of equations
such as equation 5.4, however, and the major problem in using the model is to obtain a suitable estimate for
ρ.

It is not always necessary to estimate ρ because it may be possible to formulate a model that accounts for
autocorrelation by enlarging the independent variables or changing the functional form of the model. If
regression residuals are autocorrelated the problem might be corrected in some cases by defining one or
more independent variables that account for the spatial variation of the dependent variable. For example,
one or more independent variables might be defined to account for interactions among locations. Spatial
autocorrelation will also result if the functional form of the model is inappropriate. For example, residuals
from a linear model are likely to be autocorrelated if the true relation is nonlinear. Revising the functional
form or adding missing variables may be sufficient to account for the residual autocorrelation and, in that
case, the value of ρ will be zero. The model in equations 5.7 and 5.8 then reduces to the simpler model in
equations 5.2 and 5.3 and the ordinary least squares estimates in equation 5.4 will be suitable.

If the independence condition cannot be satisfied by a model with additional variables or a different functional
form then autocorrelation can be measured by the parameter ρ and reliable inferences can be obtained from
the extended form with autoregressive errors (equations 5.7 and 5.8). More complex methods are necessary
to estimate the parameters of this model (Hepple, 1976; Ord, 1975).

5.3 Tests for Spatial Autocorrelation in Regression Residuals
Tests for autocorrelation in regression residuals follow the same logic as the tests already discussed but the
expected values and variances for regression residuals are not the same as for other data. The independence
condition that regress ion models must fulfill (equation 5.3 or equation 5.8) is defined for an unobserved
matrix of sampling variances and covariances but tests of the condition are based on the observed residuals
from a regression model. The appropriate null hypothesis states that the underlying population values are
not autocorrelated, but even if this is true the observed residuals may be autocorrelated if the independent
variables are autocorrelated.

The calculated residuals are, in matrix notation,

e = Y −Xβ (5.9)

If β is a set of ordinary least squares estimates substitution from equation 5.4 and multiplication gives the
matrix of variances and covariances of the calculated residuals as

ee′ = σ2[I −X(X ′X)−1X] (5.10)

Since the values of ee′ are not independent of X, the values of the independent variables, it is necessary
for the means and variances used in testing for autocorrelation in the residuals to include measures of the
autocorrelation of the independent variables. This also makes it difficult to construct a test based on a
randomization assumption since there is no obvious way of randomizing the values of the residuals over the
locations while maintaining a fixed level of autocorrelation in the independent variables. Consequently, the
tests for autocorrelation in regression residuals are based on an assumption of normalization.

8It is possible that the model might still have residual autocorrelation even if an estimate of ρ is included. Unfortunately, no
test for autocorrelation in the residuals from a spatial autoregression model is yet available (Cliff & Ord, 1981a, p. 240).
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The expected value and variance for Moran’s I are more complex expressions for regression residuals than for
original data because they depend on the autocorrelation in the original data. The expected value under the
null hypothesis of independence, is

E(I) = −(1 + I1x)
n− k − 1 (5.11)

for a regression model with k independent variables and n observations (Cliff & Ord, 1972; see also Cliff
& Ord, 1981a, pp. 200-203). The term I1x accounts for the effect of the independent variables on the
expectation of autocorrelation in the residuals and, for the case of just one independent variable, this is just
the calculated value of Moran’s I for that variable (Cliff & Ord, 1972). For several independent variables a
slightly more complex calculation is necessary:

I1x = nΣΣwij [x′i(X ′X)−1xj ]
ΣΣwij

(5.12)

Notice that this is very similar to an ordinary I value for one variable except that the matrix term within the
square brackets replaces the usual cross-product terms.

The equation for the variance of Moran’s I for regression residuals is rather lengthy and it is helpful to define
the matrix term used above as dij = [x′i(X ′X)−1xj ]. It is also helpful to define wi. and w.j as the sums of
the weights centered on region i or region j. That is, wi. = Σwij where the summation is over regions other
than region i, and w.j = Σwij where the summation is over regions other than j. The variance is then

Var(I) = n

(n− k)[ΣΣwij ]2
n2S1 − nS2 + 3[ΣΣwij ]2

n2 (5.13)

+ (1/n)ΣΣ(wi. + w.j)(wi. + w.j)dij + 2[ΣΣwijdij ]2

− [ΣΣΣ(wik + wki)(wjk + wkj)dij + ΣΣ(wij + wji)2dii]
+ (1/n)ΣΣΣ(wij + wji)(wik + wki)(diidjk − dijdik)

− 1
(n− k)2

These values are useful for testing for autocorrelation in the residuals from ordinary least squares estimates
of β and since those residuals depend on the independent variables (equation 5.9), randomization tests are
not available and the formula for the variance is rather long. Residuals from some alternative estimators
that do not have these problems are discussed and evaluated by Bartels and Hordijk (1977), Brandsma and
Ketellapper (1979a). These estimators may not, however, possess all the desirable properties of the ordinary
least squares estimators.

5.4 Fitting Spatial Regression Models
A test for spatial autocorrelation should be applied to the residuals whenever a regression model is fitted
to spatial data and the autocorrelation tests can be very helpful in developing a useful and reliable model.
Spatial autocorrelation in the residuals indicates that a particular model cannot support reliable inferences
but the spatial pattern of residuals from this model may be very helpful in identifying the reasons for
autocorrelation and it may be possible to define a suitable model by enlarging or correcting the model in some
way. Autocorrelation in the residuals may be the result of the omission of a variable, especially a variable
that is associated with interactions between places. Alternatively, spatial autocorrelation may result from an
incorrect functional form. A map of the residuals is often very useful in diagnosing the problem.

The general autoregressive formulation (equations 5.7 and 5.8) offers a great deal of flexibility in defining a
useful model because autocorrelation may be accounted for by the independent variables or measured by the
parameter ρ, Variables that are added to a regression model in order to account for autocorrelation can be
interpreted in the same way as other independent variables and their addition may be sufficient to account
for the autocorrelation in the residuals. The parameter ρ would be reduced to zero in that case and the
model could be fitted using ordinary least squares estimates.
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Revising the model by adding variables or changing the functional form often will not be sufficient to account
for all of the autocorrelation in the residuals but a suitable model can still be fitted by obtaining an estimate
of the autoregressive parameter, ρ, in equation 5.7. The estimate of ρ will be only a numerical measurement
of the residual autocorrelation and will not have the same possibilities for interpretation as an independent
variable-it will indicate how much autocorrelation here is without indicating why things are autocorrelated-but
the model will satisfy the independence condition in equation 5.8 and will provide reliable inferences.
The full autoregressive model cannot be fitted by using the relatively simple ordinary least squares estimates,
however, and the necessary maximum likelihood estimators (Bivand, 1984; Hepple, 1976; Ord, 1975) are not
as simple to calculate as the least squares estimates and are not included in standard packages of computer
programs. The following sections discuss the possibilities for ordinary least squares estimates as well as
models with autoregressive error terms.

ENLARGING THE EXPLANATION

The possibilities for enlarging the independent variables to account for the spatial processes that lie behind
autocorrelated residuals can be illustrated by the process of fitting a simple model of a spatial labor market.
One of the very simplest models of a regional labor market is based on a division of the local economy into
an “export” sector and a “local” sector. Employment in the export sector depends on extraregional demand
for the region’s products and employment in the local sector depends on employment in the export sector.
It is often difficult to categorize employment as “export” or “local” but a useful empirical model might be
developed by estimating the relation between manufacturing employment and total employment. Suitable
employment data are likely to be available for counties in the United States and, at the scale of counties most
manufacturing is likely to be oriented to markets outside the county. A preliminary version of the model
might be

Ei = β0 + β1Mi + ei (5.14)
where Ei is total employment in county i, measured as the number of residents of county i who have jobs,
and Mi is manufacturing employment in the same county, measured as the number of manufacturing jobs
available in county i. The parameter β1 is a ratio between manufacturing employment in the county and the
total employment among the residents of the county. This model has been fitted to 1970 data for the 92
counties of Indiana (Odland, 1976) and the results are shown (as Model I) in Tables 5.1 and 5.2.

TABLE 5.1
Parameter Estimates for Four Models of

Employment in Indiana Counties
Model I Yi = 3332.9869 + 2.3665Mi

Model II Yi = 1185.4134 + 2.3782Mi + .0501Ai

Model III Yi = 1105.3234 + 2.3796Mi + 49.1540Ai

Model IV Yi = 1070.8286 + 2.3971Mi + .1552Ai

(.0558) (.0516) R2 = .9546

SOURCE: Odland(1976).

TABLE 5.2
Tests for Spatial Autocorrelation in Four Models of

Employment in Indiana Counties
Model I Model II Model III Model IV

Calculated I .112 .089 .128 .005
Expected Value .011 .013 .013 .013
Standard Deviation .047 .046 .046 .046
Standard Normal 2.151** 1.653* 2.484** .172

Deviate

SOURCE: Odland(1976)
*Significant at the .05 level; **Significant at the .01 level.
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The regression model that corresponds to equation 5.14 has residuals that are strongly autocorrelated (Table
5.2) so that version of the model should be rejected as a basis for making inferences. It is not difficult
to see why the residuals might be autocorrelated, however, and it may be possible to modify the model
by accounting for the autocorrelation. The residual autocorrelation indicates that the labor markets in
neighboring counties are interdependent and it seems likely that commuting between the counties is an
important factor in this interdependence. The multiplier effects of manufacturing employment could spread
between counties if commuters earn income outside their home county but spend most of their income in their
home county, where their spending supports nonmanufacturing employment. Thus the total employment in
county i probably depends on the manufacturing employment within commuting distance of county i and not
simply on the manufacturing employment within the county.
The effect of commuting to employment outside the home county will depend very strongly on the spatial
resolution of the set of counties used in the analysis. An important proportion of the work force can be
expected to commute across county boundaries only if the counties are relatively small compared to the lengths
of work trips. The 92 counties of Indiana are indeed fairly small, compared to reasonable commuting distances.
They average about 1,000 square kilometers (390.5 square miles), offering an approximate spatial resolution
of 31.7 kilometers (19.7 miles). Notice that the approximate spatial resolution is also an approximation of
the distance between the centers of the counties. In fact, the census figures for 1970 indicate that almost 17%
of the work force in Indiana held jobs outside their county of residence.
The effect of manufacturing employment in nearby counties can be included in the model if a variable can be
defined to measure the availability of manufacturing employment outside the county,

Ei = β0 + β1Mi + β2Ai + ei

where Ai measures the availability of manufacturing employment to commuters from county i.
Four different models have been fitted to data for employment in Indiana counties in 1970 (Odland, 1976).
The first (Model I) is the nonspatial model inequation 5.14. The other three incorporate competing definitions
of Ai. Model II is based on a definition of Ai as the total manufacturing employment in counties adjacent to
county i, where an “adjacent” county is one that shares a boundary with county i. The actual availability of
employment to commuters may vary if the sets of adjacent counties vary in size. Variations in commuting
distance to employment in adjacent counties are incorporated in Model III, in a crude way, by defining Ai as
the ratio of total employment in adjacent counties to the total area of county i and the counties adjacent
to county i. Models II and III are attempts to modify the model by incorporating information about the
spatial distribution of employment opportunities outside the home county. Model IV incorporates a direct
measure of spatial behavior, using census data on the numbers of persons in each county who are employed
outside their county of residence. The value of Ai in that model is the total manufacturing employment in
counties adjacent to county i multiplied by the percentage of workers who reside in county i but are employed
elsewhere.
The results of fitting the four alternative models by ordinary least squares are shown in Tables 5.1 and
5.2. The tests for residual autocorrelation shown in Table 5.2 are based on a spatial weighting function in
which wij = 1 if counties i and j share a boundary and wij = 0 otherwise. The residuals are significantly
autocorrelated for Models I, II, and III but the residuals from Model IV are not autocorrelated. This indicates
that the parameters for Model IV, as shown in Table 5.1, can be used as a reliable basis for making statistical
inferences. The model also indicates that commuting across county boundaries plays an important role in the
economies of Indiana counties and that the total employment in a county depends on the manufacturing
employment in surrounding counties as well as local manufacturing employment. The omission of this variable
from Model I was apparently the reason for autocorrelation in the residuals of Model I, and the reason why
Model I would not be a reliable basis for testing hypotheses. Standard errors for the coefficients of the
successful model (Model IV) are shown in parentheses in Table 5.1, along with a correlation coefficient for
that model. The equivalent values for the other models are known to be incorrect and are not shown.

5.5 Fitting an Autoregressive Error Term
Efforts to define regression models that fulfill the independence condition by enlarging their explanatory
content to include spatial processes will not always succeed. In fact, the example of Indiana employment may
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be a fortunate exception rather than a typical case. Even in that example, two of the three efforts to enlarge
the models failed to account for autocorrelation (Models II and III). In fact the only successful model, Model
IV, incorporated an explicit measure of spatial behavior, commuting, rather than a measure of the spatial
distribution of employment. It is likely, in fact, that limitations on the data and uncertainties about spatial
processes will mean that spatial interdependence will have to be treated as part of the unexplained error in
many regression models.
Models that incorporate spatial interdependence in the form of an autoregressive error can support reliable
inferences although these models relegate spatial interdependence to an error term (as indicated in equation
5.7) so they do not offer much basis for explaining interdependence in terms of some process, such as
commuting. They also require the use of likelihood methods in order to estimate the parameters Hepple,
1976; Ord, 1975; see also Cliff & Ord, 1981a, chs. 6 and 9) and the application of these methods requires
substantially more effort than the use of the familiar least squares methods for estimation.
The likelihood methods are necessary because dependencies in spatial data may extend in all directions.
This is in contrast to time-series data where later observations can depend on earlier observations but not
vice versa. This logical feature of time sequences simplifies the construction of statistical models for a time
series since a value at any time, say time t, can depend on values before time t, but those earlier values are
independent of values at time t. Values in a spatial sequence are, in general, mutually interdependent and
although the value at one location, say at coordinates i and j, may depend on nearby values, those nearby
values themselves depend on the values at location i, j. This complicates the sampling theory for spatial
models and means that ordinary least squares, which is the simplest and most familiar method for estimating
parameters, cannot be used for models of spatial autoregression.9

The importance of taking the extra trouble to estimate a model with an autoregressive error term is
demonstrated by comparisons between models with autoregressive errors and models that have been fitted
to the same data without accounting for spatial interdependence. For example, Hepple (1976) analyzes
data on used car prices among the states of the United States. A nonspatial model for these data seems to
indicate that interstate variation in the price of used cars depends on interstate variation in new car prices.
A model that accounts for interdependence among nearby states indicates, however, that used car prices are
autocorrelated between states but that there is no relation with variations in new car prices. The apparent
significance of the nonspatial model is apparently a consequence of spatial autocorrelation.
The use of models with autoregressive errors is also illustrated by an extensive study of variations in
cardiovascular mortality rates among British towns by Pocock, Cook, and Shaper (1982; see also Cook
& Pocock, 1983). They find significant associations between cardiovascular mortality and several other
variables, including water hardness and climatic variables. They also find that errors from an ordinary
least squares model are autocorrelated. It is difficult to postulate a mechanism that would account for the
spatial interdependencies in mortality rates but the model can at least be corrected for the effect of spatial
autocorrelation. A corrected version of the model indicates the same basic relations between mortality and
the independent variables although their effects on mortality are less pronounced than the uncorrected model
would indicate.

5.6 Applications with Other Statistical Models
The relations between spatial interdependence and the regression model have been emphasized in this chapter
because that model is widely applied and concern about the effects of autocorrelated errors is widespread
(Miron, 1984). Spatial autocorrelation statistics can also have important applications in conjunction with other
statistical models, however. Independence assumptions of some kind are involved in most statistical models
and autocorrelation statistics can be used to check for spatial interdependence. Cliff and Ord (1975a) have
examined the effects of autocorrelated data on tests using the t distribution and the effects of autocorrelated
frequency counts on χ2 statistics are discussed by Cliff, Martin, and Ord (1975).

9The estimation problem may actually be simpler for a time series of spatial data, where there are observations for each
location for a series of time periods. The presence of a temporal ordering provides for a one-way dependence in that case since
the value at some location at time t may depend on the values for neighboring locations at an earlier time period, but the reverse
is not true. Simultaneous dependence and the associated problems are still present, however, if the value at a location also
depends on contemporary values at neighboring locations.
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Spatial autocorrelation statistics may also be used to diagnose systematic differences between the spatial
patterns predicted by some model and the observed spatial patterns, provided that the model produces some
kind of predicted map. Models that produce predicted maps are fairly common in geography. For example,
the Hägerstrand-type diffusion models produce a series of predicted maps and singly constrained spatial
interaction models produce predicted maps of arrivals or departures. Spatial autocorrelation in the differences
between these predicted maps and the actual patterns indicates some inadequacy in the current version of the
model, just as spatial autocorrelation in regression residuals indicates an inadequacy in a regression model.

5.7 Further Reading
The autoregressive formulation that has been used for the errors from regression model is a very general
spatial model that may be applied to original data as well as regression residuals. In fact, equation 5.7
becomes the autoregressive model

Y = ρWY + υ

if there are no independent variables in the regression model. This spatial autoregressive model measures the
dependence of values at each location on values at neighboring locations. Fitting a value for the autoregressive
parameter ρ and testing the hypothesis ρ = 0 is very similar to the process of testing for autocorrelation
using the methods of Chapters 3 and 4, but the estimation problems of autoregressive models make this
approach more difficult to implement. These estimation problems stem primarily from the simultaneous
dependence of values in a spatial sequence.

Useful discussions of autoregressive models for spatial data are found in Upton and Fingleton (1985), Haining
(1979, 1980), Bennett (1979, ch. 7), and Cliff and Ord (1981 a, ch. 6). The seminal article on sampling
theory for spatial autoregressive models is Whittle (1954).
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6 AUTOCORRELATION AT DIFFERENT SCALES
The applications of autocorrelation statistics discussed so far have been limited to autocorrelations among
neighboring locations. These statistics, which are sometimes called “first-order spatial autocorrelations”
because they are calculated for immediate or first-order neighbors, measure the relations between neighboring
elements in a spatial pattern, but the important relations in a spatial pattern are not necessarily limited to
relations among immediate neighbors. Autocorrelation statistics can also be calculated to measure relations
among more distant locations by defining the spatial weighting function so that the statistic is calculated for
pairs of locations separated by greater distances or spatial lags. A series of autocorrelation statistics, called a
spatial correlogram, can be obtained if the weighting function is redefined in a systematic way to include
sets of locations that are more and more remote. A spatial correlogram shows spatial autocorrelation as a
function of spatial lags and allows autocorrelation at different spatial lags to be analyzed and compared.

6.1 Scale Variation in Respiratory Cancer Rates
The calculation of a spatial correlogram, and some of the possible applications, can be illustrated by reviving
the example of respiratory cancer rates that was introduced in Chapter 4. The results presented earlier
(Table 4.1) were first-order autocorrelations, calculated on the basis of a spatial weighting function that
assigned parishes as first-order neighbors if they shared a boundary, and the results indicated a strong
association between rates in neighboring parishes. This indicates something about the relations in the spatial
pattern of cancer rates at a particular scale, that of adjacent parishes, or, given the spatial resolution of
Louisiana parishes, roughly 43 kilometers. It provides no information about relations in the pattern at other
scales, although the behavior of spatial autocorrelations at different scales may reveal important information
about the spatial pattern and perhaps about the processes responsible for the pattern. For example, spatial
autocorrelations are often greatest for small scales, or neighboring locations, and diminish as the scale of
analysis increases. This is especially likely where the autocorrelations depend on some kind of interaction
behavior such as commuting. The scale where the autocorrelations diminish to zero is an important feature
of the pattern, since it indicates how distant pairs of locations must be in order for events at the locations to
be independent. This scale is a characteristic of a spatial pattern but it would also be characteristic of any
spatial process that is responsible for the interdependence of the values in the pattern.

Autocorrelation statistics can be calculated for different scales by redefining the spatial weighting function in
a systematic way so that more and more remote locations are used in calculating the statistic. In the case
of the Louisiana data the spatial weighting function for the first-order spatial autocorrelation has already
been defined for the calculations in Chapter 4: The weight wij is one if parishes i and j share a boundary
and these neighboring parishes are called “first-order neighbors.” A weighting function that defines a larger
scale of analysis can be defined on the basis of “second-order neighbors.” Parishes i and j are second-order
neighbors, separated by second-order spatial lags, if they are not first-order neighbors but if they do have at
least one neighbor in common. Equivalently, parishes i and j are second-order neighbors if it is necessary to
cross only one intervening parish (or two parish boundaries) in order to travel between them. Third-order
and higher-order neighbors are defined in a similar way. Two parishes are third-order neighbors if it is
necessary to cross two intervening parishes to travel between them and so forth. This definition of higher-order
neighbors is widely used in analyzing areal data and an algorithm to identify the sets of higher-order neighbors
using matrix algebra is given by Haggett et al. (1977, pp. 319-320). Other schemes can be used to define
higher-order neighbors, but the essential feature of such schemes is that they define successively more remote
sets of neighbors.

Spatial correlograms for respiratory cancer rates in Louisiana parishes for three time periods are shown in
Figure 6.1. These correlograms depict autocorrelation as a function of spatial lag in graphic form and the
height of the bars indicates the value of autocorrelation at each spatial lag. Autocorrelations are shown
only out to the fourth-order neighbors since the definition of higher neighbors is artificially restricted by the
boundaries of Louisiana. Spatial autocorrelation drops off rapidly after the first order in each case and, in
fact, only the first-order autocorrelations are significant. This indicates that rates are independent among
more distant pairs of parishes and suggests that any explanations for the spatial association in the rates
would involve processes that operate at a localized scale.
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6.2 Autocorrelation, Distance, and Direction
The correlograms in Figure 6.1 show autocorrelation as a function of spatial lags where spatial lags are defined
on the basis of adjacency among the parishes. The relation of the autocorrelations to distances in miles
or kilometers is not precise because there are no precise relations between these spatial lags and distance
measures. Since the respiratory cancer rates are available only for a set of regions of irregular size and shape,
the distance relations between pairs of first-order or second-order neighbors are not uniform for all pairs and
a rough estimate of the distances involved at any order is the best that can be obtained.

Figure 6.1 Spatial Correlograms for Respiratory Cancer Rates amongWhite Males in Louisiana
Parishes for Three Time Periods

Spatial autocorrelations can be estimated as unambiguous functions of distance where data are available
on a regular grid or lattice, as in Figure 2.1. Particular spatial lags correspond to particular distances if
data are regularly spaced in these ways and measures of autocorrelation can be calculated for particular
distance separations, in miles or kilometers. Further, there is also a repetitive set of directional relations
among the locations on a regular grid or lattice so that autocorrelations can be calculated for spatial lags
that correspond to particular directions as well as particular distances. This makes it possible to calculate a
two-dimensional correlogram that reveals directional regularities in the structure of spatial dependence as
well as distance regularities.

Regularly spaced data are not common in geography but it is sometimes possible to aggregate irregularly
spaced data onto a regular grid in order to calculate a two-dimensional correlogram. Sibert (1975) has
calculated the two-dimensional autocorrelation structure of urban land values for Detroit and his results
show a decline in autocorrelations over distance as well as a directional bias associated with the orientation
of the street network. Gatrell (1979b) analyzed Christaller’s (1966) original data for the populations of
central places in southern Germany by calculating two-dimensional autocorrelation functions. His results
indicate spatial dependence at considerable distances and include negative autocorrelations at short lags that
match the spacing of the lowest-order central places. Two-dimensional autocorrelation functions in which
autocorrelations have a precise relation to distance lags can also be used as the basis for calculating the
two-dimensional spectrum of a spatial pattern, a method that makes it possible to measure the important
frequencies in a two-dimensional pattern (see Rayner & Golledge, 1972).

6.3 Applications of Correlograms
Spatial correlograms provide useful information about the scale that is typical of variation in a spatial pattern
but they may also be used to examine other kinds of hypotheses about spatial patterns. Differences in
correlograms indicate that the associated spatial patterns are different and Sokal and Oden (1978a, pp.
215-221) have demonstrated that distinctive spatial patterns can yield different and recognizable correlograms.
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For example, a regular gradient of values across a region is associated with significant positive autocorrelations
at the smallest lags, declining to zero at intermediate values. The values in the correlogram then become
significant but negative at high-order lags because the distant values on the gradient are related, but have
negative correlations. A series of patches of homogeneous values, on the other hand, could have similar
positive autocorrelations at small lags but the autocorrelations would level off at zero rather than becoming
negative at high-order lags. The diagnosis of spatial pattern on the basis of correlograms must be informal
and tentative, however. Formal statistical tests are available to test whether a particular correlogram is
compatible with a random and independent pattern of values but no formal methods are available to test
whether the correlogram is diagnostic of a particular spatial pattern, such as a gradient. Further, the values
in a correlogram are likely to depend not only on the pattern of values in a region but also on the overall
shape of the region and the locations of values within that shape, especially for the autocorrelations at
higher-order lags. For example, the highest-order lags for a rectangular region are confined to lags between
pairs of locations at opposite corners of the region. Consequently, the higher-order autocorrelations may
reflect directional patterns (diagonal to the region’s boundaries) that don’t affect the calculations for the
low-order lags.

Correlograms can provide very useful insights into the processes that are responsible for spatial patterns.
For example, Sokal and Mennozi (1982) have analyzed information on the frequencies of blood groups for
contemporary populations at 58 localities in Europe in order to examine the hypothesis of demic diffusion of
early farmers into Europe from the Middle East. Demic diffusion is a process where a new population enters
a region and intermarries with a resident population and, under this hypothesis, agriculture was introduced
into Europe by waves of migrants who also mixed genetically with local populations. The alternatives are
cultural diffusion, in which the innovation passed between neighboring populations who remained sedentary,
and displacement, where invading agriculturalists either killed the local population or forced them into other
regions. Neither of the alternative hypotheses involves genetic mixing on a large scale and neither implies
any particular spatial pattern for the genetic characteristics of a population of descendants. Demic diffusion,
on the other hand, implies that genetic characteristics are likely to become differentiated along gradients
that are aligned with the routes of migration. Sokal and Menozi find that correlograms characteristic of such
gradients prevail in the spatial patterns of the European blood group data, especially when the weighting
matrix reflects the likely routes of migration of early agriculturalists. This confirms the earlier results of
Menozzi et al. (1978) who used different methods to analyze spatial patterns in the same data.

The use of spatial correlograms to investigate spatial processes is also typified by analyses of the spatial
spread of measles epidemics in Cornwall Cliff et al. (1975), who calculate correlograms for the numbers of
reported measles cases in each of 27 subregions in Cornwall. Correlograms were calculated for each week in a
four-year period but the important results are found for the weeks that cover two measles epidemics. Positive
spatial autocorrelation is found for low-order lags during the epidemic periods, indicating that the disease
spread between neighboring subregions. Positive autocorrelations at high-order lags are also characteristic
of one of the epidemics, however. These high-order lags are mainly lags between urban subregions, while
the lower-order lags are generally between rural subregions or between an urban and a rural subregion. The
significance of both types of lags indicates that the disease probably spread hierarchically as well as spatially,
traveling between distant urban centers at about the same rate as it spread to nearby rural areas. A disease
epidemic is a process that develops over time as well as in space and a number of valuable analyses can be
carried out by examining autocorrelations in space and time. Space-time autocorrelations are the subject of
the next chapter.
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7 AUTOCORRELATION IN SPACE AND TIME
Spatial patterns can change and develop over time and some of the most important research in geography
is concerned with the evolution of spatial patterns. An analysis of the development of a spatial pattern
will involve a time series of spatial data and may require statistical methods that go beyond the scope of
this volume (see Bennett, 1979; Bennett & Haining, 1985), but many of the methods that are useful in the
analysis of spatial-temporal data are close relatives of the autocorrelation statistics introduced in earlier
chapters. These relatively straightforward methods can often be used to analyze some important hypotheses
about the development of a spatial pattern.

A time series of spatial data can be thought of as a sequence of maps that show how a spatial pattern in a
particular area changes over time. In some cases a spatial pattern may be invariant over long periods or it
may show changes that are merely the result of random variation. Many spatial patterns are, however, the
result of spatial-temporal processes in which spatial patterns change in some systematic way and the pattern
at any time is related to earlier patterns. The objective of a statistical analysis will be to test hypotheses
about the relations between a map pattern and those patterns that precede it. That is, spatial-temporal
processes are processes that transform a map for an earlier time into the map for a later time and statistical
models can be used to investigate hypotheses about these processes.

7.1 Space-Time Processes
A great variety of space-time processes is possible since almost any explanation for a spatial pattern can
be associated with a process of change or development over time. For example, price competition among
localized retailers may lead to distinctive patterns of price adjustments in time and space (Haining, 1983) or
changes in shopping behavior may result in a shift in the spatial pattern of retailing (Bennett & Haining,
1985), a shift that may take time to develop. Some fairly general methods for analyzing space-time data are
available (Bennett, 1979; Hooper & Hewings, 1981) but the most revealing analyses are often provided by
statistical models that focus on the distinctive properties of a hypothesized space-time process to develop a
set of hypotheses about the associated spatial and temporal patterns.

Epidemic diffusion processes are a class of space-time processes that are important in geographical research
and that have distinctive properties that can provide a focus for statistical testing. Space-time methods are
introduced here by concentrating on statistical analyses for this particular type of process. An epidemic
diffusion process need not involve the spread of a disease but is a general type of process in which a
phenomenon spreads through the conversion of individuals who remain at fixed locations--as opposed to
relocation diffusion in which a phenomenon spreads through the movement of converted individuals (Brown,
1981, pp. 27-28). The spatial diffusion of innovations, as described in Hägerstrand’s (1967) models, is probably
the type of epidemic diffusion that is best known in geography. Hägerstrand’s models describe the spread of
an innovation through a spatially dispersed population. A pattern of locations where the innovation has been
adopted develops as localized individuals are converted from “nonadopters” to “adopters.” In the simplest of
Hägerstrand’s models, this conversion depends only on exposure to information and information is available
from earlier adopters. The probability that an individual in a particular locality would adopt an innovation
depends on his or her location with respect to persons who have already adopted the innovation because the
availability of the information depends on proximity to those earlier adopters.

This type of diffusion process, which hinges on interactions between adopters and nonadopters, causes the
spatial pattern to evolve in a distinctive fashion in which the pattern of adopters at any time is related to
the pattern at preceding times. The locations of the earliest adopters may be random in space, but those
locations exert an influence on the locations of later adoptions, which tend to cluster near the earlier adopters.
As the innovation spreads, these clusters become larger and information becomes more widely available.
Most of potential converts eventually become adopters, so the pattern of adopters finally approximates the
distribution of population and the close relation between the locations of earlier and later adopters weakens
as the innovation becomes universal.

The spatial-temporal process of innovation diffusion described by Hägerstrand’s models is one of a general
class of epidemic diffusion processes that also includes the spread of contagious diseases (Bailey, 1975; Cliff et
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al., 1981). These processes have two essential elements. First, they progress as individuals undergo a change,
such as the conversion from nonadopter to adopter or, in the case of a disease epidemic, from vulnerable to
infected. Second, the chances for an individual to undergo this change are conditioned by interactions with
individuals who have already changed. The intensity of those interactions will usually depend, of course, on
the relative locations of existing and potential converts.

These processes may be complicated by other factors. Indeed, the spread of infectious diseases is usually
complicated by several elements that may not be present in the diffusion of innovations. The “converts” in a
disease process may be infectious for only a limited period before they recover (or die) and cease to infect
others. Further, patterns of immunity acquired during one disease outbreak will complicate the environment
for the diffusion of the next epidemic by leaving a group of individuals who are immune to the disease. The
processes may also be complicated by the presence of other factors that affect the conversion of individuals.
For example, Odland and Barff (1982) show that the deterioration of urban housing spreads over time and
space as an epidemic, in which housing is more likely to deteriorate if it is near to existing deteriorated units,
but the development of a spatial pattern of deteriorated housing is complicated by another factor because the
chances of deterioration also depend on the age of the housing.

7.2 Statistical Analyses for Space-Time Patterns
Despite the important differences between particular diffusion processes, they all share some common features
in their development, particularly the clustering of “converted” individuals at some stages of development
and these features can provide the basis for testing hypotheses about the processes. These hypotheses
can center on distinctive patterns that develop over time, over space, and over space and time jointly, and
spatial-temporal data can be used to examine hypotheses about all three types of patterns.

TEMPORAL PATTERNS

First, diffusion processes are associated with distinctive temporal patterns of events even if the locations of
the events are ignored. That is, events do not merely accumulate over time-they accumulate in particular
patterns over time. These patterns depend on one of the essential features of an epidemic diffusion process--its
progress depends on interactions between converted individuals and potential converts. The simplest kinds of
diffusion processes involve only one kind of event, a conversion from potential convert to convert, or from
“vulnerable” to “infected.” The number of these events depends on the frequency of contact between the
two groups and, if the locations of the individuals are ignored, the frequency of contact depends on the
relative numbers of individuals in each group.10 The number of events, or conversions, will be small in the
early stages of the process because few converts are present to influence others. The number of conversions
will increase at an increasing rate as more and more individuals are converted and will reach a peak at an
intermediate stage (Figure 7.la). The number of events will then decline as the number of potential converts
in the population is exhausted. This behavior describes the “epidemic curve” for a contagious disease (Bailey,
1975, pp. 31-57) and some kind of epidemic curve over time is characteristic of contagious diffusion processes.
In the case of a simple process where converts never leave the converted state (such as the Hägerstrand
models) the cumulative number of converts is described by an S-shaped or logistic function of time (Figure
7.1b). An epidemic curve or logistic function in the development of a process over time is consistent with the
operation of a contagious diffusion process in which conversions or adoptions depend on interaction with
earlier converts. An epidemic curve in the temporal pattern of conversions provides evidence in favor of
epidemic diffusion but it does not eliminate alternative explanations. It is possible that other processes could
lead to the same temporal patterns of events. For example, one year of data on cases of hay fever would show
a pattern very similar to an epidemic curve, with the peak centered on the major pollen season, even though
the number of hay fever cases does not depend in any way on interactions among the victims of hay fever.

10A formula for an epidemic curve can be obtained from a mathematical model of the diffusion process (see Bailey, 1975, pp.
31-80), but nonspatial models of epidemics depend on an assumption of “homogeneous mixing,” which states that the probability
of a contact sufficient to transmit the infection is uniform for all pairs of individuals in the population. This assumption is not
tenable for a population of individuals who are localized in space and, in that case, the shape of the epidemic curve would not
be strictly independent of the pattern of locations. Spatial models, which incorporate contact probabilities that do depend on
location, involve some mathematical complication. See Bailey (1975) or Mollison (1977).
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Figure 7.1 Temporal Behavior of an Epidemic Diffusion Process

SPATIAL PATTERNS

Distinctive spatial patterns are also characteristic of contagious diffusion processes if the interactions between
converts and potential converts are affected by distance. The locations of the earliest converts may be
unpredictable, but the pattern of converts is likely to assume a clustered distribution at intermediate stages
of the process, with the clusters forming in the vicinity of the earliest adopters. (The conditions that must
be fulfilled for recognizable spatial patterns to emerge from a spatial diffusion process have been derived by
Mollison [1977].) The pattern of converts may eventually approach the pattern of population distribution at
later stages if a substantial portion of the population is converted. The time series of maps of the contagious
diffusion process develops in a particular way, therefore, with clustering or strong positive autocorrelation
characteristic of the intermediate stages of pattern development.

The tests for spatial autocorrelation described in earlier chapters can be applied to each map in a time
series of maps of a diffusion process. If the development of the pattern depends on interactions, and these
interactions depend on distance, then the patterns of existing converts should be autocorrelated for at least
some stages of the time series. Further, the strength of the autocorrelation should increase from the early
to the intermediate stages of the diffusion process and may diminish toward the end of the process. These
patterns are consistent with the operation of the hypothesized process but, like the hypothesized temporal
patterns, they are not exclusive to that process. The same patterns could be produced by other spatial
processes so, although the tests may provide evidence in favor of the hypothesis of contagious diffusion, they
do not eliminate all other possibilities.
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SPATIAL-TEMPORAL PATTERNS

The pattern of an epidemic curve over time, or the pattern of clustering in space, are aspects of a contagious
diffusion process that are manifest when data are examined from a solely temporal or solely spatial point of
view. Contagious diffusion processes also produce distinct patterns when data are examined in both space
and time because an epidemic diffusion process is one in which the timing of events is not independent of
the locations of the events, provided that the events are related by some process that depends on distance.
That is, the timing of events in an epidemic diffusion process will be spatially autocorrelated so long as the
contagion is affected by distance.

The timing of events in a contagious diffusion process will be spatially autocorrelated because pairs of events
that are related by some kind of contagious diffusion will tend to occur at about the same time and these
related events will also tend to occur close together in space. A spacetime pattern consists of a set of events
(or conversions) that take place at particular locations and particular times and the events that make up
such a pattern can be arrayed as pairs of events. There will be n(n− 1)/2 pairs in a pattern that includes
n events. The distance and time between the members of the pair can be recorded for each pair and the
two values, a time interval and a distance interval, will not be independent if the events are related by a
contagious diffusion.

The pairs of events can be arrayed in a contingency table such as the one in Figure 7.2 if the information on
distance and timing is used to classify the pairs of events as “close” or “distant” in space and close or distant
in time. The classification of events as near or distant in space has already been discussed at some length-it is
merely the problem of assigning spatial weighting functions that occurs for any test of spatial autocorrelation.
A similar problem has to be resolved in a temporal context to designate pairs of events as near or distant
in time. A contagious diffusion process will produce a pattern of events in which those events that occur
close together in space will also tend to occur close together in time. That is, the number of events that are
close together in both time and space in an epidemic diffusion process would exceed the expectation for that
number under a null hypothesis of independence in the location and timing of the events. An expectation
for the number of pairs that would be close together in both time and space under the null hypothesis of
independence can be calculated from the marginal totals of the contingency table. The expected number
of events that are close in both space and time if spacing and timing are independent is the product of the
number of pairs that are “close in space” times the number of pairs that are “close in time,” divided by the
total number of pairs.

Figure 7.2 Classifiction of Pairs of Events in a Space-Time Process
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The pattern of space-time autocorrelation, in which pairs of events that occur close together in time also occur
close together in space, is also known as a pattern of space-time interaction or space-time clustering. Like
the purely spatial or purely temporal patterns associated with epidemic diffusion, the pattern of space-time
interaction is consistent with epidemic diffusion and not exclusive to such a process, although there are
usually few alternative explanations for a pattern of space-time interactions.

7.3 Tests for Space-Time Autocorrelation
Tests for space-time autocorrelation were introduced by Knox (1964), who studied space-time clustering
in cases of childhood leukemia, using a classification of time and distance similar to Figure 7.2. The
tests have been refined by others (Mantel, 1967; Vere-Jones, 1978) and the available tests for space-time
autocorrelation have been reviewed by Glick (1979). These tests have been placed in the framework of
generalized cross-product statistics by Hubert et al. (1981; see also Cliff & Ord, 1981a, pp. 22-33, 1981c;
Upton & Fingleton, 1985, pp. 204-208). A general space-time autocorrelation statistic can be written, in the
form of the generalized cross-product statistics discussed in the second section of Chapter 1, as

Γst = ΣΣwijyij

where wij is a measure of spatial proximity for the pair of events i and j, and yij is a measure of their
temporal proximity. The values of wij are assigned by a spatial weighting function and those of yij by an
equivalent function for temporal separation.

The space-time autocorrelation statistic Γij is equivalent to autocorrelation statistics discussed in earlier
chapters for certain choices of the function that assigns values of yij . The statistic Γij amounts to one of the
join-count statistics for categorical data if regions are categorized on the basis of the date when the process
reaches the region. That is, the regions can be categorized as “black” or “white” if they are “early” or “late”
in experiencing conversions. Moran’s I could be used to evaluate spacetime autocorrelation if a continuous
value is used to record the timing of an event in each region. The value of yij is then the cross-product term
for when the conversions occur in regions i and j.

The distributional properties discussed in earlier chapters can be used to test for space-time autocorrelation
if one of the established autocorrelation statistics is used to measure space-time autocorrelation. The
distributions of other test statistics must be established. The approach of Knox (1964), who classified events
as near or distant in space and time (Figure 7.2), is especially useful. The statistic is merely a count of the
number of pairs of events that are nearby in both space and time. (This count is calculated as a generalized
cross-product by assigning wij = 1 for nearby pairs of locations and wij = 0 for distant pairs, while values
of yij are one and zero for pairs of events that are close or distant in time.) The value of this count has a
Poisson distribution and the distribution theory that is necessary for statistical testing has been provided by
Cliff and Ord (1981a, pp. 52-53, 1981c).
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