UDC 54:66

GHTMDD

ISSN 0350 - 0136

НА ХЕМИЧАРИТЕ И ТЕХНОЛОЗИТЕ НА МАКЕДОНИЈА

BULLETIN OF THE CHEMISTS AND TECHNOLOGISTS OF MACEDONIA

Глас. хем. технол. Македонија	Год.	Број	стр.	Скопје
	16	2	89–188	1997
Bull. Chem. Technol. Macedonia	and I have been	No.	pp.	Skopje

Bulletin of the Chemists and Technologists of Macedonia, Vol. 16, No. 2, pp. 139-141 (1997) ISSN 0350 - 0136 UDC: 678.743.02 : 66.095.26

GHTMDD – 297 Received: September 3, 1996 Accepted: November 20, 1997

Original scientific paper

¹³C-NMR ANALYSIS OF POLYVINYL CHLORIDE SYNTHESIZED WITH MANGANESE(III)DIACETYLACETONATE RHODANIDE AS INITIATOR

Aco Janevski¹, Anton Šebenik², Nuška Jošeska¹, Gjuro Petrov³

¹Research Department, OHIS, Prvomajska bb, 91000 Skopje, Republic of Macedonia, ²Department of Chemistry and Chemical Technology, University of Ljubljana, P.O.Box 537, 61000 Ljubljana, Slovenia, ³Technical Faculty, 97000 Bitola, Republic of Macedonia

Configurational analysis was made of polyvinyl chloride (PVC) synthesized with manganese(III)diacetylacetonate rhodanide initiated polymerization. The Bernoullian probabilities for meso addition on monomer units were found to be 0.434 from methine, and 0.450 calculated from methylene ¹³C atoms. The results suggest radical polymerization mechanism.

Key words: polyvinyl chloride; organometallic initiators; configurational analysis; manganese(III)diacetylacetonate rhodanide

INTRODUCTION

Polymerization processes carried out with organometallic initiators (0I) were found to give polymers with a more regular structure than the polymers obtained by using other free radical initiators. It is believed that this is due to the coordination mechanism of the polymerization process. In our previous work the results from ¹³C-NMR structure analysis of polyacrylonitrile synthesized by manganese(III)diacetylacetonate rhodanide as initiator were given [1, 2], indicating atactic structure, but with a slightly higher concentration of sindiotactic sequences as compared to the polymers synthesized by ordinary free radical initiators.

No data were found in the literature concerning the manganese(III)diacetylacetonate rhodanide initiated polymerization of vinyl chloride (VC).

In this work an analysis of the molecular structure of PVC synthesized by using manganese(III)diacetylacetonate rhodanide is given.

The results are compared to those obtained by persulphate (PS) synthesized PVC.

EXPERIMENTAL PART

The ¹³C-NMR spectra are recorded on Fourier transform VARIAN VXR-300 pulsed spectrophotometers, operating at 75.6 MHz for ¹³C resonances. The measurement conditions were: spectral width 16 501 Hz, acquisition time 2 s, 90° pulse and number of pulses 15 000. The samples were desolved in DMSO-d₆ and the operating temperature was 90 °C. Calculations were made from areas for the same functional groups in the NMR spectra. The differences at T₁ for carbons from the same group but in different configurational sequences are insignificant [3]. The peaks in spectra are approximated with Lorentz's functions, with a Lab Calc PC program.

Polymers were obtained by polymerization in suspension.

The polymerization was initiated by manganese(III)diacetylacetonate rhodanide and carried out in laboratory conditions. The initiator (0.003 mol) was added to the monomer (1 mol). The pH was 3.2. The reaction was carried out at the temperature of 313 K for 5 hours, with mixing of 600 rpm. The polymer obtained had a K value of 85.

Suspension PVC, a commercial product of OHIS (SO 721), K value of 70, was used for comparative purposes.

RESULTS AND DISCUSSION

The number of peaks in ¹³C spectra of vinyl polymers depends on the configuration. Methine spectra show triad configurational sensitivity. There are three groups of peaks (Fig. 1) from sindio, racemis and heterotactic configurational sequences [4]. The areas of peaks (mm, mr and rr), are proportional to the molar ratious of their sequences.

By equation (1) we calculated values of Bernullian probabilities for the meso addition of monomer units for triad sequences [4].

$$Pm = mn + mr/2$$
(1)

$$4(mm)(rr)/(mr)^2 = 1$$
 (2)

The results are given in Table 1 and relation 2 was held satisfactorily as listed in the Table.

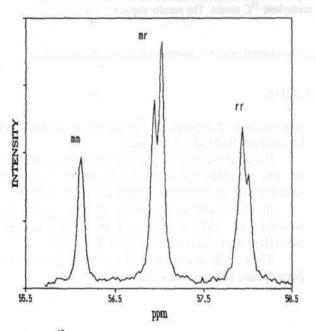


Fig. 1. ¹³C methine NMR spectrum of PVC synthesized with $Mn(C_3H_7O_2)_2(CNS)$ as initiator

The triad microtacticity of PVC

Triads	PVC-PS		4(mm)(rr)	PVC-Mn(C ₅ H ₇ O ₂) ₂ (CNS)		4(mm)(rr)	
	exp.	*calc.	(mr) ²	exp.	**calc.	(mr) ²	
mm	0.195	0.201	1.02	0.197	0.188	1.1	
m	0.493	0.480		0.474	0.491		
п	0.318	0.312		0.335	0.320		

* Pm = 0.443, ** Pm = 0.434

The methylene ¹³C-spectrum shows tetrad configurational sensitivity. Six peaks exist in this part of spectrum (Fig. 2). The assignment of these peaks was made on the basis of Inane work [5, 6] and the calculated molar areas from Bernoullian statistics [7, 8]. The agreement between the calculated and the experimental values is fairly good (Tab. 2).

Bernoullian probabilities for meso addition were calculated by the equations for the relation between triad, and tetrad sequences (equations 3 and 4) and then by the equation 1.

$$mm = mmm + mmr/2$$
(3)

mr = rmr + mrm + (mmr + mrr)/2(4)

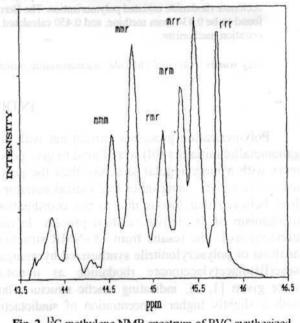


Fig. 2. ¹³C methylene NMR spectrum of PVC synthesized with Mn(C₅H₇O₂)₂(CNS) as initiator

Table 2

The tetrad microtacticity of PVC

Tetrad	PVC-PS		PVC-Mn(C ₅ H ₇ O ₂) ₂ (CNS)		
	exp.	*calc.	exp.	**calc.	
пт	0.159	0.146	0.177	0.167	
mrr	0.242	0.262	0.256	0.272	
mrm	0.109	0.118	0.107	0.111	
rmr	0.138	0.131	0.134	0.136	
mmr	0.246	0.236	0.230	0.222	
mmm	0.104	0.106	0.095	0.090	

* Pm = 0.473, ** Pm = 0.450

140

The values for Bernoullian probabilities for meso addition found from both types of ¹³C atoms show good agreement. The values of concentration of sindiotactic sequences are higher than the isotactic ones for a polymer produces with both initiators. The concentration of sindiotactic sequences for polymer synthesized with manganese(III)diacetylacetonate rhodanide is slightly higher than that of the polymer produced with persulphate.

The conclusions coincide with our previous work concerning the possibility of more than one polymerization mechanisms existing, but the major one is free radicals [1, 2]. The small peaks in the methine spectra are designed as structural impurities. The most probable structure is branching [5, 9]. The methylene groups adjacent to the branch are different from other methylene groups in the polymer.

Each branch point will influence the resonances of at least three methylene carbons. The number of branch points per 100 monomer units were 4 and 5 for PVC produced by persulphate and PVC produced by $Mn(C_3H_7O_2)_2(CNS)$ respectively.

CONCLUSION

From the ¹³C-NMR spectra which show triad and tetrad sensitivity, we made configurational analysis of PVC, synthesized with $Mn(C_5H_7O_2)_2(CNS)$ as initiator. The Bernoullian probabilities for meso addition of the monomer units are calculated as 0.434 from methine and 0.450 from methylene ¹³C atoms. The results show that the mechanism of polymerization is mainly a free radical in nature.

REFERENCES

- A. Janevski, A. Šebenik, N. Jošeska and D. Petrov, Bull. Chem. Technol. Macedonia, 13, 1, 11–13 (1994).
- [2] N. Jocheska, G. Petrov, A. Janevski and A. Sebenik, *Europ. Polym. J.*, **32**, 209 (1996).
- [3] C. J. Carman, Macromolecules, 2, 327 (1973).
- [4] James C. Randal, Polymer Sequence Determination Carbon-13 NMR Method, Academic Press, New York, 1977, Ch. 6, p. 130.
- [5] Y. Inoue, A. Nishioka and R. Chijo, Polym. J., 2, 535 (1972).
- [6] Y. Inoue, I. Ando and A. Nishioka, Polym. J., 2, 246 (1972).
- [7] James C. Randal, Polymer Sequence Determination Carbon-13 NMR Method, Academic Press, New York, 1977, Ch. 1, p. 22.
- [8] James C. Randal, J. Polym. Sci., Polym. Phys. Edn., 13, 889 (1975).
- [9] J. D. Cotman, Jr., Ann. N. Y. Acad. Sci., 57, 417 (1953).

Резиме

¹³С-NMR АНАЛИЗА НА ПОЛИВИНИЛХЛОРИД СИНТЕТИЗИРАН СО МАНГАН(III)АЦЕТИЛАЦЕТОНАТ РОДАНИД

Ацо Јаневски¹, Антон Шебеник², Нушка Јошеска¹ и Ѓуро Петров³

¹Оддел за истражување, ОХИС, 91000 Скопје, Република Македонија ²Fakulteta za hemijo in tehnologijo, Ljubljana, Slovenija ³Технички факултет, 97000 Битола, Република Македонија

Клучни зборови: поливинилхлорид; органометални иницијатори; конфигурациска анализа; манган(Ш)диацетилацетонат роданид

Одредени се Bernoullian-овите веројатности за мезоадиција на мономерната единица на РVС добиен со манган(Ш)ацетилацетонат роданид како иницијатор. Тие се слични со вредностите за РVС добиен со радикален механизам. Тоа укажува дека механизмот на полимеризација со манган(III)ацетилацетонат роданид како иницијатор е, главно, радикален.

BULLETIN OF THE CHEMISTS AND TECHNOLOGISTS OF MACEDONIA The Society of Chemists and Technologists of Macedonia

ГЛАСНИК НА ХЕМИЧАРИТЕ И ТЕХНОЛОЗИТЕ НА МАКЕДОНИЈА

Списание на Сојузот на хемичарите и технолозите на Македонија

Глас. хем. технол. Македонија	Год.	Број	стр.	Скопје
	16	2	89–188	1997
Bull. Chem. Technol. Macedonia	Vol.	No.	pp.	Skopje

TABLE OF CONTENTS

Organic Chemistry
292 – Ivan Gutman and Vesna Ivanov-Petrović Unusual modes of cyclic conjugation in phenylenes. 91 – 96
293 – Marija Lazarević, Vesna Dimova, János Csanádi, Mirjana Popsavin, Ljiljana Klisarova Synthesis of some new 4,5-disupstituted-2,4-dihydro-3H-1,2,4-triazoline-3-thiones
Chemical Engineering
294 – Filimena A. Poposka, Kostadin Nikolovski and Radmila Tomovska The extraction of citric acid with isodecanol/ <i>n</i> -paraffins solutions of trioctylamine: equilibrium and kinetics
295 – Filimena A. Poposka, Kostadin Nikolovski and Radmila Tomovska Simulation of extraction of citric acid by trioctylamine in a reciprocating-plate extraction column
Analytical Chemistry
 296 - Gorica Pavlovska, Katarina Čundeva and Trajče Stafilov Flotation with iron(III) hexamethylenedithiocarbamate as a preconcentration method for lead determination using electrothermal atomic absorption spectrometry
Polymers
297 – Aco Janevski, Anton Šebenik, Nuška Jošeska, Gjuro Petrov ¹³ C-NMR analysis of polyvinyl chloride synthesized with manganese(III)diacetylacetonate rhodanide as initiator
Fibers
298 – Dragan M. Đordević, Cvetko Trajković and Gjuro Petrov The most important characteristics of classic and microfibers obtained from natural and synthetic polymers
Computer application
299 – Vladimir M. Petruševski, Vladimir G. Ivanovski and Kostadin G. Trenčevski CRYMCALC – A computer program for crystal morphology calculations
Supplements
Глигор Јовановски Кои се нобеловците по хемија? (По повод 100-годишнината од отворањето на Нобеловиот тестамент)
Зоран Здравковски и Киро Стојаноски
Имиња на хемиските елементи 101 – 109
Актуелности