The Effects of Excess Calcium and Aging Media on The Mechanical Properties of Calcium Phosphate Filling Materials

A.S.F. Alqap^{1, a}, I. Sopyan^{2,b} and Suryanto^{2,c}

¹Mechanical Engineering Study Program, Faculty of Engineering, University of Bengkulu, Bengkulu, Indonesia

²Department of Manufacturing and Materials Engineering, International Islamic University Malaysia, PO Box 10 Kuala Lumpur, Malaysia

^aasepsofwan4@gmail.com, ^bsopyan@iium.edu.my, ^csurya@iium.edu.my

Keywords: Calcium Phosphate; Hydrothermal; Excess Calcium; Single Pot; Calcium Deficient Hydroxyapatite; Aging; Mechanical Strength.

Abstract. The effect of excess calcium and aging media on calcium phosphate biomaterials mechanical strength was studied. The variation of excess calcium and sample type has shown different performance when they are being aged in the moist environment (ME) and the simulated body fluid (SBF). The calcium phosphates were synthesized via low temperature hydrothermal method and sampled to two types of powder-water (3:2) mixture and paste for 90 days of the aging time. Two mechanical tests were applied, compression and diametrical tensile test, while XRD to evaluate phases. Scanning electron micrograph showed the paste samples that soaked in SBF was better entanglement of the particles, better compression strength but with degradation and diametrical tensile strength improvement by aging. Calcium hydroxide and ammonium di-hydrogen phosphoric was traced in all the samples along with calcium deficient hydroxyapatite as the main phase.

Introduction

The ability to form apatite at physiological temperature is essential if a biocompatible, biodegradable bone replacement is to develop. It has been demonstrated that apatite can be formed at low temperature by a cement-like reaction [1]. This occurs by an acid-base reaction involving tetracalcium phosphate or α -tricalcium phosphate with an acidic calcium phosphate, such as monocalcium phosphate monohydrate, anhydrous dicalcium phosphate, or dicalcium phosphate dihydrate.

Regardless the advantage of the products mechanical properties, bone is smart environment, into which biocompatible non-toxic material being implanted is coordinative with the host hard tissue then modifies and substitutes as a new hard tissue. Once filler is put in bone tissue the filler strengthening is accomplished by bone remodeling. It even was noted that an interface as result of bone remodeling between the host bone and the ceramic implant may have strength greater than the host bone and the implant [2]. Beside, the positioning of the implant determines success of biomaterial application [2,3]. Less crystalline hydroxyapatite and Ca-deficient hydroxyapatite (CDHA) play important roles in bone remodeling and bone formation. These considerations and flexible needs in application make research on this material always interesting.

Single pot technique that is meant as straightforward introduction of the filler material from single synthesis process to characterization or application is here introduced. CP materials in the use of filler are in the form of its mixture with water. The effect of the excess CaO of the samples as the mixture of water after different aging times in both moist environment and SBF media were evaluated in terms of mechanical and physical properties.

Materials and Methods

The CP biomaterial was prepared from calcium oxide granules (CaO) (Techno Pharmchem, India) and ammonium di-hydrogen phosphate ($NH_4H_2PO_4$) (Systerm, Malaysia) as the precursors with distilled water as the solvent. For the preparation of the solution, a stoichiometric weight of calcium oxide was mixed with distilled water with vigorous stirring to get a soluble suspension. Into this suspension, ammonium di-hydrogen phosphate powder on the base of 1.67 Ca/P was then added dropwise. The synthesis temperature was between 80-100°C up to paste was obtained. Four synthesized pastes of different excess Ca were prepared: 0, 1, 2, 10 and 20% excess CaO (labeled as CP0, CP1, CP2, CP10 and CP20 respectively). The products were than treated as shown in Fig. 1.

Fig. 1: Flow diagram of the work

The paste was divided into two groups: with drying and without drying. The first, it was dried overnight at 80°C in an oven, then mixed with water as the ratio of powder and water of 3:2. Filled and loaded by hand through steel bar without specific loading force in 6 mm D x 12 mm H and 6 mm D x 3 mm H Teflon moulds, ejected and put in a closed polyethylene box containing moist (moist environment, ME) and being aged for 7d, 15d, 30d and 90d (d is short form of days) in the room temperature. The second, the paste was kept as paste and when the weight was 80% of yield (with the range of - 0% / +10%) the synthesis process was stopped and it was molded by the same procedure, then left as such in the moulds and put in the polyethylene box containing Kokubo's SBF controlled in 37.5°C with initial pH 7.25. After the same aging times the samples were released out, ejected, dried at 50°C over night before the mechanical tests performing by using a Lloyd LR 10 K+ Universal Testing Machine under 1 mm/min crosshead rate of compression and 0.5 mm/min of diametrical tests.

Results and Discussion

Fig. 2 and 3 show phase changes of the (3:2) p/w and Paste samples, respectively, after different aging times as observed from an XRD test with the procedure was described elsewhere [4]. In general the phases that obtained were Ca-deficient hydroxyapatite (CDHA) with two specialties listed in the column **m**, the type that consisted of two adjacent peaks by similar intensity in the range of 31-33 $2\theta^{\circ}$ is coded as A, and when the only one as dominant peak in this range is coded as B. The figure also described the traces of Ca(OH)₂, CH, with the intensity at **34** $2\theta^{\circ}$ and Ammonium di-hydrogen phosphate, ADP, at **38.3** and **44.5** $2\theta^{\circ}$. Fig. 2a showed that the intensity of the main peak as shown in the column **cps**, i.e. 31.7 $2\theta^{\circ}$, improved by aging of the (3:2) p/w sample in the moist environment (ME) but not in SBF (Fig. 2b). The excess CaO improved the CDHA pattern when B frequently observed in the samples however this was more after aging in SBF. CH and ADP appeared in all the samples and the times, however, they commonly increased with times when being aged in ME, not in SBF. Fig. 3 shows the Paste samples got more perfect of the CDHA pattern with the excess CaO as the column **m** listed B frequently. The phase intensity (**cps**) improved with aging times in ME and not in SBF. The contaminants intensities generally reduced with aging times.

a: In the moist environment (ME)

	CP0						CP1						CP2	2				CP1	0			CP20			
	m	cps	34	38.3	44.5	m	cps	34	38.3	44.5	m	cps	34	38.3	44.5	m	cps	34	38.3	44.5	m	cps	34	38.3	44.5
7 D	Α	70	19		7	Α	80	25	7		B,	65	20			Α	55	20			В	72	67		
15D	B,	85	20			B,	79	20	10		B,	90	25			B,	55	25			в	60	48		
30D	B,	48	15			в	57	15			С	165	40	17	30	С	165	50	20	45	С	145	62		
90D	В	145	40	30	50	С	160	40	5	10	С	155	35	20	40	С	155	50	7	7	С	135	70	15	35
b: In the SBF media																									
0.111			nica																						
<u>0. m</u>			CF	<u>20</u>				СР	1				CP	2				CP1	0				CP2	20	
0.111	m	cps	CF 34	20 38.3	44.5	m	cps	CP 34	1 38.3	3 44.5	m	cps	CP: 34	2 38.3	44.5	m	cps	CP1 34	0 38.3	44.5	m	cps	CP2 34	20 38.3	44.5
7D	m A	cps 115	CF 34 30	38.3 125	44.5 175	m B	cps 152	CP 34 36	1 38.3 48	3 44.5 78	m B	cps 170	CP: 34 45	2 38.3 36	44.5 52	m B	cps 175	CP1 34 38	0 38.3 22	44.5 50	m B	cps 175	CP2 34 40	20 38.3 40	44.5 60
7D 15D	m A B	cps 115 175	CF 34 30 40	38.3 125 32	44.5 175 45	m B A	cps 152 168	CP 34 36 57	1 38.3 48 102	3 44.5 78 2 170	m B B	cps 170 165	CP 34 45 40	2 38.3 36 40	44.5 52 68	m B B	cps 175 182	CP1 34 38 43	0 38.3 22 35	44.5 50 58	m B A	cps 175 107	CP2 34 40 55	20 38.3 40 180	44.5 60 200
7D 15D 30D	m A B B	cps 115 175 130	CF 34 30 40 34	20 38.3 125 32 37	44.5 175 45 36	m B A B	cps 152 168 128	CP 34 36 57 27	1 38.3 48 102 23	3 44.5 78 2 170 20	m B B	cps 170 165 135	CP 34 45 40 28	2 38.3 36 40 52	44.5 52 68 40	m B B A	cps 175 182 145	CP1 34 38 43 47	0 38.3 22 35 152	44.5 50 58 118	m B A B	cps 175 107 136	CP2 34 40 55 30	38.3 40 180 37	44.5 60 200 27

m is phase pattern as described in the paragraph with **cps** is the tallest peak in intensity at range of 31-34 $2\theta^{\circ}$. **34** refers to the intensity of $2\theta^{\circ}$ peaks position of CH and **38.3**, and **44.5** of ADP.

Fig. 2: Phase changing of the (3:2) p/w samples over aging times

a: In the moist environment (ME)

	CP0						CP1				CP2				CP10						CP20				
	m	cps	34	38.3	44.5	m	cps	34	38.3	44.5	m	cps	34	38.3	44.5	m	cps	34	38.3	44.5	m	cps	34	38.3	44.5
7 D	Α	74	130	71	123	Α	78	138	28	55	Α	81	123	68	149	С	124	55	43	67	С	113	90	27	40
15D	В	80	134	10	24	В	70	130	16	45	В	80	120	5	5	С	130	59	7	18	С	134	78		10
30D	В	77	121	10		С	100	67	5	5	В	108	95	10	28	С	127	67	4		С	135	50	7	4
90D	С	169	35			С	109	50	6	18	С	120	83	5	17	С	150	57	5	5	С	135	60	5	7

b: In the SBF media

	CP0						CP1					CP2					CP10					CP20			
	m	cps	34	38.3	44.5	m	cps	34	38.3	44.5	m	cps	34	38.3	44.5	m	cps	34	38.3	44.5	m	cps	34	38.3	44.5
7 D	Α	102	23	175	140	В	165	40	76	60	В	162	35	45	32	В	162	36	52	52	В	175	40	35	23
15D	в	126	32	40	43	В	126	28	40	35	В	123	32	45	43	В	123	30	47	32	Α	94	12	155	143
30D	Α	95	40	175	115	В	128	25	40	28	Α	80	20	175	144	В	125	27	55	55	В	132	27	-	-
90D	Α	93	20	-	-	Α	98	15	15	-	В	123	28	45	35	В	130	25	-	-	Α	80	10	162	97

m, cps, 34, 38.3, and 44.5 are as described in Fig. 1.

Fig. 3: Phase changing of the Paste samples over aging times.

a: CS	, ME														
MD ₂		CP0			CP1			CP2			CP10			CP20	
IVIF a	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max
7 D	1.60	1.99	2.34	0.86	1.24	1.43	0.70	1.28	1.59	0.46	0.88	1.10	0.55	0.71	0.90
15D	1.11	1.48	1.67	0.67	0.74	0.85	0.71	0.97	1.33	0.20	0.36	0.48	0.38	0.55	0.77
30D	1.27	1.52	1.75	0.79	1.09	1.43	0.58	0.79	1.16	0.29	0.64	0.95	0.66	0.83	1.02
90D	0.65	1.32	1.65	0.27	0.54	0.83	0.45	0.65	0.88	0.33	0.39	0.45	0.36	0.66	0.88
b: CS	, SBF														
MDa		CP0			CP1			CP2			CP10			CP20	
IVIF a	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max
7 D	1.09	1.34	1.53	0.70	0.90	1.25	0.44	0.51	0.55	0.62	0.80	0.94	0.32	0.45	0.60
15D	0.40	0.92	1.19	0.17	0.36	0.50	0.35	0.55	0.67	0.56	0.66	0.80	0.26	0.40	0.69
30D	0.45	0.84	1.18	0.57	0.69	0.99	0.42	0.52	0.62	0.50	0.63	0.95	0.28	0.38	0.56
90D	0.68	1.12	1.39	0.64	0.84	1.06	0.38	0.44	0.53	0.50	0.62	0.69	0.21	0.42	0.69
c: DT	'S, ME														
MD-		CP0			CP1			CP2			CP10			CP20	
IVIPa	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max
7 D	0.27	0.32	0.37	0.21	0.31	0.40	0.13	0.26	0.38	0.11	0.13	0.15	0.08	0.13	0.19
15D	0.21	0.33	0.49	0.20	0.30	0.45	0.20	0.26	0.39	0.07	0.11	0.12	0.12	0.15	0.19
30D	0.23	0.38	0.52	0.17	0.27	0.32	0.21	0.30	0.41	0.09	0.14	0.16	0.07	0.14	0.25
90D	0.21	0.28	0.39	0.11	0.14	0.19	0.24	0.33	0.39	0.03	0.09	0.15	0.03	0.06	0.07
d: DI	S, SBF														
MDa		CP0			CP1			CP2			CP10			CP20	
IVIFa	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max
7 D	0.06	0.13	0.20	0.06	0.11	0.16	0.07	0.09	0.13	0.06	0.08	0.10	0.12	0.15	0.20
15D	0.17	0.20	0.22	0.07	0.12	0.21	0.08	0.09	0.10	0.08	0.10	0.13	0.11	0.17	0.22
30D	0.14	0.18	0.24	0.09	0.12	0.20	0.12	0.14	0.16	0.11	0.14	0.16	0.06	0.15	0.22
90D	0.22	0.27	0.32	0.12	0.15	0.18	0.13	0.16	0.21	0.09	0.14	0.22	0.19	0.25	0.29

Fig. 4: Mechanical changing of the (3:2) p/w samples over aging times.

Fig. 4 shows the effect of aging on the compression and diametrical tensile strengths of the (3:2) p/w samples. The excess CaO reduced the strength of (3:2) after aging in ME and SBF as well (Fig. 4a-b). The soaking in SBF was not helpful to improve the strength, additionally no improvement after aging was observed from these two media. DTS of the samples were low (Fig. 4c-d) however soaking in SBF showed some improvements. This improvement may be due to SBF entered in the thinner samples thoroughly.

It is shown that the strength of the Paste (Fig. 5) was higher than that of the (3:2) p/w (Fig. 4) and this was attributed with better particles entanglement within the sample (see Fig. 6). Degradation of the (3:2) strengths by ME was higher than that by SBF, however, it was not clear for the degradation of the paste ones. The superior strength was achieved by the paste CP2 when soaked in SBF (Fig. 5). The mechanical strength data indicated that the technique can be applied for non load bearing bone implant. The advantage of the paste system also was from excellent injectability as reported elsewhere [5].

~ . . .

a: CS	, ME														
MD ₂		CP0			CP1			CP2			CP10			CP20	
IVIF a	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max
7 D	1.58	1.80	2.06	1.80	2.02	2.38	0.71	1.32	1.77	1.21	1.85	2.66	1.40	2.05	3.08
15D	1.38	1.80	2.21	1.07	1.30	1.59	1.61	2.04	2.47	0.77	1.34	1.69	1.75	2.27	3.25
30D	1.08	1.42	1.77	1.01	1.14	1.50	1.02	1.19	1.40	1.30	1.74	2.33	1.26	2.08	2.48
90D	0.61	1.52	1.93	0.49	0.61	0.67	0.99	1.42	1.67	0.64	1.30	2.08	1.16	1.48	1.74
b: CS	, SBF														
MDa		CP0			CP1			CP2			CP10			CP20	
IVIPa	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max
7 D	1.13	1.47	2.28	1.51	1.73	2.45	1.58	2.69	3.37	1.36	1.70	1.85	0.47	0.66	1.04
15D	0.87	1.21	1.69	1.01	1.94	2.71	1.70	2.06	2.97	1.12	1.33	1.59	0.70	0.80	0.91
30D	0.60	1.09	1.62	1.22	1.51	1.84	0.97	1.28	1.87	1.24	1.43	1.60	0.30	0.58	0.84
90D	0.89	1.15	1.89	1.31	1.71	2.11	0.94	1.89	3.23	0.92	1.07	1.35	0.81	0.92	1.01
c: DT	S, ME														
100		CP0			CP1			CP2			CP10			CP20	
MPa	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max
7 D	0.66	0.72	0.75	0.55	0.62	0.67	0.67	0.78	0.87	0.80	0.91	1.00	0.80	1.00	1.22
15D	0.46	0.54	0.68	0.41	0.47	0.52	0.33	0.62	0.84	0.42	0.63	0.88	0.69	0.95	1.19
30D	0.48	0.57	0.66	0.35	0.41	0.47	0.59	0.96	1.11	0.36	0.54	0.76	0.52	0.73	0.98
90D	0.30	0.38	0.48	0.16	0.27	0.39	0.36	0.47	0.58	0.21	0.35	0.44	0.63	0.75	1.02
d: DT	'S, SBF														
MD-		CP0			CP1			CP2			CP10			CP20	
MPa	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	Max
7 D	0.44	0.46	051	0.43	0.54	0.68	0.45	0.53	0.66	0.25	0.39	0.47	0.09	0.23	0.35
15D	0.27	0.39	0.46	0.19	0.36	0.47	0.69	0.84	0.94	0.30	0.50	0.66	0.19	0.24	0.35
30D	0.16	0.32	0.42	0.25	0.34	0.41	0.34	0.57	0.87	0.30	0.49	0.65	0.22	0.26	0.35
90D	0.23	0.31	0.43	0.32	0.46	0.54	0.40	0.49	0.60	0.11	0.19	0.28	0.19	0.23	0.26

Fig. 5: Mechanical changing of the Paste samples over aging times.

(3:2) p/w Paste Fig. 6: Mechanical changing of the Paste samples over aging times.

Summary

The mechanical test of CP biomaterial prepared by single pot technique has been successfully done to elucidate the effects of excess CaO, preparation technique and aging condition. The results show that the increase in the excess CaO reduces the strength but not in the case of Paste. The preparation technique of paste results in better entanglement of the particles. For examples, the compression strengths (MPa) of CP0, CP1, CP2, CP10 and CP20 are 1.99, 1.24, 1.28, 1.10 and 0.71 respectively for 7D aging samples made of powder, and 1.80, 2.62, 1.32, 1.85 and 2.05 for those made of paste; meanwhile their diametrical tensile strengths (MPa) are 0.32, 0.31, 0.26, 0.13 and 0.13 respectively for the former group samples, and 0.72, 0.62, 0.78, 0.91 and 1.00 for the laters.

Acknowledgment

Biomedical Engineering Research Group (BERG) at International Islamic University of Malaysia supported this technical works.

References

[1] S. Jalota, A.C. Tas and S.B. Bhaduri: J. Am. Ceram. Soc., Vol. 88 (2005), p. 3353

- [2] V.A. Dubok: Powder Metal. Metal Ceram., Vol. 39 (2000), p. 381.
- [3] I.H. Kalfas: Neurosurg. Focus, Vol. 10 (2001), p. 7.
- [4] A.S.F. Alqap, I. Sopyan and S.A. Zubir: Adv. Mater. Res. Vol. 93-94 (2010), p. 405
- [5] A.S.F. Alqap, I. Sopyan, M. Husni and N. Athirah: App. Mech. Mater. Vol. 110-116 (2012), p. 8